

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

FttR as a Feeder for New Wireless Technologies

Volker Jungnickel, Fraunhofer Heinrich Hertz Institute

Outline

FttR as a Feeder for New Wireless Technologies

Future IoT

• Applications, Requirements

Current In-building Network

• SoA, Problem Statement

Future In-building Network

• FttR for 2.4/5/6 GHz, LiFi and 60 GHz

Summary

Future IoT Use Cases and Requirements

Future Internet of Things

- Numerous devices use wireless network access
- Imaging sensor data processed in the cloud (cameras, RADAR, LIDAR)
- mobile XR

Use Cases

- a) Office, Residential
- b) Medical, Industry

Two Requirement Sets

- a) Higher data rates with enhanced QoS
 - Full indoor coverage, more reliable
 - 1...20 Gb/s everywhere...maximal
- b) Moderate data rates with highest QoS
 - High density of devices in hot spots
 - Ultra-reliable, lowest latency, zero jitter
 - Precise positioning and sensing of the environment

J. P. Linnartz et al., "ELIOT: New Features in LiFi for Next-Generation IoT," 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 148-153

🗾 Fraunhofer

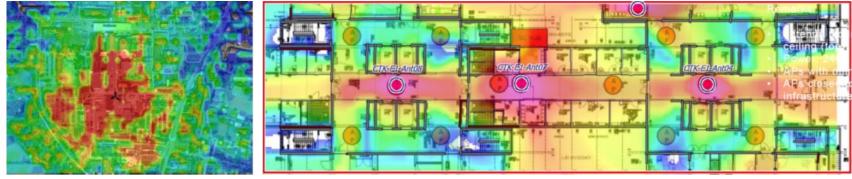
5G Campus Network Carl-Thiem-Klinikum Cottbus

Projekt ThiemCB5G

• Project funded in 5x5G Initiative of German Federal Ministry of Digital and Transport (BMDV)

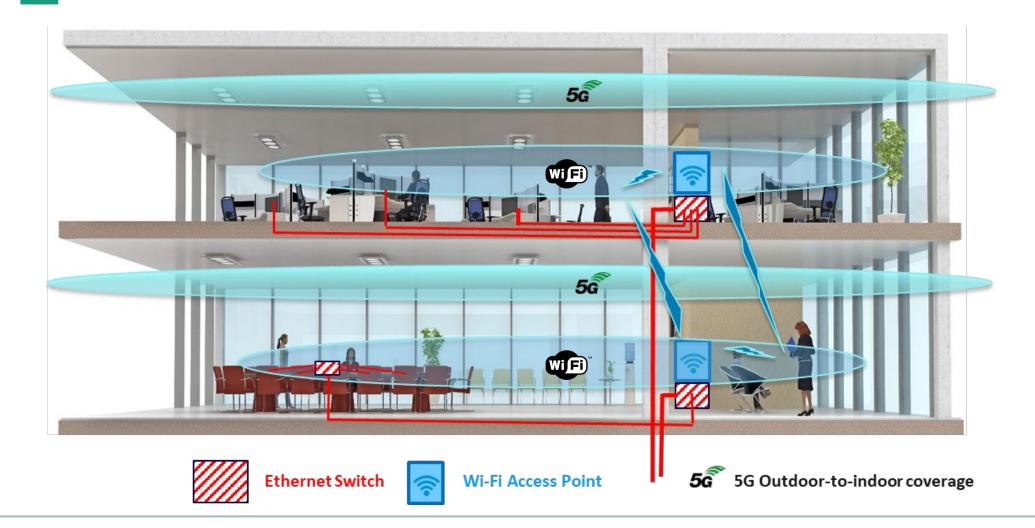
Goal is 5G campus network in a hospital

- Patient journey: emergency department \rightarrow intensive care unit \rightarrow diagnostics \rightarrow operating room
- Outdoor area is well served by classical 5G base station
- However, 5G signals penetrate rarely inside the building \rightarrow needs an additional indoor deployment


Problem: 5G in buildings is expensive

- Number of base stations is limited due to budget, deployment planning results in fewer access points compared to WLAN
- 5G has similar bandwidth \rightarrow indoor coverage will be worse than WLAN
- 5G has higher installation and maintenance cost

Could LAN/WLAN infrastructure be used for 5G-like QoS in buildings?


