Highlights of architecture
concepts and components

ITU-T Focus Group on Autonomous Networks

Paul Harvey
www.paul-harvey.org

FG-AN

Where to find

FG-AN

ITU-T Focus Group on Autonomous Networks was established by ITU-T Study Group
13 at its virtual meeting, 17 December 2020. The Focus Group will draft technical
reports and specifications for autonomous networks, including exploratory evolution in
future networks, real-time responsive experimentation, dynamic adaptation to future
environments, technologies, and use cases. The Focus Group will also identify
relevant gaps in the standardization of autonomous networks.

International Telecommunication Union

U = L = The primary objective of the Focus Group is to provide an open platform to perform

-

I T T TGCh n Ical Specrﬂcatlon pre-standards activities related to this topic and leverage the technologies of others

TELECOMMUNICATION where appropriate.

STANDARDIZATION SECTOR

OF ITU

(29 September 2022)

ToR: Terms of reference Parent group: ITU-T Study Group 13
Deliverables:

* Use cases for Autonomous Networks

Architecture framework for Autonomous Networks

ITU-T Focus Group on Autonomous Networks

Trustworthiness evaluation for autonomous networks including
Technical Specification IMT-2020 and beyond
Proof of Concept (PoC)

Architecture framework for Autonomous

Networks « Gap analysis
» Definitions glossary

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

Ll

mu-r

Process

— ITU-T Technical Specification

TELECOMMUNICATION
STANDARDIZATION SECTOR

OF ITU (28 October 2021)

ITU-T Focus Group on Autonomous Networks

Technical Specification

Use cases for Autonomous Networks

3 Key Concepts Architecture

138 Requirements

Architectural
components

T22-SG13-C-0641!!MSW-E

Architectural
Framework

Three Key Concepts

Create Logic

Evolutionary
Exploration

Dynamic Adaptation

Online
Experimentation

Apply Logic

Validate Logic

Requirements

* Requirements for Exploratory Evolution

e Requirements for Online Experimentation

* Requirements for Dynamic Adaptation

* Requirements for Knowledge

* Requirements for Autonomous Network Orchestration

AN-arch-exp-req-003

The AN architecture is required to have the ability of executing experimentations,
collating and validating the results of the experimentations, considering the
metadata and constraints and corresponding controller descriptions.

NOTE 1- Experimentations may have several phases, for example, simulation
driven, testbed driven or canary test driven. The phases of an experimentation
may be configurable and automated, for example, as per a workflow.

NOTE 2- The specific success and failure criteria for the experiments are out of
scope of this Recommendation. Acceptable formats for representing metadata and
constraints related to potential success and failure as related to a use case are for
further study.

AN-arch-evo-req-008

The AN architecture is required to support the ability of discovering the
characteristics of controllers which are relevant for enabling evolution.

NOTE - Examples of characteristics of controllers which are relevant for
evolution are: capabilities exposed by the controllers, and requirements to be
satisfied for the controllers.

Cl) »

Definition 3.2.4: Controller

A workflow, open loop or closed loop of a system under control in an autonomous
network, composed of modules, integrated in a specific sequence, using interfaces
exposed by the modules, to solve a specific problem or satisfy a given requirement.

p / / B ﬁ__ - ; \

N Y, T

Al | 6 |
Controller \+ ! | y,
v C~

a

[Controllers }

RP-AN-5

Underlay Network

Hardware components] [Software components] [Orchestrator] [Controllers]

The interactions are:
e Controller interacting with hardware components.
Controller interacting with software components.

Controller interacting with an orchestrator or other software control mechanisms.
Controller interacting with other controllers.

NOTE 4 - Building upon this simple representation, hierarchies of controllers may be formed. @

Exploratory Evolution

Exploratory evolution exploratory evolution introduces the mechanisms and processes of
exploration and evolution to adapt controllers in response to changes in the underlay network.

