

Intelligent coordination between PON and FTTR: the pathway from gigabit to 10-gigabit

Ning Wang

China Mobile Research Institute

www.10086.cn

Fixed broadband development in China

With the rapidly increasing of Gigabit optical access networks and users, the proportion of broadband customers with 1000+ Mbps reaches 25.7%

Gigabit broadband customers: 163 million (25.7%), over 10% incresing in 2023

• Average purchased bandwidth: **456.5 Mbps**, 88.9Mbps higher compared to 2022 (Source: MIIT)

10-gigabit optical broadband era will arrive in the near future!

10-gigabit services

Latency

<50ms

<20ms

<10ms

p With the rapid development of new services, optical access network abilities of 10-gigabit bandwidth, low latency and network slicing are necessary

<20ms

Latency

<10ms

Time synchronization

_

 ± 50 ns

Based on 50G PON+FTTR+WiFi7 to construct 10-gigabit networks with end-to-end netwok D slicing to guaranttee the user experience

- band network: 10G PON -> 50G PON
- Accelerating 50G PON industry maturity
- home->gigabit to 10-gigabit to room
- OAM mechanism of PON extended to room, • end-to-end centralized management and control
- Collaborative networking of PON and FTTR, end-to-end network slicing
- WiFi networking based on scheduling

Features and standards of 50G PON

- p As the optical basis of next generation of optical access system, except bandwidth increase, 50G
 PON also provides low latency and network slicing
- p By far, the global standards of 50G PON is completed, the equipment is under development

Require-	 High bandwidth Over x4 bandwidth per PON port 50Gb/s in DS, 25/50Gb/s in US 			Low	w latency		Network slicing		
ments of 50G PON for CMCC				 To satisfy the requirement of time- sensitive scenarios PON latency: <350us 			 Support differentiated services using PON slicing Guaranteed performances for high- level services 		
		General	G.9	804.1	G.98	04.1 Amd.1	>	G.9804.1 Amd.2	
G.9804 Series					Flex-FEC i	n upstream	Multi	ple upstream linerate	
		→ PMD Layer	G.9	804.3	G.98	04.3 Amd.1	G.9804.3 Amd.2		
				Т	hree-gene	ration Combo	Symmet	ric class C+ power budg	get
	L	TC Layer	G.9	804.2	► G.	.9804.2 Amd.1			
					DAW, opti	ional LDPC FEC			

Recent progress of 50G PON techniques of CMCC

Requirements of FTTR

- p Challenges: Issues impacting on customers QoE mostly occurs in the last 100 meters.
- p Requirements: To build end-to-end Gigabit to 10-gigabit optical network reaching rooms and meanwhile extend optical access network ability with cooperative Wi-Fi networking.

With 50G PON alone cannot guaranttee the 10-gigabit experience of broadband user

According to the reason proportion of operator's customer reports: 53% of the reports are related with the **quality of home networks** (source: MIIT)

Optical infrastructure extention from FTTH to FTTR

- Gigabit to 10-gigabit seamless coverage extended to the rooms
- Optical-layer OAM mechanism of PON extended to the rooms

Coordinated networking to Improve customer experience

- Collaborative networking of PON and FTTR, endto-end slicing
- Collaboration between optical link and Wi-Fi

Intelligent coordination between PON and FTTR

p For high-value services, PON+FTTR intelligent collaboration is needed to be promoted to achieve an E2E network slicing

PON and FTTR collaboration

Optical link and Wi-Fi collaboration

Use cases

- Supports remote management for both MFU and SFU once the optical fiber is connected
- Establish third-party higher layer management system to control the entire network
- SFU authentication at the OLT side, to make the access section and home section more secure

- Discover network topology from access section to home network section
- Diagnose and locate network problems from access section to home section
- Establish a remote management channel with higher priority

New approach: remote management

• OMCI server in the OLT to manage both the MFUs and the SFUs

- ✓ More reliable and real-time management
- ✓ Reuse of the management model and MEs of the ONU

- MFU performs as an OMCI proxy to manage SFUs.
- The access segment uses OMCI between the OLT server and the MFU client.
- The home segment uses the WMCI together with FMCI between the MFU server and the SFU client.

- Lots of additional MEs required to support the management of the entire FTTR network by the OLT
- The interoperability of OMCI in the access segment cannot directly applied to the FTTR segment

Option 2: Extended OMCI using centralized optical-layer OAM

MFU-SFU segments

- p Maximumly reuse of the PON optical-link management channel, such as OMCC and MEs
- p Isolated from data channel and has the highest priority

- p Take the advantages of existing management model and MEs of the ONU
- p Simplify the logical functions of the MFU since the message is directly pass to the SFUs
- p Improve the interoperability between OLT and FTTR

Progress of FTTR based on extended OMCI

- p Prototype supporting optical-layer OAM was demonstrated in 2022, and relevant standard items have been initiated in CCSA and ITU-T SG15 Q2/Q3 by 2023
- p Call for accelerating the progress of optical-layer OAM solution and standards

[1] Dechao Zhang, Jinglong Zhu, et al., Fiber-to-the-Room (FTTR): A Key Technology for F5G and Beyond, vol.15 issue.9, JOCN 2023
[2] Jinglong Zhu, Junwei Li, et al., First Field Trial of FTTR Based on Native Management and Control Architecture for 5G Small Cell Backhaul, OFC 2023, Paper W2A.13

- p The FTTR standard system in both ITU-T and CCSA has been established and achieved significant progress
- p G.sup.CMAFP (coordinated management of access and fibre in premises networks) was initiated in Q2/Q3 SG15, to investigate the unified management of PON and FTTR

- p Coordinated 50G PON+FTTR is the technical framework of next generation optical access network, which can realize end-to-end network slicing and guaranteed experience of gigabit to 10-gigabit services.
- p The standardization and technology development of coordinated PON and FTTR using optical layer OAM is desirable, as well as the investigation of use cases and technical requirements.

Thank you!

中国移动内部资料, 未经允许不得复制、转发、传播。