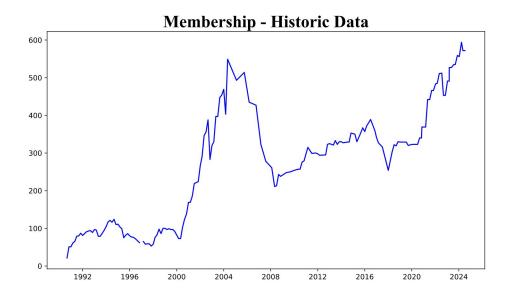
Overview of IEEE 802.11

Robert Stacey, Intel Chair, IEEE 802.11

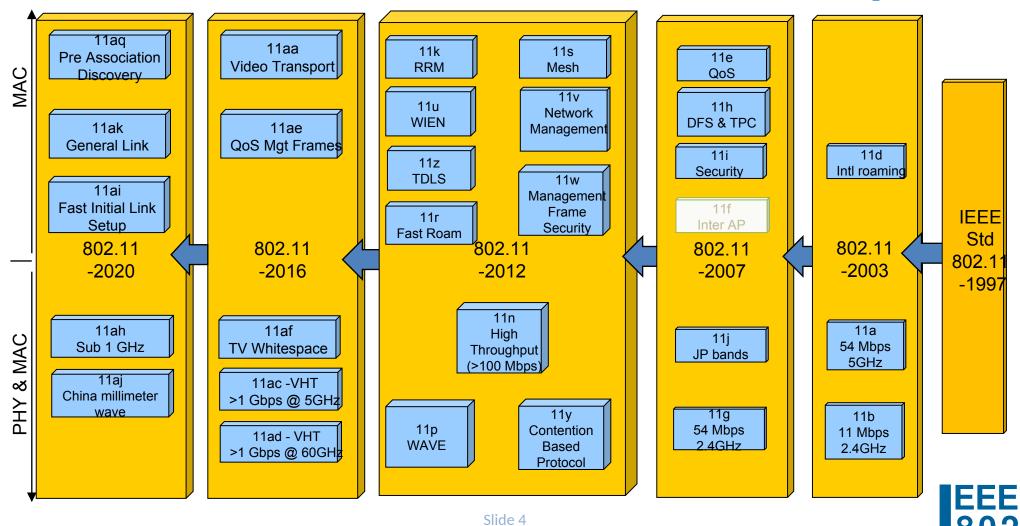
IEEE 802.11 Groups

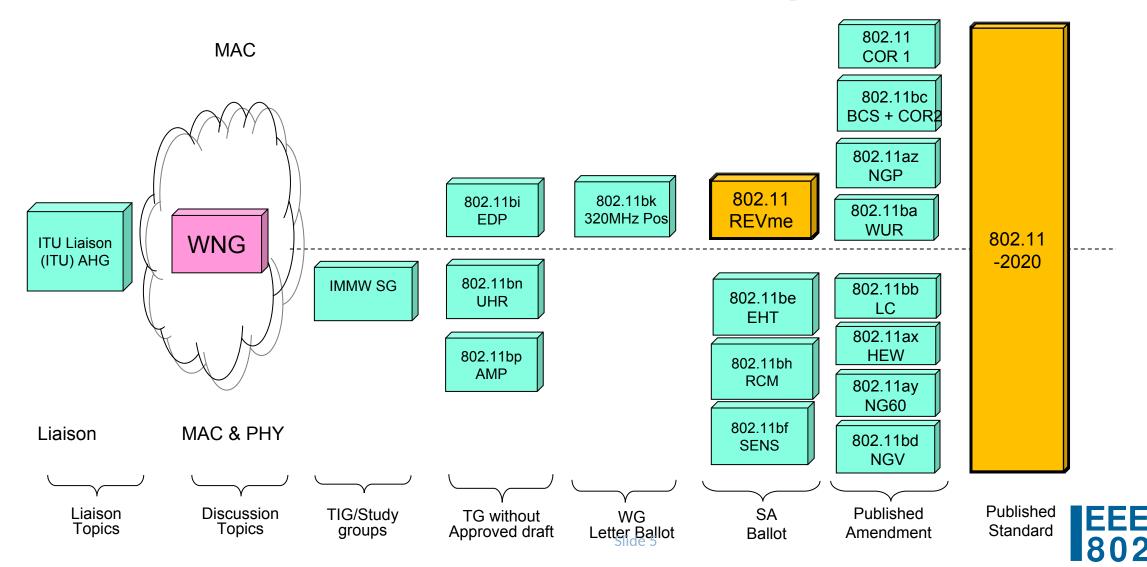
Type	Group	WG & Infrastructure	
WG	WG11	The IEEE 802.11 Working Group	
SC	ARC	Architecture	
SC	COEX	Coexistence	
SC	PAR	PAR review	
802 SC	JTC1	ISO/IEC JTC1/SC6	


Type	Group	New Work	
SC	WNG	Wireless Next Generation	
SC	AIML	AI/ML in 802.11	
SG	IMMW	Integrated Millimeter Wave	
AHG	ITU	ITU Liaison	