NOTE 1 - An example of a process that creates a controller is the composition of controllers from
modules or other closed loops. This may involve the selection of modules which are used for
composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic change in the
controller’s structure by adding new modules, deleting existing modules, replacing existing
modules, or rearranging the structure of a controller’s modules, in accordance with the real time
changes in the system under control.

~ 40 @

Controller Exploratory Evolution Controller Controller

&)

Exploratory Evolution

Knowledge Base Subsystem Y °* 3.2.7 Evolution controller: A controller responsible
for the evolution of controllers by manipulating the
Information Bases module instance used within a controller, the structure
Data Software Utility or topology of connections between modules in a
[repository } [Controllers } Functions controller and/or the values chosen for the module(s)
parameters
RP-AN-3 , - -
I « Examples of processes to drive the modification of a
Exploratory Evolution subsystem controller are:
 biologically inspired artificial evolution(e.g
[Evolution controllers } evolutionary computing or genetic programming
[b-large-evolution, b-evolution])
IRP_AN_‘# « Bayesian optimisation [b-bayesian-radio]
« game theoretic approaches [b-game-theory].

Dynamic Adaptation subsystem

&

Examples of Controller Evolution

1) A “RAN channel scheduling controller” is an example of a controller used to allocate radio resources to users
in a multi-user environment. Exploratory evolution is applied to a RAN channel scheduling controller in
response to the change of radio channel feedback from the UE. This may include selecting the most appropriate
algorithm from a set of alternatives.

2) An “anomaly detection controller” is an example of a controller used to detect abnormal states in the
operation of a network service, such as security attacks or peaks in resource usage for network function. In this
context, the new approaches of data fusion algorithms [b-data-fusion] may be applied. Exploratory evolution is
applied to “anomaly detection controller” by optionally using and configuring newly provided data fusion
algorithms as the input of an “anomaly detection controller”,

3) A “time-to-live controller” is an example of a controller used to configure the time duration for which a
certain content is cached in a CDN server. In a time-to-live controller in a caching system at the edge,
optimisation of the timeout parameter(s) is an example of application of exploratory evolution.

4) A “scaling controller” is an example of a controller used to increase or decrease the resource allocation for a
network function. In this context, exploratory evolution may be applied by controlling the configuration of the
scaling method of deployed controllers in a specific network domain.

Realtime Online Experimentation

3.2.8 Experimentation: The process of executing the generated potential scenarios
and trials upon the controllers, within the parameters of the scenarios and trials and
then collecting the results.

Stage 1: Stage 2: Stage 3:
Sanity Checks Simulation Canary Testing

¥z @] Br

== O B

Controller |

AN Orchestrator

Realtime Online Experimentation

RP-AM-8

Knowledge Base subsystem

I RP-AN-3

Experimentation subsystem

|

Experimentation AN
Controller Sandbox

RP-AMN-10

)

RP-AN-£

Dynamic Adaptation subsystem

[10184152424 ¥40Mlapn 3¢]

3.2.9 experimentation controller: A controller which
generates potential scenarios of experimentations
based on controller specifications and additional
information as provided by the knowledge base,
executes the scenarios in the AN Sandbox, collates
and validates the results of the experimentation.

Examples of Controller Experimentation

Examples of experimentation in various application contexts are given below:

The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model checking to ensure that
provided management and orchestration solutions are well-formed against pre-defined rules

The use of simulators or digital twins in offline validation of controllers. These simulators or digital twins
can support the same interfaces as underlays.

The use of digital twins [b-Digital-twin] in online validation of controllers before deployment

« NOTE 5 - online validation involves use of timescales comparable to real underlays e.g. validation of
controllers (xApps) [b-ORAN] using digital twins.

Combinations of the above to achieve broader coverage of validation, from the offline validation to online
validations during the operation of the underlay.

Dynamic Adaptation

« Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the underlay
undergoes changes at run-time. Integration of controllers may involve multiple domains of the underlay.