- LAN cables und wave propagation are in principle the same, just protocols (software) differ from each other
- 5G: own specs, own chipsets, high complexity, license costs, maintenance \rightarrow > 50x as expensive than managed WLAN solutions
- New WLAN releases introduce similar features like cellular networks (MIMO, OFDMA, multilink operation, mm-wave, ...)

In-building Network, SoA

5G from outdoor base stations, LAN and WLAN from indoor deployment

Problem Statement

LAN and WLAN vs. 5G

LAN: High data rates and high QoS

- Ethernet: 1 Gb/s point-to-point (P2P) per user/device
- Coax-/Powerline Communications: 1-2 Gb/s, shared among 1...16 users/devices (G.hn)

WLAN: High data rate but limited QoS

- Shared Spectrum: up to 10 Gb/s is shared among users/devices
- "Listen-before-Talk" random channel access to avoid interference
- a) through other technologies, b) through same technology in adjacent rooms
- User/device bandwidth is constricted, if traffic load is increased
- High data rates only as "best effort", high QoS only with low data rates

5G: High QoS but only limited data rate

- Licensed Spectrum: deterministic channel access enables highest QoS
- Energy efficiency: long distance to the base station, attenuation through walls and metal-coated heat insulation windows

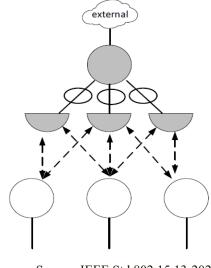
Goal for future IoT is cable-like QoS for wireless network access in buildings

• Extend WLAN to provide higher QoS: Low-cost alternative to 5G deployment in buildings

Co	mparison of in-building network technologies		
	Data rate	QoS	Cost
LAN	High	High	Low
WLAN	High	Low	Low
5G	Low	High	High

New Approach Coordinated LAN + WLAN

In-building networks with high QoS

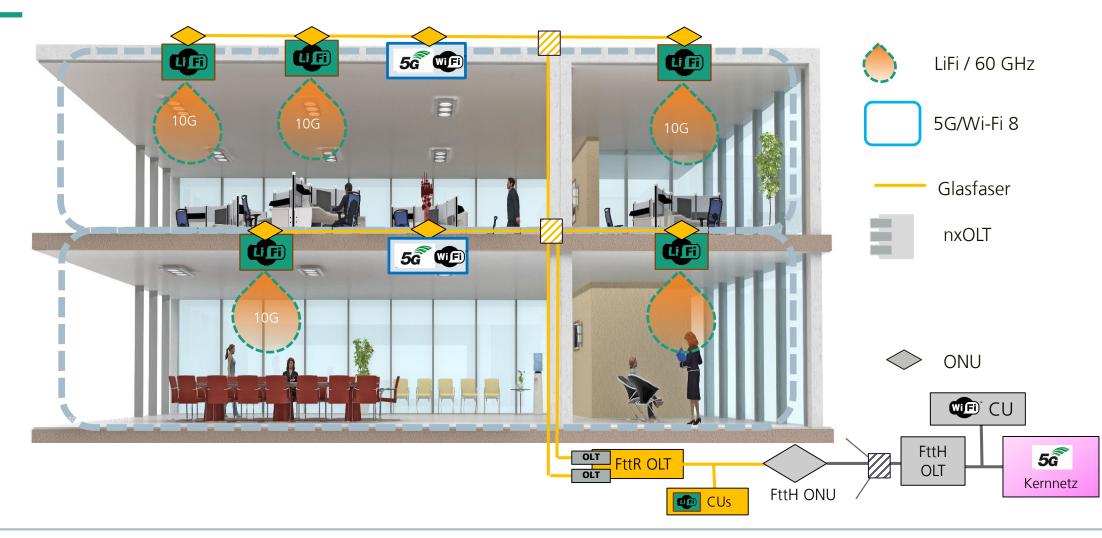

- WLANs operate in shared spectrum. How can they be as reliable as 5G operating in licensed spectrum. **Cable**
- Cables reach their limits at around 1 Gb/s, more needs multiple twisted pairs or ribbon cables
- Cables should be complemented by optical fiber also inside buildings (fibre-to-the-room, FttR)

