Work items in ITU-T SG17Q14

ITU Workshop on DLT security, identity management and privacy

20 February 2023, Geneva, Switzerland (Remote)

Ke WANG, ITU-T SG17Q14

Standardization System

Security protection of DLT	Security protection of DLT based applications	Using DLT for security
X.1401:Security threats to distributed ledger technology	X.1405:Security threats and requirements for digital payment services based on DLT	X.1409:Security services based on distributed ledger technology
X.1402:Security framework for distributed ledger technology	X.1406:Security threats to online voting systems using	
X.1404:Security assurance for distributed ledger technology	X.1407:Security requirements for digital integrity proofing service based on DIT	
X.sc-dlt:Security controls for distributed ledger technology	X.1408:Security threats and requirements for data access and sharing based on the DLT	
TR.qs-dlt: Guidelines for quantum-safe DLT systems	X.1410:Security architecture for data-sharing management based on DLT	
X.srscm-dlt: Security requirements for smart contract management based on DLT	X.1403:Security guidelines for using distribute management	d ledger technology for decentralized identity

Terms and Definitions

X.1400 :Terms and definitions for distributed ledger technology

X.1400: Terms and definitions for distributed ledger technology

Status: Published on 2020-10

Summary:

X.1400 contains a baseline set of terms and definitions for distributed ledger technology (DLT).

account	address	application	asset	bitcoin	block	block header	blockchain	blockchain system	blockchain as a service(BaaS)	
Byzantine fault tolerance	compliance	consensus	consensus mechanism	crash fault tolerance	decentralize d application	decentralize d autonomous organization (DAO)	decentraliz ed system	delegated proof of stake (DPoS)	digital signature	
distributed ledger	distributed ledger technology (DLT)	DLT system	DLT oracle	fork	genesis block	enesis governance ock		hash function	hashing	
hybrid permission	immutabilit y	incentive mechanism	inter ledger interoperabili ty	intra ledger interoperabili ty	ledger	Merkle tree	node	nonfungible token (NFT)	off-chain	
on-chain	participant	peer-to- peer	permission	permission ed	permissionI ess	permissione d distributed ledger system	permissionle ss distributed ledger system	proof of work	proof of stake	
public key cryptography	public DLT system	private DLT system	sidechain	smart contract	soft fork	subchain	stateful contract	stateless contract	stateful execution of contract	
stateless execution of contract	token	token ecosystem	tokenomics	transaction	wallet					

- Security protection of DLT
- Security protection of DLT based applications
- Using DLT for security

X.1401:Security threats to distributed ledger technology

Status: Published on 2020-7

Introduction:

- A distributed ledger system may still faces kinds of security threats to its components.
- X.1401 provides a structured and systematic threat analysis method and lists threats to protocol, network, data components.

Each of the threat is described in dimensions:

- targeted component;
- attacks;
- attack impact;
- attack likelihood;
- an index to each security threat with attack methods or vulnerabilities to be referenced.