Controller Controller Controller
—7 \ - \/ A

AN Orchestrator

Dynamic Adaptation

3.2.1 adaptation controller: A controller
responsible for selecting candidate controllers
ready for integration and for executing their

Knowledge Base Subsystem

information Bases integration in the underlay network.
Data] [Software] [Controllers] [Utility]
| repository Modules Functions
- - N Adaptation controller has two parts:
I Autonomy Engine |
! : : :
i Ep———— Erploratoy Euoiation | - Cu ratlc_)n controller (responsible for_ se_lectlon
e subsystem subsystem ! - and maintenance of the controllers within the
| e e e e e e e e e e e e o e e o o — .
IRP » N curated controller lists from the evolvable
v f controllers) and
BPANALL Dynamic Adaptation subsystem RP AN §r
[Sefection] [Curstion 7 (" Operation) (™ Seice) > o | - Selection Controller (responsible for the
controllers controllers controllers endpoint o 1 '[' f . , t 1 ¢ 11
¢ } SCICCUION OI a SCrviCces opcrational controler
RP-AN-5 = .
RP-AN-13 | @
[Underiay Network] o 8 from the curated controller lists).

Examples of Dynamic Adaptation

Examples of adaptation in various application contexts are given below:

The need to use different traffic shaping algorithms for various geographical contexts, such as
urban vs rural

Business priorities may change over a period of time, e.g. prioritization of performance KPIs over
energy efficiency or prioritisation of internal applications over third party applications. These
changes in business priorities may necessitate the use of different virtual machine or container
scheduling controllers.

There could be a need to deploy new technology in order to improve or optimise operation,
Including adding new capabilities that previously did not exist. E.g. new Al/ML algorithms or
new data fusion approaches to blend the increasing number of data sources.

There could be a need to deploy new technology in order to address errors or faults. E.g. data
acquisition or actuation software for new hardware devices or adaptation software to account for
Incompatibilities in deployed technology.

Architecture Components

Evolution Controller

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Experimentation Controller

Validates controllers using inputs
from a combination of underlay

network, simulators and/or testbeds.

Knowledge Base

Manages knowledge derived from
and used in autonomous networks. It
is updated and accessed by various
components in the autonomous
network.

An Sandbox

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

AN Orchestrator

managing workflows and processes in the
AN and steps in the lifecycle of controllers

Adaptation Controller

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

Architecture Components

Evolution Controller

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Experimentation Controller

Validates controllers using inputs
from a combination of underlay

network, simulators and/or testbeds.

Manages knowledge derived from

and used in autonomous networks. It

is updated and accessed by various
components in the autonomous

network.

An Sandbox

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

FGAN-I-345-R2
4 N
Knowledge Base AN Orchestrator
_ J

managing workflows and processes in the
AN and steps in the lifecycle of controllers

Adaptation Controller

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

RP-AN-1

Knowledge Base subsystem

Information Bases] RP-AN-6 >
7y
RP-AN-3 RP-AN-7
- T T T TETEEEEEEEEEEEE ST Y . A
I Autonomy Engine |
I : ! >
| Exploratory Evolution subsystem | =
~ I . I RP-AN-E o RP-AN-9
dz': | Evolution 3 o >
o [controllers | -
= M
I 1]
1 [=
1 Experimentation subsystem I % RP-AN-10
I : [>
Experiment -
| [P][AN Sandbox } |
I controller I
N e - 0 ’
RP-AN-11
RP-AN-4
hJ
Dynamic Adaptation subsystem RP-AN-12
Curation Selection Operation Service < >
controllers controllers controllers endpoint
RP-AN-5
RP-AN-13
M

Underlay Network

{ Hardware components 1 [Software components J [Orchestrator] [Controllers]

