Implementation security of quantum key distribution

Anqi Huang

2022-11-08 ITU Workshop

Secure connection among communication network

Key distribution for encryption

Quantum key distribution

Quantum key distribution transmits secret key by sending quantum states over *open channel*.

Bennett-Brassard 1984 (BB84) QKD protocol

Point-to-point commercial QKD system from ID Quantique

Hybrid QKD network

QKD chips

Challenges for Large-scale Secure Quantum Communication

Security?

Long distance ?

Applications ?

Challenges for Large-scale Secure Quantum Communication

Security?

Long distance ?

Applications ?

Gap between theory and experiment

Attack	Target component	Tested system		
Distinguishability of decoy states A. Huang <i>et al.,</i> Phys. Rev. A 98 , 012330 (2018)	laser in Alice	3 research systems		
Intersymbol interference K. Yoshino <i>et al.,</i> poster at QCrypt (2016)	intensity modulator in Alice	research system		
Laser damage	any Phys. Boy. Appl. 12 , 024017 (2020)	5 commercial &		
Spatial efficiency mismatch	receiver optics	2 research systems		
M. Rau <i>et al.,</i> IEEE J. Sel. Top. Quantum Electron. 21 , 6600905 (20	15); S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 06	2301 (2015)		
Laser-seeding S. Sun <i>et al.</i> , Phys. Rev. A 92 , 022304 (2015), A. Huang <i>et al.</i> , Phys	laser in Alice . Rev. Appl. 12 , 064043 (2019)	3 research systems		
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet		
Trojan-horse N. Jain <i>et al.</i> , New J. Phys. 16 , 123030 (2014); S. Saieed <i>et al.</i> , Sci.	phase modulator in Bob Rep. 7 , 8403 (2017)	ID Quantique		
	homodyne detector	SeQureNet		
Shot-noise calibration	classical sync detector	SeQureNet		
P. Jouguet, S. Runz-Jacques, E. Diamanti, Phys. Rev. A 87, 062313 Pulse illumination	single-photon detector	research system		
Z. Wu, A. Huang <i>et al.,</i> Opt. Express 28 , 17 (2020) Multi-wavelength	beamsplitter	research system		
HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011) Deadtime	single-photon detector	research system		
H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011) Channel calibration	single-photon detector	ID Quantique		
N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)				
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 062331 (2011)	Faraday mirror	(theory)		
Detector control L. Lydersen <i>et al.,</i> Nat. Photonics 4 , 686 (2010); A. Huang <i>et al.,</i> IE	single-photon detector EE J. Quantum Electron 52 , 11 (2016)	ID Quantique, MagiQ, research systems		

Implementation security of quantum communications

Implementation security of quantum communications

Active attacks on QKD

Active attacks on the source: Laser seeding attack

Laser seeding attack

(a) (b) (c) 3.5 € 3 2.5 No tampering No tampering No tampering 3 3 3-mW tampering 3-mW tampering 3-mW tampering 6-mW tampering 2.5 6-mW tampering-2.5 6-mW tampering 9-mW tampering output power 9-mW tampering 9-mW tampering 2 2 2 1.5 1.5 1.5 1 1 0.5 0 0.5 0.5 _0.5∟__0 -0.5∟ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time (ns) Time (ns) Time (ns) **ID Quantique ID300 Thorlabs LP1550**

Photon number increases 1.13~4.57 times

Anqi Huang, et. al., Phy. Rev. Appl. (2019)

Active attacks on the source: Laser damage attack

A. Huang, R. Li, S. Tchouragoulov, V. Egorov, V. Makarov, Phy. Rev. App. (2020)

Atten. Attack

change power

(W)

2.5

4.2

2.8

(dB)

-9.59

Blinding attack on avalanche photodetectors (APDs)

Active attack on the detection: pulse illumination attack on APD

Active attack on the detection: pulse illumination attack on APD

Countermeasure against active attacks on the source

Light injection attacks: Laser-seeding attack Laser damage attack Trojan-horse attack

Countermeasure against active attacks on the source

(Isolator / circulator)

Countermeasure against active attacks on the source

(Isolator / circulator)

Is it effective? Should be verified!

Countermeasure verification: isolation component

Countermeasure verification: isolators

TABLE I: Testing results of isolators. All measurements are at 1550 nm.

Sample	Specified minimum isolation (dB)]	Initial	M::	Manimum damas	Irreversible damage at
		Insertion loss (dB)	Isolation (dB)	isolation (dB)	of isolation (dB)	
ISO PM 1	46	0.66	53.7	21.8 @ 6.7 W, 360 s	31.9	$6.7 \mathrm{W}, 900 \mathrm{s}$
ISO PM 2	28	0.50	37.0	17.2 @ 3.37 W, 820 s	19.8	was not tested
ISO 3-1	46	0.45	58.1	37.1 @ 3.3 W, 260 s	21.0	was not tested
ISO 3-2	46	0.55	62.1	27.6 @ 3.4 W, 800 s	34.5	$3.8 \ W, \ 90 \ s$
ISO 4	55	0.52	57.6	42.4 @ 2.2 W, 200 s	15.2	was not tested

A. Ponosova, D. Ruzhitskaya, P. Chaiwongkhot, V. Egorov, V. Makarov, and A. Huang, PRX Quantum

Countermeasure verification: isolators

A. Ponosova, D. Ruzhitskaya, P. Chaiwongkhot, V. Egorov, V. Makarov, and A. Huang, PRX Quantum

Countermeasure verification: circulators

		Initial								
Sample	Specified minimum isolation for all ports (dB)	Insertion loss (dB)		Isolation (dB)		Minimum isolation (dB)		Maximum decrease of isolation (dB)		Irreversible damage at
		1 to 2	2 to 3	2 to 1	3 to 2	2 to 1	3 to 2	2 to 1	3 to 2	
CIR 1	45	1.03	1.07	61.4	60.6	34.7 @ 3.6 W	32.2 @ 3.6 W	26.7	28.4	was not tested
CIR 2	40	0.72	0.83	67.0	65.7	38.3 @ 4.6 W	32.3 @ 4.6 W	28.7	33.4	4.6 W, 910 s
CIR PM 3	25	1.00	0.80	37.0	27.0	was not tested	6.4 @ 0.7 W	was not tested	20.6	0.9 W, 90 s

A. Ponosova, D. Ruzhitskaya, P. Chaiwongkhot, V. Egorov, V. Makarov, and A. Huang, PRX Quantum

Countermeasure against active attacks on QKD

Gong Zhang and et. al., PRX Quantum (2021)

Q. Peng, A. Huang, and et. al., manucript in preparation

c.w. high-power laser testing

c.w. high-power laser testing

40-MHz pulsed laser testing

Eve average

Q. Peng, A. Huang, and et. al., manucript in preparation

1-GHz pulsed laser testing

May help Trojan-horse attack on high-speed QKD system

Q. Peng, A. Huang, and et. al., manucript in preparation

Take home message

The security of a QKD system might be compromised due to practical attacks

Countermeasure shall be verified to investigate the security boundary

Thank you!