Ind #	IDCOMPONENT CLASS THREATS	COMPONENT THREATS	COMPONENT VULNERABILITYATTACKS	ACRONYM		
1.0	ProtocolThreat Class (PTC)	PTC Threats	Protocol Component Attacks (PCA)			
1.1	P-CMT	Consensus Mechansim Threats		СМ		
1.1.1	P-CM-51		51% Attack	CM-51A		
1.1.2	P-CM-TM		Timestamp Manipulation Attack	CM-TMA		
1.1.3	P-CM-B		Bribing Attack	CM-BA		
1.1.4	P-CM-SM		Selfish Mining Attack	CM-SMA		
1.1.5	P-CM-CH		Chain Hopping Attack	CM-CHA		
1.1.6	P-CM-BW		Block Withholding Attack	CM-BWA		
1.1.7	P-CM-DS		Double-Spending Attack	CM-DSA		
1.2	P-SCI	Smart Contract Threats	Thurst terrer Daman damas Attack	SC SC		
1.2.1	P-SC-TD		Timestamp Dependence Attack	SC-TDA		
1.2.2	P-SC-ME		Integer Overflow Attack	SC-IVIEA		
1.2.5	P SC PPN		Bredietable Bandom Number Attack			
1.2.4	P-3C-PRN	Virtual Machine Threate		SC-FRINA		
1.3			Escano Attack			
1.3.1	P-VM-EH		Eault Handling Attack	VM-EHA		
1.3.3	P-VM-MC		Memory Corruption Attack	VM-MCA		
1.4	P-CHAT	Cryptographic Hash Algorithm Threats	memory corruption Attack	CHA		
1.4.1	P-CHA-C		Collision Attack	CHA-HCA		
1.4.2	P-CHA-SP		Second Preimage Attack	CHA-SPA		
1.4.3	P-CHA-PE		Preimage Attack	CHA-FPA		
1.5	P-ACAT	Asymmetric Cryptographic Algorithm Threats		ACA		
151	P-ACA-WKMA		Weak Key Material Attack	ACA-WKMA		
1.5.1	P-ACA-BA		Backdoor Attack			
1.5.2			Methemetical Crustenalusia Cracking Attack			
1.5.3			Mathematical Cryptanalysis Cracking Attack			
1.5.4	P-ACA-PINIMA		Protocol Message Manipulation Attack			
1.6		Practical Quantum Computers Inreats		PQC		
1.6.1	P-PQC-CPA		Cryptographic Protocol Attack	PQC-CPA		
1.6.2	P-PQC-BFCA		Brute Force Cracking Attack	PQC-BFCA		
1.6.3	P-PQC-DSA		Digital Signature Attack	PQC-DSA		
2.0	Network Threat Class (NTC)	Network Components Threats	Network Component Attacks (NCA)			
2.1	N-NRTT	Node Routing Table Threat		NRT		
2.1.1	N-NRT-EA		Eclipse Attack	NRT-EA		
2.2	N-DDOST	Network DDOS Threat		DDOST		
2.2.1	N-DDOS-DA		DDoS attack	N-DDOSA		
2.3	N-NIT	Node Identity Threats		NNI		
2.3.1	N-NI-SA		Sybil Attack	NNI-SA		
2.3.2	N-NI-FNIA		Fraudulent Node Identity Attack	NNI-FNIA		
2.4	NRT	Network Routing Threats		NRT		
2.4.1	NR-PA		Partition Attack	ISP-PA		
2.4.2	NR-DA		Delayed Attack	ISP-DA		
3.0	Data Threat Class (DTC)	Data Component Threats	Data Component Attacks (DCA)			
3.1	D-ATDT	Account Data & Transaction Data Threats		ATD		
3.1.1	D-ATD-PSDA		Public Sensitive Data Attack	ATD-PSDA		
3.1.2	D-ATD-AA		Analysis Attack	ATD-AA		
3.1.3	D-ATD-UAA		Unauthorized Access Attack	ATD-UAA		
3.2	D-PKLeT	Private Key Leakage Threats		PKLeT		
3.2.1	D-PKLe-SCA		Software Client Attack	PrK-SCA		
3.2.2	D-PKLe-PA	1	Physical Attack	PrK-PA		
3.3	D-PKLoT	Private Key Loss Threats		PKLoT		
3.3.1	D-PKLo-MA		Malware Attack	PrK-MA		
3.3.2	D-PKLo-FUD		Forget Unlocking Data	PrK-EUD		
3.3.3	D-PKLo-UL		Unlocking Loss	PrK-UL		
3.3.4	D-PKLo-PCL		Paper Private Key Code Loss	PrK-PCL		
3.4	D-TT	Transactions Threat		TT		
3.4.1	D-TT-SBA		Snam Block Attack	TD-SBA		

X.1402:Security framework for distributed ledger technology

Status: Published on 2020-7

Introduction:

Based on analysis of security threats and security requirements to DLT, X.1402 describes security capabilities list that could mitigate the related security threats and specifies a methodology to determine security capabilities to a specific DLT system.