101843534240 YJomiaN 373

Knowledge Base subsystem
ma _AN-
Information Bases] < RP-AN-6 >
7y
RP-AN-3 RP-AN-7
- T T T TETEEEEEEEEEEEE ST Y . A
I Autonomy Engine |
|] | e m
| Exploratory Evolution subsystem | = N
~ I . I RP-AN-8 e RP-AN-9
{z;: | Evolution 3 o > %
o | controllers I > g
W Q
) . - O
= [Experimentation subsystem I g RP-AN-10 o
= [[J[AN Sandbox J | -
I controller I @
L]
N e e e e e e e o ——— — o ——— — / S
=
RP-AN-11 o
=
Dynamic Adaptation subsystem RP-AN-12
Curation Selection Operation Service >
controllers controllers controllers endpoint
RP-AN-5
RP-AN-13
M
Underlay Network —
-

{ Hardware components 1 [Software components J [Orchestrator] [Controllers J

AN Operator AN Orchestrator Evolution Controller Knowledge Base

1. Use Case Specification

I
I
I
I
2. Evolution Specification »:
I
I
[
I

Exploratory
Evolution

7. Evolution Process Iﬁ

8. Evolution Notification

9. Update Knowledge Base Request

10. Update Knowledge Base

_____m_ﬁ:_________________JL__

-y __

Online
Experimentation

AN Orchestrator

Experimentation Controller Knowledge Base

AN Sandbox

0. Experiment Specifications and Evolvable Controllers are Populated Iﬁ :

1. Experiment Specification

>

2. Request for Experiments

3. Response [Experiments]

4. Request for Controllers

5. Response [Controllers]

6. Request for Knowledge

7. Response [Knowledge]

Y Y

8. Experiment Design Iﬁ

-l 1 | _______

0. Sandbox Components are Populated Iﬁ

9. Request for Validation
I

I
10. Response [Validation]

>

11. Experiment Notification

1<

12. Update Knowledge Base Request

13. Update Knowledge Base

_______V______:____

oy

Self-Reflective
Design

= = = —— == —— i — —— = ————————————————————————

Evolution Experiment
Knowledge
controllers controllers
Base subsystem

-~

L 4

Curation

controllers

3
A A

Selection N
controllers AN architecture

.) g framework

=

- = = = = = = = = = =T e e e = = e = = = = = = — = -

Knowledge

Evolution Base subsystem
controllers controllers

-~

Experiment

L 4

Curation
___controllers

A
1
1
1
1
1
1
1
1
1
1
1
1

d 1
1
1
1
1
1
1
1
1
1
1
1
1

r
Selection

. _controllers)
Operation
. _controllers)

e

AN underlay

4

[Underlay Network]

RP-AN-1

AN Architecture Mapping

RP-AN-6
Knowledge Base subsystem >
F
RP-AN-7
RP-AN-3

N

>
___________________________ ~ RP-AN-8 = RP-AN-9 ;
. ! | O ¢ " 2
2 | . | S s
< I Autonomy Engine I Iy o
< | i 4 2

[o RP-AN-10
e e J— > Q
o)
= =
2
—
RP-AN-4 §
RP-AN-11 3
v
. . RP-AN-12
Dynamic Adaptation subsystem < >
i RP-AN-5
Underlay network (IMT-2020) RP-AN-13
I
RAN CN (UPF) CN (AF) [CN (other NFs

Development
phase

Verification
phase

Deployment
phase

A. Kliks, M. Dryjanski, V. OV Ram, L. Wong, and P. Harvey, “Towards Autonomous Open Radio Access Networks,” ITU J. Futur. Evol. Technol., vol. 4, 2023.

