Open-source supply chain attacks expand to the Dark Reading North Korea Leverages SaaS Provider in a Targeted

banking sector PowerShell Gallery Prone to Typosquatting, Other Supply Chain Attack
Supply Chain Attacks

Microsoft's PowerShell Gallery presents a software supply chain risk because

Two banks have been targeted by open-source software supply chain attacks
in recent months in what researchers are calling the first such...

In July 2023, Mandiant Consulting responded to a supply chain compromise

of its relatively weak protections against attackers who want... affecting a US-based software solutions entity.

Software Supply Chain Security

Healthcare Supply Chain Attacks Raise Cyber Security ~ SolarWinds hack explained: Everything you need to
Alarm know

The healthcare sector has become a popular target for cybercriminals and is The SolarWinds hack exposed government and enterprise networks to hackers
one of the most targeted industries by cyber criminals. through a routine maintenance update to the company's Orion IT...

Earlier this month at Black Hat USA

Security with

Learn how Qualys helps assess the risk of open-source
software vulnerabilities in production. Q Qualys.

@& SlimA|

Software Supply
Chain Security 1 Voot o8
Simplified i e
‘ R s
1Z15PM Al Fisk Database: Hunbing
2 8 10 your 088 Al Bupoly
Uncover v Jas Chan
tw e
Hacking win the Catfindier
Streamline pri t’”W/

remediate 1 Bwenming wih the (Data)¥ew -
) Web

https://sparrowfasoo.com/kr/

By 2025, 45% of organizations worldwide will
have experienced attacks on their software
supply chains, a three-fold increase from 2021

Gartner's Outlook for Application Security 2023.

\
§ Sparrow https://sparrowfa

Past SW Supply Chain Attacks

SimDisk _
Trans-Siberian Pipeline Auto-update mechanism of file SolarWinds PyPi
hari L . , : Malicious Python Packages
Malicious code insertion sharing application Malicious code insertion

2013 2017 2020 2021

Linux kernel Altair Technologies CodeCov
Backdoor malware insertion Backdoor malware insertion Compromised Bash upload

§_ Sparrow https://sparrowfasoo.com/kr/

Zero Trust & SW Supply Chain security

» Zero trust is “a security paradigm that assumes no user or device is trusted by default, and that access to
resources is granted on a least-privilege basis, with continuous verification required throughout the session”

» SW Supply Chain Security: “activities, processes, and technologies that protect the integrity of software
throughout its development, delivery, and operation”

\
i Sparrow https://sparrowfasoo.com/kr/

Do not trust

Zero Trust Security:

Do not trust anything and validate everything To protect the network and Resource

Software Supply Chain Security:
Do not trust code you did not build

Protecting the software

\
> Sparrow https://sparrowfasoo.com/kr/

Key Principles

Least Privilege Visibility
Micro-Segmentation Risk Assessment
Continuous Monitoring Control
Trust is earned Monitoring
Response

\
§_ Sparrow https://sparrowfasoo.com/kr/

EO 14028 Improving the Nation’s Cybersecurity

Sec 3.
The Federal Government must

adopt security best practices;
advance toward Zero Trust
Architecture

Sec 4.
The Federal Government must

take action to rapidly improve
the security and integrity of
the software supply chain,
with a priority on addressing
critical software.

§_ Sparrow

https://sparrowfasoo.com/kr/

Guidelines on Minimum Standards for Developer
Verification of Software

Technique Technique

Class

Threat modeling helps

Threat
identify key or potentially

Modeling

As testing is automated,
it can be repeated often,
for instance, upon every
commit or before an issue
is retired.

Automated
Testing

Use a code scanner

Code-based to look for top bugs.
(static) analy
sis
Review for hardcoded
secrets.

Run with built-in checks
and protections.

Dynamic
analysis

Create "black box"
test cases.

overlooked testing targets.

Description & Reference

Section 2.1. Threat modeling methods create an abst
raction of the system, profiles of potential attackers
and their goals and methods, and a catalog of potent
ial threats. Threat modeling can identify design-level
security issues and help focus verification.

Section 2.2. Automated testing can run tests consist
ently, check results accurately, and minimize the nee
d for human effort and expertise. Automated testing
can be integrated into the existing workflow or issue
tracking system.

Section 2.3. Static analysis tools can check code for
many kinds of vulnerabilities and for compliance with
the organization’s coding standards. For multi-thread
ed or parallel processing software, use a scanner cap
able of detecting race conditions.

Section 2.4. Heuristic tools can be somewhat effectiv
e checking for hardcoded passwords and private enc
ryption keys since functions or services taking these
as parameters have specific interfaces.

Section 2.5. Programming languages, both compiled
and interpreted, provide many built-in checks and pr
otections.

Section 2.6. “Black box" tests can address functional
specifications or requirements, negative tests (invali
d inputs and testing what the software should not do
), denial of service and overload attempts, input boun
dary analysis, and input combinations.

