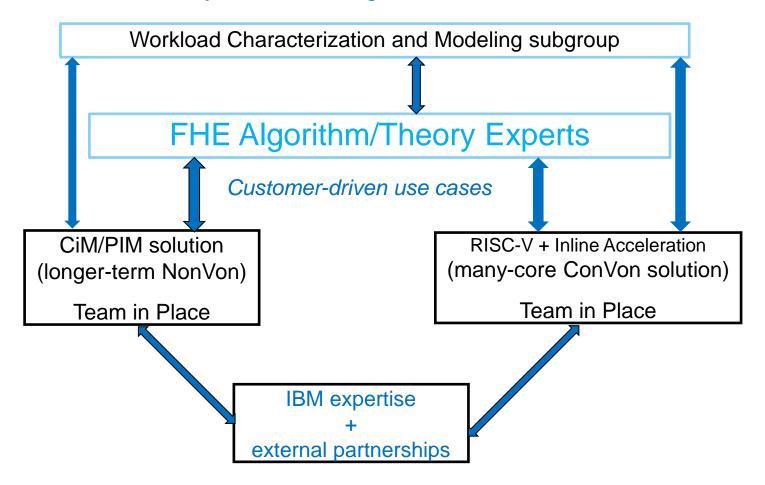
HE Hardware Acceleration Research

with a discussion of standardization of SW-HW Interfaces


September 2, 2022

Pradip Bose (in association with)
Omri Soceanu, Nir Drucker, Karthik Swaminathan, Subhankar Pal, John Buselli et al.

IBM Research

Focus on key workloads: e.g., credit card fraud detection

The modeling and system-on-chip (SoC) definition methodology is linked, in part, to an ongoing DARPA project called EPOCHS

2022 Highlights

- SoC Performance Model in place
- Architecture and microarchitecture strawman in place
- RISC-V design and methodology (adapted over from EPOCHS)
- Leverage ESP hardware integration methodology from EPOCHS
- Resilient, low-voltage AI/ML acceleration research pursued under a linked IARPA-sponsored project
- Research collaborations with university and industrial research groups

Research timeline and agenda partly inspired by DARPA DPRIVE program

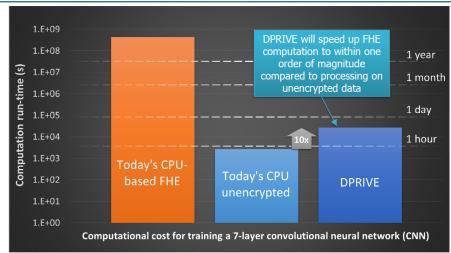
Setting hardware-aided speedup targets

How are the speed-up targets chosen? What is the baseline against which speedup is measured?

Use Case Selection and Workload Characterization

- Customer specifies real-time deadlines
- Measurement & characterization on existing systems tells us the gap

Baseline = today's state-of-the-art CPU chip/system


Competitive positioning

- DARPA DPRIVE program specifications
- Published claims from industry/academia
- Several sources:
 - ✓ HEAX paper from Microsoft (March '20)
 - ✓ Cheetah paper from Facebook (Feb. '21)
 - √ F1 paper from SRI International (Oct. '21)
 - ✓ BTS and Craterlake papers (June '22)

DARPA DPRIVE GRAND CHALLENGE

What are we trying to do?

Program Objective: Design and implement a hardware accelerator to reduce computational run time for FHE to make it comparable to similar unencrypted data operations (within 10x)

Distribution Statement A. Approved for public release. Distribution unlimited.

5

DPRIVE Program Metrics

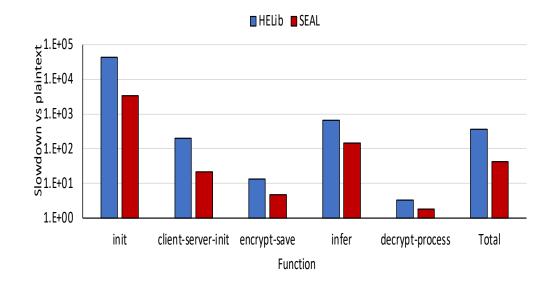
Challenge		Phase 1: Building Blocks in emulation	Phase 2: Full Design in emulation	Phase 3: Prototype and Software Port
1	Ability to build and emulate all blocks (add, sub, mul, mod, shifts, transforms)	Binary yes/no		
1	Verification coverage of logic circuits	≥ 90%	100%	
1	Time to perform logic circuit verification	≤ 1 day	≤ 1 day	
2	Chip dimensions	≤ 150 mm² (estimate)	≤ 150 mm ² (RTL)	≤ 150 mm² (real chip)
3	FHE parameter range: Plaintext Modulus	2 – 1024	2 – 1024	2 – 1024
3	FHE parameter range: Ciphertext Modulus	2 ¹⁵ – 2 ⁵⁰⁰	2 ¹⁵ – 2 ⁵⁰⁰	2 ¹⁵ – 2 ⁵⁰⁰
3	FHE parameter range: RingSize	512 – 16384	512 – 16384	512 – 16384
Overall	Execution of a 1024-point logistic regression model	≤ 10 ms (100x)	≤ 1 ms (10x)	≤ 0.1 ms (1x)
	Execution of 7-layer CNN inference w/ CIFAR-10 data set per image		≤ 250 ms (100x)	≤ 25 ms (10x)
	Execution of 7-layer CNN training w/ CIFAR-10 data set over 10 epochs			≤ 10 hours (10x)