AN Architecture Meets O-RAN

MNO XxApp/rApp store Developer

Downloading the template, setting up the
environment for xApp/rApp development

Generic continuous design loop

Design Verify
Update Test
Upload new xApp/rApp P
Permanent pBrformance I-(;(;;; S _G_e:r;ér_i;:-cbh_ti_r;u_éﬁir}]};r;)_v_eﬁ-léﬁf loop
Validate Veri Design Veri
fy Sending reports € fv
—>
Sending updates
. <€
Update Monitor Update Test
Requesting and downloading new xApp/rApp
Permanent performance loop Permanent pérformance loop Generic continuousiimprovement loop
Verif Testin DT) Validate Veri i Verif
4 Sending reports fy Sending reports Design y
> >
Sending updates Sending updates
6
Monitor Deploy Update Monitor Update Test

Fig. 4 — Key phases in automated xApp/rApp development, upload and deployment

AN Architecture Meets O-RAN

Knowledge Base

MNO xApp/rApp store Developer
. . = mgl¥e template, setting up the
EXpe rimenta I Evo I ution environment for xApp/rApp development
Generic continuous design loop
Design Verify
Development
phase
Updat Test
Online Upload new xApp/rApp paate es
Experimentation |~ Permanent pBrformance i&&;}""'""“"G'e‘riér'ia'&h‘u‘ﬁ&é&#ﬁ{p}a@é}ﬁéai Toop~
g as Validate Verify . Design Veri
Verification Sending reports € fy
hase i
P Sending updates
<7
- Update Monitor Update Test
Dynamic | st 0 —
Ada ptatiOn Requesting and downloading new xApp/rApp>
Deployment Permanent performance loop Permanent pérformance loop Generic continuousiimprovement loop
hase i i : ; : .
P Verify lestin DF Sending reports Validate verify Sending reports Design verify
> —>
Sending updates Sending updates
(,
Monitor Deploy Update Monitor Update Test

Fig. 4 — Key phases in automated xApp/rApp development, upload and deployment

xApp == Operational Controller

A. Kliks, M. Dryjanski, V. OV Ram, L. Wong, and P. Harvey, “Towards Autonomous Open Radio Access Networks,” ITU J. Futur. Evol. Technol., vol. 4, 2023.

Knowledge Base subsystem

: AN Architecture Meets Reality

Exploratory Evolution subsystem

1
'

|

1 Evolution controllers

'

'

1
: Experimentation subsystem H
H Experiment AN H
\ controller Sandbox '
' '

Dynamic Ada ptat subsystem

[—] [_l—]Seect [ﬁﬂpe atiol =

Underlay network
Hardware Software [Orchas(ramr] [Controllers J

J03eiRsRYRIQ0 oMIZN 323

promote . ACTOR
—

@ ceLemenT dOCker

JSON

Duola ctr s:*.olw _ctr
. pxp rep exp rep KPls
6.\5(' e —
Q© U,

PYTHON
FLASK & GUNICORN

e Flask

web development
one drop at a time

H
exp_rep

configure

aanpoud
af—

NOMS 2023. Enabling Auditable Trust in Autonomous Networks with Ethereum and IPFS

AN Architecture Meets Reality

JSON - Rawbata Headers JSON Raw Data Headers JSON Raw Data Headers
Save Copy Collapse All Expand All Y/ Filter JSON
type: “controller” Save Copy Collapse All Expand All Save Copy Collapse All Expand All
id: 34
- modu'les: v results: type: "ptr_ctr"
0: "sub" average: 35.081 -
1: "mul" . 1d " 34
v parameters: value: 2 exp: "value"
0: 2 type: "exp_rep"
1: 10 .
representation: "((x-2)*10)" id: 34
Controller Experiment Report Protected Controller

AN Architecture Meets Reality

TOSCA Request JSON

> [OASIS 13]
« MARKETPLACE
Controller JSON
xOpera Orchestrator Topology and Orchestration
| @ Create Controller instance Specification for Cloud Applications
Deploy docker container
DOCKER CONTAINER Q

LISTENING AT PORT :5000

< HTTP GET (
FLASK APP INPUT = 12
CLIENT
GUNICORN SERVER HTTP RESPONSE X pe ra
OUTPUT =100
GITHUB: https://github.com/FGAN-Digital-Twins/BC-AN#evolution-blockchain-and-ipfs-an-autonomous-network- D
architecture-poc @
N, ¥