Technique

Class

Dynamic
analysis

Check included
software

Fix bugs

Technique

Create code-based
structural test cases.

Use test cases created to
catch previous bugs.

Run a fuzzer.

If the software might be
connected to the Internet,
run a web app scanner.

Use similar techniques to
gain assurance that
included libraries, packages,
services, etc. are no less
secure than your code.

Fix critical bugs that are
uncovered.

Description & Reference

Section 2.7. Code-based, or structural, test cases are ba
sed on the implementation, that is, the specifics of the ¢
ode. Code-based test cases may also come from covera
ge metrics.

Section 2.8. Test cases which have been created to spe
cifically show the presence (and later, the absence) of a
bug can be used to identify issues in the absence of mor
e general “first principles” assurance approaches for det
ecting bugs.

Section 2.9. Fuzzers can try an immense number of inpu
ts with minimal human supervision. The tools can be pro
grammed with inputs that often reveal bugs, such as ver
y long or empty inputs and special characters.

Section 2.10. If there is a network interface, use a dynam
ic security testing tool (e.g., web application scanner) to
detect vulnerabilities.

Section 2.11. Use the verification techniques recommend
ed in this section to gain assurance that included code is
at least as secure as code developed locally. The compo
nents of your software must be continually monitored ag
ainst databases of known vulnerabilities; a new vulnerab
ility in existing code may be reported at any time.

Correct critical bugs as soon as possible and make proc
ess improvements necessary to prevent such bugs in th
e future, or to at least catch them earlier in the developm
ent process.

§_ Sparrow https://sparrowfasoo.com/kr/

Software Composition Analysis

Analyze software to

|dentify open-source in use

Check dependency

|dentify license information

Detect known vulnerabilities in OSS

Generate SBOM

§_ Sparrow https://sparrowfasoo.com/kr/

Static Analysis

Analyze source code or binary to

- Detect security vulnerabilities or quality
issues in the code without executing it. ot

- Detect syntax error, logical errors,
security vulnerabilities coding standard
violations... etc

 d

https://sparrowfasoo.com/kr/

§_ Sparrow

Dynamic Analysis

Perform security testing on a running
application to

- Detect security vulnerabilities(including \\\
SQLi, XSS, CSRF...etc) (§
- Detect issues by simulating attacks and N < §
based on responses N ;:1“::’\,\
»?Q:';%

\
> Sparrow https://sparrowfasoo.com/kr/

Automated Testing and DevSecOps

Monitering

Automated testing is recommended.
- Run tests consistently
- Minimize human effort and expertise

- Can be integrated into existing workflow and
issue tracking system

By automating testing and integrating with development process, adopt DevSecOps.

§_ Sparrow

https://sparrowfasoo.com/kr/

Case Study 1.

SAST & eclipse
Issues

Unit decelopment S R Found T TTTTTTTommmmmmmmmmmssees

No

1 Issues
. e - Found 9
Code commit

Triggers build SCA SAST Profs‘scsl /Féesu'ts DAST

In CI/CD
@Jenkins

Release

. : Remediation
« Perform SAST & SCA analysis at once : e :
. . i . Application . :
« Automatically assign person in charge . . Code Fix
for detected issues by tools c .) -

- Efficient API integration Users .| Analysisreports | - Integration
' (sAsT, DAST)) .
' ' Testing
: SBOM (SCA) :

https://sparrowfasoo.com/kr/

§_ Sparrow

Case Study 2. Integrated application security platform

t t A t

: : Software Composition : : : :
Static Analysis P Dynamic Analysis Runtime Protection
Analysis
A A A A A T
Source)
Request Code Component Apply self-protection
S it Return Perform to the
ecuri X .
|nspecti¥,n ReiJIts Dynamic Analysis Generale SBOM operating environment
I Configuration MGMT : i Build System : 1 Distribution System :
Perform Verify Perform T ‘ T T
frequent ~ Components — full Request operation
inspection In use inspection Request a Transfer results Request test Deploy test Environment Deploy
transfer If passes environment deployment environment deployment Operation
Source Source environment
| B - T
Development Development . .
[environment Server Testing Server Operation Server

Development Stage Testing Stage Operation Stage

How new technology is changing security

Automated patching
Recommending remediation
Al/ML Identifying new vulnerabilities Generative Al
Eliminating false positive
Automating repetitive tasks
Prioritizing vulnerabilities
Generating synthetic data
Generating test cases
DevSecOps Automating testing and process CNAPP
Increase visibility

Improve integrability

§_ Sparrow https://sparrowfasoo.com/kr/

	슬라이드 1
	슬라이드 2
	슬라이드 3: By 2025, 45% of organizations worldwide will have experienced attacks on their software supply chains, a three-fold increase from 2021
	슬라이드 4: Past SW Supply Chain Attacks
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16