			Security capabilities															
Security requirement	Security threat	Merkle tree	Time stamp	Digital signatur e	Data encryptio n	Security storage	Routing attack defence	Sybil attack defence	Eclipse attack defence	DDoS attack defence	Consensus mechanis m	51% Attack defence	Selfish mining attack defence	Double- spending attack defence	Identity Authenticatio n	Authorizatio n	Multi- signatur e	Smart contract security design
Dete	Private key leakage				Y	Y												
Data	Data leakage	Y	Y	Y	Y	Y					T							
Network	DDoS attack																	
	Sybil attack on network					Z		Y										
	Routing attack						Y											
	Eclipse attack								X									
	51% Attack										Y							
Consensus	Double- spending attack										Y							
	Selfish mining attack										Y							
Application	Smart contract attack														Y	Y		Y

X.1404: Security assurance for distributed ledger technology

Status: Published on 2020-10

Introduction:

Assurance of DLT is defined as the degree of confidence that the process or deliverable meets defined characteristics or objectives. An assurance level could be considered as a quantitative expression of assurance agreed among the relevant parties.

- X.1404 defines three levels(low-medium-high) of security assurance for the DLT.
- It defines ten security assurance components encompassing security assurance and specifies criteria and guidelines for achieving each of the three levels of a security assurance component.

Selection of the appropriate LoSA based on a risk assessment of the transactions or services based on DLT					Criteria	and guidelines for achieving 3 lev	els covering 10 security assurance components			
Possible consequences of security failure	Potential	Protection impact	by LoSA		Laval	Decovintion	data integrity, data confidentiality, credential management, identity proofing of users, antity authentication, access control, data			
	1	2	3		Level	Description	obfuscation, consensus mechanism strength,			
Inconvenience, distress or damage to standing or reputation	Low	Substantial	High		T-CA1	Minimal confidence in the	smart contract and PII data protection			
Financial loss or agency liability	Low	Substantial	High	\square	– low	respective security assurance component of DLT.				
Harm to the organization, its programs or public interests	N/A	Low/Substantial	High		LoSA2	Some confidence in the respective security assurance				
Personal safety	N/A	Low	Substantial/Hig		medium	component of DLT.				
Civil or criminal violations	Low	Low/Substantial	High		LoSA3 - high	High confidence in the respective security assurance component of DLT.				

X.sc-dlt:Security controls for distributed ledger technology

Status: Under study

Introduction:

X.sc-dlt provides guidelines for organizational information security practices including the selection, implementation and management of controls on distributed ledger technologies.

TR.qs-dlt: Guidelines for quantum-safe DLT systems

Status: Under study

Introduction:

- TR.qs-dlt analyses impact of quantum computing on symmetric cryptographic algorithms, asymmetric cryptographic algorithms, hash algorithms and then the impact of quantum computing on permission-less and permissioned DLT system respectively.

	Permissionless DLT	Permissioned DLT
Account management	Affected but can be mitigated	Broken
Access control	Not applied	Broken
Transaction process	Affected but can be mitigated	Broken
Consensus mechanism	Most not affected, a small	Most broken, a small part
	part broken	not affected.
Integrity protection of the	Not affected	Not affected
ledger		
Data confidentiality on the	Affected but can be easily	Affected but can be easily
ledger	mitigated	mitigated
Message transmission	Not affected	broken

- TR.qs-dlt describes the requirements of a quantum-safe DLT systems including using quantum-safe cryptographic algorithms, supporting heterogeneous nodes and clients, Flexible deployment of cryptographic algorithms and gives the guidelines to build a quantum-safe DLT system.

- TR.qs-dlt will discuss measures to migrate from a current DLT system using existing cryptographies to the quantum-safe DLT system using quantum-safe cryptographic algorithm.