Metrics in parenthesis indicate expected penalty vs. plaintext operations

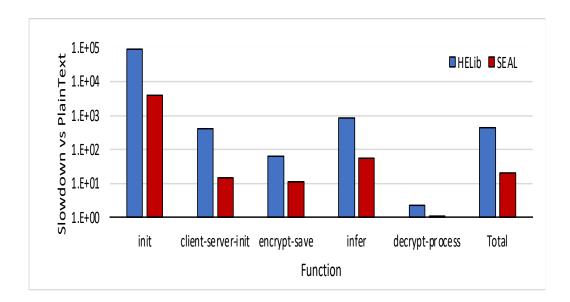
Distribution Statement A. Approved for public release. Distribution unlimited.

17

Initial Application/Use Case Focus Areas


- Initially: AI-embedded financial domain transactions
- Bank/financial customers
- End-to-end use cases:
 - ✓ Credit card fraud detection XGBOOST, 7-layer fully connected NN, inference & training
 - ✓ Loan application risk assessment (inference, training)
 - ✓ Some other applications
- Microbenchmarks derived from above.
- Microbenchmarks (DARPA DPRIVE)
 - √ 7-layer CNN inference /CiFAR-10 data set per image.
 - √ 1024-point logistic regression model

Customer confidential performance specifications in many cases: Throughput and real-time latency requirements


Workload Characterization – Exemplary Data

Credit Card Fraud Detection Example

Implementation	Exec Time (s) (ref m/c A)	Exec Time (s) (ref m/c B)
Plaintext	0.83	0.69
HELib	301.28	193.78
SEAL	34.85	10.09

- Small (toy) problem size used
- Slowdown from plaintext to ciphertext computation: up to 350X in this particular case.
- Scaling up problem size (NN size)
 exposes more challenging
 speed-up needs: e.g. ~1000X for
 7-layer CNNs (as in DPRIVE program

BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption

Sangpyo Kim[†] Jongmin Kim[†] Michael Jaemin Kim[†] Wonkyung Jung[†]
Minsoo Rhu[‡] John Kim[‡] Jung Ho Ahn[†]
Seoul National University[†], KAIST[‡]
{vnb987, jongmin.kim, michael604, jungwk, gajh}@snu.ac.kr, {mrhu, jjk12}@kaist.edu

ISCA 2022

Experimental setup

- Simulation
 - BTS is sized 373.6mm² and consumes 163.2W of peak power using 7nm technology node
- Performance metric
 - amortized mult time per slot $(T_{mult,a/slot})$
- Workloads
 - [HELR] Logistic regression training of a binary classification model
 - [ResNet-20] ResNet-20 inference for CIFAR-10
 - [Sorting] Sorting using 2-way sorting network to sort 2¹⁴ data
- State-of-the-art implementations of CKKS for comparison
 - Lattigo (CPU)100x (GPU)
 - **F1** (ASIC)
 - F1+ optimistically scaled version of F1 from 14nm to 7nm technology node

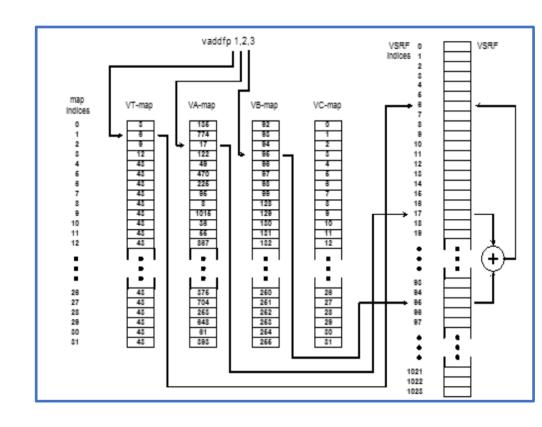
Results

• [HELR] Logistic regression training – training time per iteration (1024 samples)

