## BACKBONE TECHNOLOGIES FOR LIFI IN INDUSTRIAL AND MEDICAL APPLICATIONS

## Volker Jungnickel, Fraunhofer Heinrich Hertz Institute, Berlin, Germany





## Industrial and medical use cases

Challenges

#### Moderate data rates, High QoS

- Data Rates: ≤ 100 Mbit/s
- Latency: ≤10 ms

#### High user density and parallel connections

- Simultaneous data transmission to ≥10 devices
- Next service next room

#### Industrial manufacturing

• 6-8 m<sup>2</sup> area, range ≥10 meters

#### Hybrid Operating Room

• 20-40 m<sup>2</sup> area, range ≥3 meters



Robots

Source: A. Mengi, devolo



## In-building network in 2024

5G and WAN from outside, LAN and WLAN inside the building





Pag

e

## **Problem statement**

LAN und WLAN vs. 5G

#### LAN: high speed, high QoS

- Ethernet: 1 Gb/s per user
- Coax-/PLC: 1-2 Gb/s shared between 1...16 users (G.hn)

#### WLAN: high speed but limited QoS

- Shared spectrum: up to 10 Gb/s for multiple users
- "Listen-before-Talk" random channel access to combat interference
- a) by other technologies, b) by other access points and stations

#### 5G: High QoS but limited indoor capacity

- Licensed spectrum: deterministic channel access enables high QoS
- poor energy efficiency: large distance to base station, outdoor-to-indoor penetration loss

#### How to reach "wire-like wireless" QoS inside buildings?

• further develop LAN and WLAN technologies, complement 5G inside buildings

#### In-building network technologies

|      | rate    | QoS     | cost |
|------|---------|---------|------|
| LAN  | high    | high    | high |
| WLAN | high    | limited | low  |
| 5G   | limited | high    | high |



## **Future in-building network**

Overall system concept





## **Overview of main R&D topics**

Optical access and in-building networks

#### **Empower optical access**

- develop PON as mainstream (GPON, XGS, HSP)
- keep coax, FWA and NTN as alternatives

### Promote fiber to replace copper in buildings

- fibre-to-the-room (FttR): P2P vs. PON approaches (10 years for B2B, 30 years for B2C)
- keep Ethernet, coax and PLC as alternatives

#### Make Wi-Fi more reliable

- coexistence between different radio access technologies
- coordination of multiple access points
- use of higher frequency bands: mm-wave/LiFi

#### Integrate LAN+WLAN into 5G/6G network

• in-building network as non-3GPP RAN in 5G/6G core: from N3IWF to trusted non-3GPP access



### LincNet project (BMWK, 2022-2025) Focus on PLC and LiFi





e

### LincNet project (BMWK, 2022-2025) Focus on PLC and LiFi





## **Analog forwarding**

Concatenate PLC and LiFi channels

#### LiFi can have multiple APs per room

- cabling increases cost (dominates TCO)
- PLC as backbone for LiFi: up to 2 Gbit/s with 2x2 MIMO

#### Multiple possible solutions for PLC+LiFi

- decode-and-forward, amplify-and-forward (analog forwarding)
- cost-effective solution: Single PHY/MAC for PLC+LiFi channel
  - channel access and scheduling are realized by the PLC gateway
  - current technologies match available BWs: 80 MHz for PLC/LEDs

#### Connect multiple LiFi APs via the same PLC network

• use dual diversity in optical and PLC channels to improve performance



Sources: devolo, HHI, TU Berlin



## **Analog forwarding**

Concatenate PLC and LiFi channels

#### LiFi can have multiple APs per room

- cabling increases cost (dominates TCO)
- PLC as backbone for LiFi: up to 2 Gbit/s with 2x2 MIMO

#### Multiple possible solutions for PLC+LiFi

- decode-and-forward, amplify-and-forward (analog forwarding)
- cost-effective solution: Single PHY/MAC for PLC+LiFi channel
  - channel access and scheduling are realized by the PLC gateway
  - current technologies match available BWs: 80 MHz for PLC/LEDs

#### **Connect multiple LiFi APs via the same PLC network**

• use dual diversity in optical and PLC channels to improve performance







## **Analog forwarding**

Concatenate PLC and LiFi channels

#### LiFi can have multiple APs per room

- cabling increases cost (dominates TCO)
- PLC as backbone for LiFi: up to 2 Gbit/s with 2x2 MIMO