Reliable WLAN

- Normal RF waves go through walls \rightarrow use distributed MIMO (cell-less WLAN), to reduce interference
 - Central coordination of access points in adjacent rooms: Central unit in cloud (e.g., in the basement or in the operators central office)
- mm-wave and light do not penetrate through walls \rightarrow use of mm-wave/optical WLAN (LiFi): One room is one cell
- Artificial Intelligence (AI) to support coexistence with other RF system in the same spectrum, e.g., Bluetooth Speaker
 - Wi-Fi chips usually support Bluetooth, UWB is t.b.d. (e.g. in 802.11 Coex SC) \rightarrow coordinate coexistence of mainstream technologies

5G and In-building network integration via upper layers

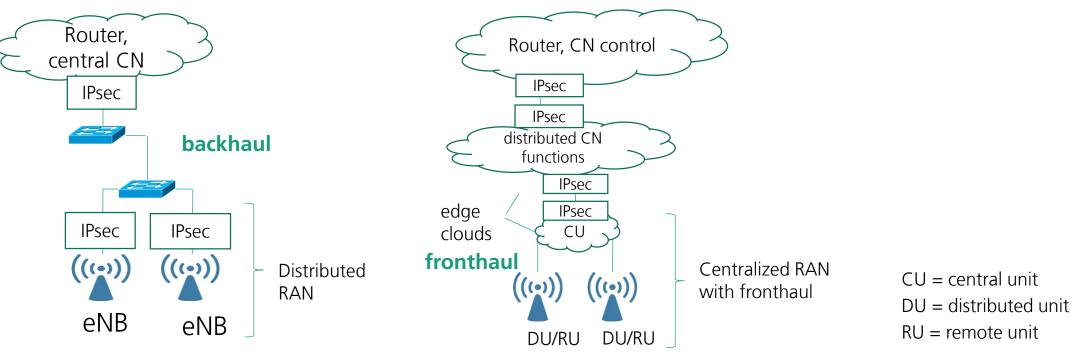
- Goal is seamless handover from outdoor to indoor, and LiFi/60 GHz to Wi-Fi
- non-3GPP interworking function, MP-TCP using ATSSS, embed LiFi and 60 GHz into the Wi-Fi 7 MLO framework



Source: IEEE Std 802.15.13-2023

Future In-building Network

System concept

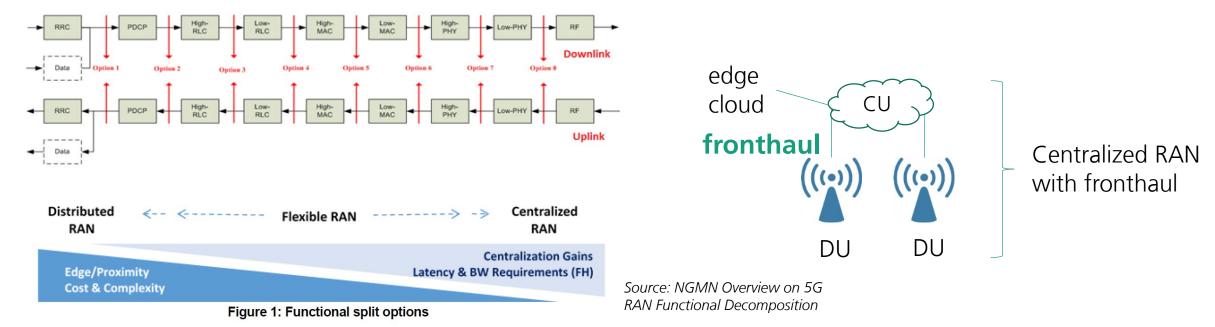


Centralized vs. Distributed RAN

From 4G to 5G architecture

5G introduced centralized radio access network (C-RAN) to overcome interference

4G: - centralized core network - distributed RAN **5G:** - distributed core network - centralized RAN