	Lattigo (CPU)	100x (GPU)	F1+ (ASIC)	втѕ		
Execution time (ms)	37,050	775	148	28.4		
Speedup	1×	48×	250×	1,306×		
1306x 5.2x						

- [ResNet-20] BTS shows up to 5,556× better performance than prior work in ResNet-20 inference
- [Sorting] BTS outperforms prior work by 1,482x in sorting

47


System Architectural Directions Summary (IBM Research)

- Paradigm#1: focused on conventional von Neumann architecture (ConVon)
 - RISC-V/inline accel based massively parallel (dynamic SIMD) architecture
- Paradigm#2: focused on non-von Neumann architectures (NonVon)
 - CiM/PIM and other forms of NDP (near-data processing)
 - Collaborative partnership with university and industry research groups
 - Leverage relevant Heterogeneous Integration (HI) technology within IBM Research
 - And, ongoing collaborative projects with memory vendor groups

ConVon Architectural Paradigm:

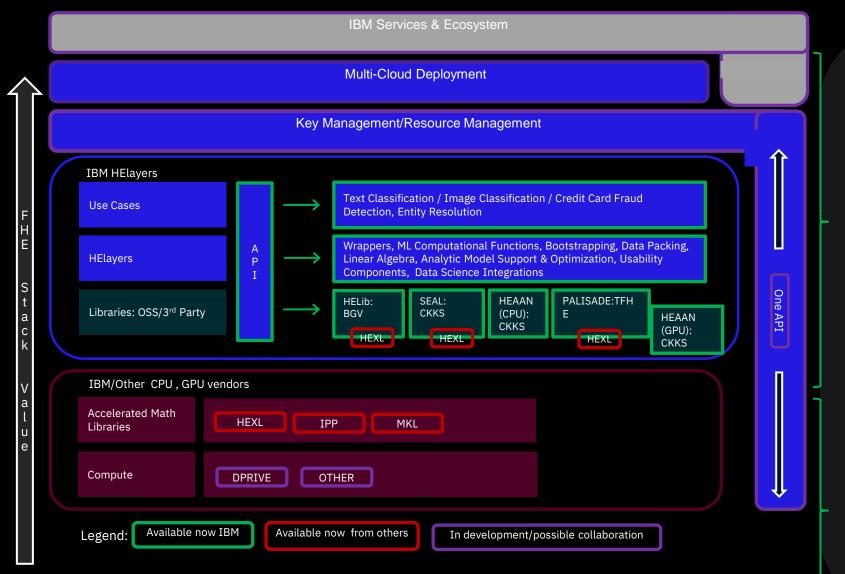
Key Features and Performance

- Massive (64KB) register file for each compute core: indirectly addressed
- Organized such that it allows interleaved ("SPLIT") access with register-embedded compute engines
- Matched innovation of split power supply: for lowering the power consumption of inline accelerator logic & data comm.

Very early power-performance estimates of our ConVon research

Al-compute, 2-byte: 1.3 PFLOPS @ 0.4 V, 0.66 GHz, ~400 W

HPC/Linpack/DP: 192 TFLOPS @ 0.4V, 0.66 GHz, ~400 W


64K NTT (key to FHE perf): >3 orders of magnitude better than SOTA CPU

Efficient Programmability Of Cognitive Heterogeneous Systems (EPOCHS)

(We will use this agile design methodology) **EPOCHS Agile Flow Methodology EPOCHS** Compiler **Ontology & Design Space** Reference **Exploration Application Scheduler Agile Flow** 10×-100× **FPGA Prototype** reduction in person-years **Accelerators + Domain-Specific Implementation** NoC + Memory **SoC Hardware Architecture**

Agile methodology to quickly design and implement an easily programmed domain-specific SoC for real-time cognitive decision engines in connected vehicles

FHE Open Collaboration Ideas: Full Stack Integration

Potential Collaboration Areas

HE Application Layer:

- Key Management/Resource Management
- HELayers Packaged with additional optimizations for Intel HW
- FHE Standards and Cryptanalysis
- Open-source HE Benchmark Community initiative (HEBench)
- Client use scenarios and workloads
- Joint Thought Leadership
 - o Research & Client publications
 - Academic partnerships
 - o Clients/Conferences/Marketing events
- Open-source HE Acceleration library (HEXL) from another vendor

HW Acceleration:

- Explore joint research opportunities (IBM Research with others)
 - √ Hard system architectural issues: esp. memory sub-system, onchip communication sub-system, verification, RAS, power mgmt
 - ✓ Joint research consortium with external sponsored funding

Summary and Open Discussion

- IBM Research has an active interest in HE hardware-software co-designed acceleration
- We are pursuing a relative open collaborative research model
- Standardized hardware-software interfaces are a key driver of such a research objective
- We are open to discussion about collaborations and opne-source development methodologies and practices