IEEE P802.3dj Coherent PHYs

Eric Maniloff – Ciena 13 July 2024 Workshop, Montréal

Overview

- IEEE P802.3dj has 10, 20, and 40km objectives being addressed using coherent optical approaches
- Logical specifications have been adopted, and optical specifications are under development
- Key items being discussed are laser implementations, Transmitter specifications, and PTP support

802.3dj Optical FEC implementations

Proposed 200GbE/400GbE Architecture

· How various FEC schemes fit into the architecture

Page 7

· FECs might or might not be reused across schemes

IEE

800GBASE-ER1 800GBASE-LR1

See: https://www.ieee802.org/3/df/public/22_05/22_0517³/gustlin_3df_01a_220517.pdf

800GBASE-LR1 & ER1 standards alignment

- The 800GBASE-ER1 specifications uses a similar logical implementation to FlexO-8e-DO and OIF 800ZR
- 800GBASE-LR1 uses a common logical approach with OIF 800LR, and is a synchronous Ethernet approach

800GBASE-ER1 & 800GBASE-ER1-20 Logic

PCS - 257b distribution & GMP mapping

- 800GBASE-ER1 uses a common logical approach with OIF 800ZR and FlexO-8e-DO
- RS FEC is terminated, and 257b
 blocks are GMP mapped into
 the payload area of a FlexO
 frame
- oFEC is used as the FEC scheme
- The Ethernet traffic is asynchronous from the coherent line

Lano

See https://www.ieee802.org/3/dj/public/23_07/nicholl_3dj_02a_2307.pdf

800GBASE-LR1 Logic

- 800GBASE-LR1 uses a synchronous mapping of RS-FEC encoded 257b blocks into an inner BCH FEC
- This approach is common with the OIF 800LR logical scheme
- The basic architecture including a convolutional interleaver, FEC, and circular shift is similar to 800GBASE-FR4 and LR4 802.3dj IMDD clauses

See:

https://www.ieee802.org/3/dj/public/23_07/kota_3dj_01a_2307.pdf

Key Optical Specifications

Description	800GBASE-LR1	800GBASE-ER1-20	800GBASE-ER1	Unit	Concatenated vs Segmented
Signaling Rate	123.6364±50ppm	118.2±TBD	118.2±TBD	GBd	
Tx Power (min)	TBD	-11	-5	dBm	40km requires optical amplification
Modulation Format	DP-16QAM	DP-16QAM	DP-16QAM		
Carrier Frequency	228.675±TBD	193.7±1.8 GHz	193.7±1.8 GHz	THz	LR1 designed to remove wavelength locker in O Band FR1
Rx Power (min)	TBD	-18	-18	dBm	using locked C Band lasers
Operating Distance	10	20	40	km	
Channel Insertion Loss	6.3	6.5	12	dBm	 ER1 allows 20/40km interop

C Band reduces fiber loss for ER1

Transmit Quality Metric (TQM)

- In OIF IA's, parametric specifications define a transmitter
 - EVM is defined, but without a specification
- ITU-T G698.2 and IEEE 802.3ct use EVM as a TQM
- New TQM's are proposed in both ITU-T Q6 and 802.3dj based on measurements of a transmitter's SNR
- The term "Extended TCC" is being used to refer to Tx-only RSNR Penalty in Q6

Using Signal Capture, virtual noise loading is performed. This requires only a single Tx output capture.

Using a reference receiver, proposals define a TQM based on a penalty allocated to a realistic transmitter.

See:

Q. Fan & X. Liu, TH2A.26, OFC 2024,
 2.https://www.ieee802.org/3/dj/public/24_05/maniloff_3dj_02_2
 405.pdf

3. Transmitter Quality Metric in a revised G.698.2 for Beyond-400G, https://www.itu.int/md/T22-SG15-C-1216/en

PTP support

- Support for PTP timestamp accuracy can require timing uncertainty of ~1ns in pluggable modules [1].
- RS-FEC Alignment Marker removal/insertion in 800GBASE-ER1 can result in ~5ns timing uncertainty at 800G
- A proposed mechanism in 802.3dj uses JC9-7 in the OH to transmit the position of the AM removal, allowing the far end to re-insert AM's at identical locations [2].

 Mobile Optical Pluggables Alliance (MOPA) Technical paper Version 2.2 https://mopa-alliance.org/wp-content/uploads/2023/10/MOPA_Technical_Paper-v2.2-Final.pdf
 https://www.ieee802.org/3/dj/public/24_05/sluyski_3dj_01a_2405.pdf

Summary

- IEEE P802.3dj is developing coherent optical specifications for 10-40km SMF reaches
- Key items under discussion for these specifications are being aligned with OIF and ITU-T were appropriate
 - TQM will be aligned with ITU-T
 - Logical specifications will be aligned between all bodies