X.srscm-dlt: Security requirements for smart contract management based on the distributed ledger technology

Status: Under study

Introduction:

- X.srscm-dlt analyses the security threats and challenges of the smart contract in a DLT system.
- X.srscm-dlt specifies the security requirements to introduced through the whole smart contract lifecycle.

- Security protection of DLT
- Security protection of DLT based applications
- Using DLT for security

X.1405:Security threats and requirements for digital payment services based on distributed ledger technology

Status: Published on 2021-6

Introduction:

Digital payment services are used to transfer money from one account to another. Various digital financial services based on DLT are developed and operated in the real world.

X.1405 provides use cases analysis and the basic service model, Security threats and Security requirements

Device theft Device exploitation Key theft/loss Coin theft	Money laundering/ Terrorist financing	Threats	secure devices	secure nodes	Secure cryptog raphic	real name verificati on	Incident monitor response	Data confiden tiality	Smart contract test	key manage	Differen t keys	Govern ing rules	user responsi bility
Account setup Privacy disclosure	Scam	Account set-up threats	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
	π	Transactio n threats	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Vulnerable Smart contract Less vulnerable vulnerablity exploitation More vulnerable Partitioning/DoS/consensus attacks	X.1405(21)-F04	Scam					\checkmark			\checkmark			\checkmark
Device theft Device exploitation		Systematic threats		\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	
Key theft/loss Coin theft Account setup Privacy disclosure	Money laundering/ Terrorist financing	Money laundering / terrorist financing				\checkmark	\checkmark						
		Insecure custodial and safekeepin g services		\checkmark	\checkmark		N	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Vulnerable Smart contract Less vulnerable vulnerability exploitation More vulnerable Partitioning/DoS/consensus attacks	X.1405(21)-F05	Interopera bility challenges	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

X.1406:Security threats to online voting systems using distributed ledger technology

Status: Published on 2021-7

Introduction:

Many countries have implemented online voting systems using DLT based on telecommunication or ICT infrastructure. X.1406 lists the required security considerations of an online voting service and Potential security threats that could occur during the online voting service using DLT.

X.1407:Security requirements for digital integrity proofing service based on distributed ledger technology

Status: Published on 2022-1

Introduction:

The DLT-based digital integrity proofing platform provides services for distributing, querying, and tracking digital proof of the integrity of an entity using distributed ledger technologies.

- X.1407 specifies the security threats to user, proof registration, proof provenance. ٠
- X.1407 specifies requirements for digital proofing of the integrity of an entity based on DLT.

X.1408:Security threats and requirements for data access and sharing based on the distributed ledger technology X.1410:Security architecture for data-sharing management based on distributed ledger technology

DLT can help enable trust and transparency on accountability and verifiability of data processing e.g., data provenance and usage tracking.

Status: Published on 2021-10

Introduction:

X.1408 specifies a reference model, security threats and security requirements to data access and sharing based on DLT.

Status: determined, for TAP approval **Introduction**:

X.1410 specifies a security architecture, interfaces and procedures of data-sharing management based on DLTs.

- Security protection of DLT
- Security protection of DLT based applications
- Using DLT for security

X.1403:Security guidelines for using distributed ledger technology for decentralized identity management

Status: Published on 2020-9

Introduction:

Identity systems based on DLT can be thought of as separate identity systems with different trust boundaries and cryptography keys. DLT acts as the identity trust vault and offers identity infrastructure services.

- X.1403 describes three continually evolving basic digital identity models from Centralized identity model, Federated identity model to Decentralized identity model.
- X.1403 provides overview of using DLT for the management of identity and data
- X.1403 discusses security threats of using DLT for decentralized identity management, guidance of the necessary controls.

Figure -DIdAm framework

X.1409:Security services based on distributed ledger technology

Status: Published on 2022-7

Summary:

X.1409 identifies aspects to be evaluated before delivering a security service based on DLT and provides four security services which could be delivered based on DLT:

DLT-based public-key certificate management

DLT-based threat intelligence sharing

DLT-based security audit