Current WLANs have fully distributed RAN

More reliable WLANs may need more centralized RAN

Functional Split Between CU and DU

5G introduced Centralized RAN with functional split points between CU and DU/RU

• RAN = PHY+MAC layer: Protocol functions in can be divided at several split points

5G fronthaul signals are transported over Ethernet (eCPRI protocol)

- Different split options enable different coordination methods for the wireless signals \rightarrow different fronthaul synchronization requirements
- The nearer to the radio link the split point is, the higher data rates but also the more effective interference can be coordinated

Fronthaul Requirements

Towards centralized WLAN

Reduced data rates

• Data rates are significantly reduced at split points 1-7 (eCPRI), compared to split 8 (CPRI)

Low latency

- Non-real-time split points 1-3 require 1-10 ms
- Real-time split points 4-8 require 100 to few 100 μs (due to HARQ in 3GPP)

Tight synchronization

- MAC synchronization requirement is 200 ns, coordination/positioning requires 20 ns
- Precision time protocol (PtP) and synchroneous Ethernet (SynchE)

Use centralized RAN with fronthaul

- Wi-Fi philosophy: Keep it simple, stupid (KISS principle)
- In-building networks requires low-cost solutions: easymesh for WLAN \rightarrow topology
- Consider potential split points in WLAN protocol stack
- Identify the best remote / centralized PHY and MAC configuration
- specify signaling and synchronization schemes for fronthaul over in-building network media

Table 7-2 – Transport bit rates and latency ranges at different functional split interfaces, adapted from Annex A in [3GPP TR 38.801] (Note caveat in the text above)

otocol split option	Required downlink bandwidth	Required uplink bandwidth	One way latency (order of magnitude)
Option 1	4 Gbit/s	3 Gbit/s	
Option 2	4016 Mbit/s	3024 Mbit/s	1-10 ms
Option 3	[lower than Option 2 for UL/DL]		
Option 4	4000 Mbit/s	3000 Mbit/s	
Option 5	4000 Mbit/s	3000 Mbit/s	
Option 6	4133 Mbit/s	5640 Mbit/s	
Option 7a	10.1-22.2 Gbit/s	16.6-21.6 Gbit/s	100 to few 100 µsec
Option 7b	37.8-86.1 Gbit/s	53.8-86.1 Gbit/s	
Option 7c	10.1-22.2 Gbit/s	53.8-86.1 Gbit/s	
Option 8	157.3 Gbit/s	157.3 Gbit/s	

Source: ITU-T G-Series Supplement 66 ((09/2020)

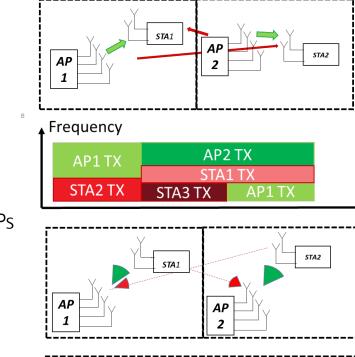
Coordinated WLAN

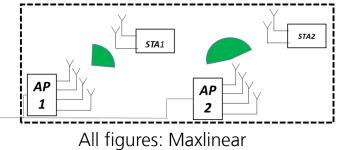
Main techniques discussed in 802.11 UHR study group so far

Coordinated Spatial Reuse

- applicable if interference is rather weak
- interference-aware Rx and Tx (IF covariance is known)
- interference measurements in the PHY, moderate synchronization

Coordinated OFDMA/TDMA


- interference-aware Rx and Tx
- coordinated scheduling, time / frequency synchronization, like MU-MIMO but for APs


Coordinated Beamforming

- own-cell transmission is coordinated
- other-cell interference is minimized
- coordinated MAC, time / frequency synchronization