NOMS 2023. Enabling Auditable Trust in Autonomous Networks with Ethereum and IPFS

https://github.com/FGAN-Digital-Twins/BC-AN#evolution-blockchain-and-ipfs-an-autonomous-network-architecture-poc
https://github.com/FGAN-Digital-Twins/BC-AN#evolution-blockchain-and-ipfs-an-autonomous-network-architecture-poc

RP-AN-1

AN Architecture Meets Itself

Knowledge Base subsystem

[Information Bases] < RP-AN6 >
r
IRP’W3 RP-AN-7
25 A - A
1 Autonomy Engine 1
1 " 1 -
1 Exploratory Evolution subsystem 1 =
o 1 . I RP-AN-E | O RP-AN-9
5’ 1 Evolution < > 3 + >
a 1 controllers 1 =
[1]
1 1 w
1 Experimentation subsystem 1 g RP-AN-10
1 : I+ »>
Experiment -
1 o AN Sandbox
I controller
R e ————————
RP-AN-11
RP-AN-4
A I
Dynamic Adaptation subsystem N-12
Curation Selection Operation Service
controllers controllers controllers endpoint
F 3
RP-AN-5
RP-AN-13

A 4

Underlay Netwark

-

»

%

[Hardware components] [Software components J [Orchestrator] [Controllers]

>

Jojea3sayd.0 JIoMI1aN 373

Network

— —

- ~

7 ~N
=
BN,

/

=
B—3 =—O
Client ~NE= Server
AN 0 7/
~ -~

~— — -

Network Object

Performance
Predictions

(

_ Digital Twin

Assigning

Parameters

Models
Training

RP-AN-1

Information Bases
®

RPAN-2

RP-AN-E

J controllers
A switches
hosts
Simulator
Generated
Datasets
A /

RP-AN-LL

—.[101811534210 NY]<—.

Dynam
[Sele

ic Adaptation subsystem
ction Operation

vvvvvv

RP-AN-13

101813534210 YlomaN 323

Questions — (FG)AN Architecture Highlights

e https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

Knowledge Base subsystem
—
[Information Bases]
I RP.
oy
b-s
=
o
=
(0]
=
m
4
gr RP-AN-10
g _AN-
RP-AN-11
A J
Dynamic Adaptation subsystem RP-AN-12
Curation | [Select ion Operation Service +
controllers controllers controllers endpoint
F 3
#autonomousnetworks
Underlay Netwark —

RP-AN-13
-]
y m .!} @J h eb u S [Hardware components] [Software components J [Orchestrator] [Controllers]

Jojea3sayd.0 JIoMI1aN 373

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

	Slide 1: Highlights of architecture concepts and components
	Slide 2: Where to find
	Slide 3: Process
	Slide 4: Three Key Concepts
	Slide 5: Requirements
	Slide 6
	Slide 7
	Slide 8: Definition 3.2.4: Controller
	Slide 9
	Slide 10: Exploratory Evolution
	Slide 11: Exploratory Evolution
	Slide 12: Examples of Controller Evolution
	Slide 13: Realtime Online Experimentation
	Slide 14: Realtime Online Experimentation
	Slide 15: Examples of Controller Experimentation
	Slide 16: Dynamic Adaptation
	Slide 17: Dynamic Adaptation
	Slide 18: Examples of Dynamic Adaptation
	Slide 19: Architecture Components
	Slide 20: Architecture Components
	Slide 21
	Slide 22
	Slide 23: Exploratory Evolution
	Slide 24: Online Experimentation
	Slide 25: Self-Evolution
	Slide 26
	Slide 27: Self-Evolution
	Slide 28: Self-Evolution
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Questions – (FG)AN Architecture Highlights