#### Multiple possible solutions for PLC+LiFi

- decode-and-forward, amplify-and-forward (analog forwarding)
- cost-effective solution: Single PHY/MAC for PLC+LiFi channel
  - channel access and scheduling are realized by the PLC gateway
  - current technologies match available BWs: 80 MHz for PLC/LEDs

#### **Connect multiple LiFi APs via the same PLC network**

• use dual diversity in optical and PLC channels to improve performance





Sources: devolo, HHI, TU Berlin





<sup>ium</sup> Covering all network layers

- **FttH/FttR:** BISDN, Maxlinear, Fraunhofer HHI, devolo, InnoRoute (UA)
- PLC: devolo, Teleconnect
- **Wi-Fi:** Maxlinear, devolo, Fraunhofer HHI, TU Braunschweig, NewMediaNet, HS Nordhausen
- **LiFi:** Fraunhofer HHI, Maxlinear, devolo, Teleconnect, Trumpf (UA), Broadcom (UA)
- Security: T-Systems, Quanticor, TUM
- Applications
  - Medical: ICAAS, KLSMartin, SurgiTaix
  - Industry: Werner-von-Siemens-Centre
  - SOHO: EverNet, Fraunhofer HHI

Focus on integration and demonstration at higher TRL



e

#### 5G-COMPASS project (BMDV, 2023-2024) Bundesministerium **Covering all network layers** für Digitales und Verkehr Integration and PoCs FttH/FttR: BISDN, Maxlinear, Fraunhofer ٠ HHI, devolo, InnoRoute (UA) NFT7TFCHN010GIFN b, Fraunhofer HHI, MediaNet, HS BROADCOM axlinear, devolo, A), Broadcom (UA) Dense uanticor, TUM SMartin, SurgiTaix n-Siemens-Centre SOHO: EverNet, Fraunhofer HHI Relaving ٠ Focus on integration and **T**··Systems· Fraunhofer MAXLINEAR demonstration at higher TRL



## Next generation LiFi

VCSEL- and PD-arrays for >1 GHz bandwidth

#### Bandwidth

- Today: 1 Gbit/s with high-power LEDs
- Future: 10 Gbit/s with VCSEL-arrays (developed for LIDAR)

#### Fast PDs have small area: keep wide FOV

- Today: Large-area photodiodes for non-aligned indoor links
- Future: Arrays of small photodiodes with switching matrix

#### **Rx alignment is realized by switching**

- Select-and-combine the best photodiodes on the array
- Chip is designed, tape-out soon, > 1 GHz BW, same FOV





## OWIN6G project (EU MSCA, 2023-2027)

Next generation PLC+LiFi

#### FttR deployment is costly

- alternatives: Coax in the U.S., DSL/PLC in Europe
- next-gen. LiFi has 10-20x higher bandwidth

#### **Next generation PLC**

- wider bandwidth is available: noise and sharing are tbd.
- more MIMO: handle every room as a separate PLC domain

#### Analog forwarding maybe interesting for FttR, too

- keep simplicity and low cost but increase bandwidth: FttR is ideal backbone for LiFi
- However, LiFi is mobile : 20-40 dB gain variations → previous research using LiFi over POF (HHI, TU/E, Signify)





## OWIN6G project (EU MSCA, 2023-2027)

Next generation backbone for LiFi

## FttR deployment is costly alternative • next-gen. Next gener wider bar more MIN 0 1.00000 GH Analog for

- keep simplicity and low cost but increase bandwidth: FttR channel is ideal
- However, LiFi is mobile : 20-40 dB gain variations → previous research using LiFi over POF (HHI, TU Eindhoven)



### Conclusions

Backbone technologies for LiFi in industrial and medical applications

#### Analysis of current in-building technologies

• limited QoS due to random access in Wi-Fi is a major issue

#### Future network concept to complement 5G/6G inside buildings

- use FttH+FttR besides copper for higher bandwidth
- use LiFi and mm-wave besides sub-7GHz Wi-Fi

#### Next-generation backbone technologies

- mature analog forwarding concept for existing PLC+LiFi technologies
- wider bandwidth for LiFi is likely to create the need for more bandwidth in the backbone
- next generation PLC+LiFi, consider analog forwarding also for FttR+LiFi







Sources: ICAAS, WvSC

## Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI

# WE PUT SCIENCE INTO ACTION.

Contact:

Prof. Dr. Volker Jungnickel volker.jungnickel@hhi.fraunhofer.de +49 (0)30 31002 - 768

Einsteinufer 37 10587 Berlin

www.hhi.fraunhofer.de