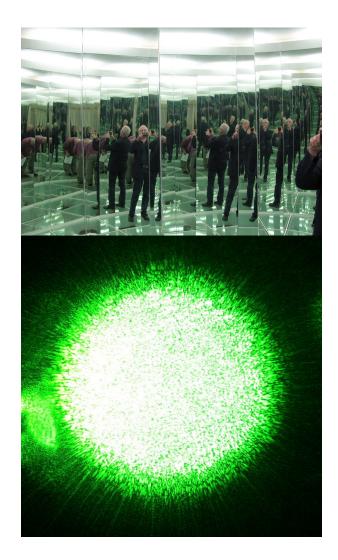
Joint Transmission and Detection

- APs act as one AP with distributed antennas serving all users jointly
- all signals are jointly maximized, cross-talk is jointly reduced
- fully coordinated MAC and PHY, tight time- and frequency synchronization

Exploit Wireless Propagation

Notable differences between lower and higher frequencies

Below 7 GHz


- walls are like semitransparent mirrors (mirror cabinet)
- specular reflections \rightarrow multipath fading at the centimeter scale
- omnidirectional antennas \rightarrow NLOS is the dominant propagation mechanism
- signal from adjacent rooms is moderately attenuated \rightarrow one cell covers multiple rooms

mm-wave (45-60 GHz)

- very small antenna elements \rightarrow high path loss \rightarrow needs beamforming to receive useful signal
- specular reflections \rightarrow multipath fading at the mm scale
- spatially filtered through beams \rightarrow LOS is the dominant propagation mechanism
- walls are essentially opaque → one cell covers one room

LiFi (optical waves)

- large-area transmitters and receivers \rightarrow wide beams are o.k., narrow beams could save energy
- diffuse reflections \rightarrow multipath fading (Speckle) at the nanometer scale, averaged by larger Tx/Rx
- objects reflect diffusely \rightarrow LOS is the dominant propagation mechanism
- walls are opaque → one cell covers one room

FttR for future WLAN

Requirements for coordination

FttR defines two variants, same as access networks

- **G.fin** has shared medium access, derivative of TDM-PON
- **G.fp2p** has exclusive medium access, derivative of P2P network

Deployment

- **G.fin** is based on PON, has lower cost of deployment, but needs specific infrastructure
- **G.fp2p** is based on P2P Ethernet, more deployed in European buildings

WLAN+FttR: Consider single AP per room

- mm-wave/LiFi do not go through walls, interference is only inside one room
 - Single AP per room: APs are well isolated from each other and can work independently, **frequency reuse = 1 becomes possible**
 - Distributed RAN architecture with maybe sufficient → G.fin for backhaul
- **below 7 GHz goes through walls**, makes interference very difficult
 - Single AP per room will cause interference: required level of coordination is not fully clear, **frequency reuse** <<1
 - Centralized RAN architecture with fronthaul maybe needed → G.fp2p for fronthaul

FttR will need high data rates, low latency and time / frequency synchronization, when used for coordinated WLAN.

• Corresponding protocols to be integrated / further developed, depending on the WLAN coordination technology.

Summary

FttR as a feeder for new wireless technologies

Applications in future IoT require 5G networks with cable-like quality of service

• Bottleneck is high cost for 5G deployment inside buildings

Idea is to further develop LAN+WLAN so that it can reach a quality of service similar to 5G

- Introduce WLAN coordination and new wireless technologies (mm-wave/LiFi) for small cells
- Combine this with FttR so that interference comes under control
- Exploit propagation of higher frequencies: One cell is (only) one room

Use mm-wave/LiFi together G.fin

• One AP per room, no interference coordination is needed

Use coordinated WLAN together with G.fp2p

- One AP per room requires interference management
- Identify functional splits in the WLAN protocoll stack \rightarrow define the corresponding fronthaul interface
- Ensure that data rate / latency / synchronization are sufficient for WLAN coordination technique

Acknowledgement

This work has been partly funded by the innovation project 5G-COMPASS funded by the German Federal Ministry of Digital and Transport (BMDV) under FKZ. 10I22017A. Thanks to all the partners for fruitful collaboration.

5GCOMPASS

Fraunhofer HHI Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI Prof. Dr. Volker Jungnickel Fraunhofer Heinrich Hertz Institute volker.jungnickel@hhi.fraunhofer.de +49 30 31002 768 +49 162 255 2756 Einsteinufer 37 10587 Berlin, Germany