Type	Group	Amendments/Revision	
TG	BE	Extremely High Throughput	
TG	BF	WLAN Sensing	
TG	ВН	Randomized MAC Addresses (RCM)	
TG	BI	Enhanced Data Privacy Protection (EDP)	
TG	BK	320 MHz Positioning	
TG	BN	Ultra High Reliability	
TG	BP	Ambient Power	
TG	ME	Revision (REVme)	

IEEE 802.11 Membership


Aspirant	Potential Voter	Voter
111	64	572


- Membership is at an historic high
- We shifted from in-person to remote attendance during pandemic
- This enabled easy attendance from anywhere in the world
- We now run meetings with both inperson and remote attendance
- Membership is gained by attendance
- Membership is maintained through attendance and ballot participation

IEEE Std 802.11 Revision History

IEEE 802.11 Standards Pipeline

Mainstream evolution

	Project	Industry Name	Defining features
Completed -	802.11n High Throughput	Wi-Fi 4	Spatial multiplexing, 40 MHz channels, beamforming, A-MPDU
	802.11ac Very High Throughput	Wi-Fi 5	80 MHz & 160 MHz channels, beamforming that works Enabled broad support for 5 GHz band operation
	802.11ax High Efficiency	Wi-Fi 6 and 6E	Multi-user operation, 320 MHz channels, 6 GHz band operation
Nearly Completed	802.11be Extremely High Throughput	Wi-Fi 7	Multi-link operation (simultaneous use of multiple channels)
New -	802.11bn Ultra-High Reliability	Wi-Fi 8*	Lower latency, longer range, faster handover

^{*}Expected name; will be decided outside of IEEE 802.11

802.11bn: Ultra-High Reliability

- Expected to be the basis for Wi-Fi 8
- Currently building their specification framework document (SFD):
 - https://mentor.ieee.org/802.11/dcn/24/11-24-0209-03-00bn-specification-framework-fortgbn.docx
- Expected improvements:
 - Reduce tail latency
 - Reduce roaming latency by taking advantage of multi-link features
 - Allow access on secondary channel while primary channel is busy
 - AP power save
 - Security enhancements, e.g., Control frame protection
 - Extend range by reducing sensitivity gap between client and AP
 - Multi-AP coordination

Positioning

- Ranging in the form of Fine Timing Measurement (FTM) was introduced in IEEE Std 802.11-2016
 - Derived from an existing "Timing Measurement" frame exchange that supported clock sync
 - Historically referred to a "REVmc FTM" from the revision project that created it
- Since then, it has been enhanced with IEEE Std 802.11az-2022:
- Further enhanced with 802.11bk: adds 320 MHz channel support
- FTM is widely supported in both APs and clients
- Supports numerous use cases, including
 - Geofencing (e.g., limiting access to devices within a building)
 - Indoor navigation
 - Aid regulatory requirements (e.g., 6 GHz band AFC)
- And might help with security/privacy, roaming, link adaptation and similar problems
- Overlaps with and compliments similar solutions in BT and UWB

Sensing

- 802.11bf is developing a protocol for environmental sensing
- Measurements that can be used to monitor environmental conditions and changes
 - E.g., people movement, number of people present, etc.
- Built on sounding (beamforming) waveforms
- Does not define use of the measurements; just defines the sounding exchange and transfer of channel state information
- These are exchanges involving two or more devices; the industry implements 802.11-based one-sided (radar-like) sounding that does not require standardization

Privacy and security (1)

- 802.11bh is short term project that addresses the device identification problem arising from the use of random and changing MAC addresses
 - E.g., caching of security credentials, billing, troubleshooting
- Defines two secure methods for device identification:
 - IRM: Client tells the AP what MAC address it will use the next time it engages with the AP
 - Device ID: AP gives the client an identifier to be used the next time the two engage
- Both mechanisms based on sharing information securely (post association) that can be used when the devices next encounter each other

Privacy and security (2)

- 802.11bi is a longer-term project that will enhance privacy
- For example, preventing
 - Device fingerprinting; identifying a device by the unique information exchanged openly prior to association
 - Spoofing attacks; An AP pretends to be J-Lo's home AP in the hopes that J-Lo's phone will try to associate when J-Lo is in the area, thus giving up her location

Ambient power communication (AMP)

- 802.11bp is a brand-new task group looking into battery-free and very low power operation
- Very early stages, but the topic-of-interest group (prior to task group) produced this report:
 - https://mentor.ieee.org/802.11/dcn/23/11-23-0436-00-0amp-technical-report-on-support-of-amp-iot-devices-in-wlan.docx

Integrated mmWave (IMMW)

- Currently a study group; with approval expected to start work as task group in January 2025
- Simplify 60 GHz band operation to reduce implementation cost
- Previous generations (802.11ad/ay/aj) assumed stand alone operation; re-design with multi-band support in mind
- Improvements expected:
 - More architectural reuse from low band PHY
 - Eliminate control PHY by taking advantage of multi-link; e.g., sector sweep beamforming directed through low band channel

