IEEE 1588 Evolution

latest amendments, protocol evolution

Rodney Cummings

Affiliation: Keysight Vice Chair, IEEE Precise Networked Clock Synchronization (PNCS) Working Group (also known as IEEE 1588 Working Group)

Agenda

- 1588-2019 (PTP) overview
- Published amendments
- Pending amendment (P1588f)
- Future projects
- IEEE Industry Connection (IC) on Timing in Data Centers

Precision Time Protocol (PTP)

- PTP precisely syncs time among devices in a local network
 - Ethernet, but also OTN, Wi-Fi and 5G
 - Precision: Hardware timestamp PTP messages on receive / transmit
- 1588-2019 is latest revision
 - Relative to previous 1588-2008: backward compatible (v2.1), new optional features, architectural clarifications

Applications Using PTP

- Cars, planes, telecom, TV studios, factories, financial, CERN, ...
 - Referenced by over 20 specifications
 - PTP Profile: Formal spec selects options to enable interoperation
 - https://sagroups.ieee.org/1588/ptp-profiles/
- Usage can be transitive
 - 1588 → IEEE 802.1AS → IEC/IEEE 60802 (industrial automation)
 - 1588 → ITU-T G.8275.1 → O-RAN (5G fronthaul)

Published amendments

- 1588b-2022: Mapping for Optical Transport Network (OTN)

 Formalizes encoding of PTP messages on OTN
 Used by ITU-T
- 1588g-2022: Master/slave optional alternative terminology
 - 1588-2019 uses master/slave for each side of PTP exchange
 - For organizations that want alternate terms, consistency is important
 - 1588g specifies timeTransmitter/timeReceiver as alternates
 - ITU-T and IEEE 802.1 use these terms
 - Grandmaster (source of time) same

1588a-2023: Enhancements for BMCA

- PTP's Best TimeTransmitter Clock Algorithm (BTCA) finds the best grandmaster and paths
 - Paths by hop count
- 1588-2019: Enhanced Accuracy Metrics TLV
 - Propagates accuracy down paths
- 1588a-2023: annex on alternate BTCA that uses TLV
- ITU-T contributions on potential use

1588d-2023: GDOI Key Management

- 1588-2019 specifies an Authentication TLV which may be used for 1588-specific security
- Power distribution standards in IEC use GDOI (IETF RFC 6407) for key management
- 1588d-2023 adds an informative annex to help with integration of IEC, IETF, and 1588 Auth TLV security features

1588e-2024: MIB and YANG

- Remote network management is a critical need for configuration and monitoring of network equipment

 Including with PTP
- 1588e specifies MIB and YANG <u>modules</u> for PTP
- 1588e YANG can be imported for augment
 - IEEE P802.1ASdn YANG in-progress
 - ITU-T G.7721.1 YANG in-progress
 - O-RAN WG9 YANG in-progress (transitive)

P1588c: Clarification of Terminology

- Clarifies how PTP messages transfer through switches/routers

 E.g., Rules for how Type-Length-Value (TLV) suffixes transfer
- Clarifies "timescale ARB" (arbitrary epoch)
- Done with balloting
- Submitted for formal IEEE approval (RevCom & SASB) – Hopefully 1588c-2024

Pending amendment (P1588f)

P1588f: Latency and Asymmetry Calibration

- Work split into three parts
- Part A: Absolute calibration
 - 1588-2019 supports calibration of ingress/egressLatency
 - Difference between hardware timestamp and real point on medium
 - P1588f adds ingress/egressPluggableTransceiverLatency
 - Distinct calibration for SFP module, and layers above SFP module
- Part B: Measure delay asymmetry on medium
 - Disables protocol to run measurements; Accessed through management
- Part C: MIB and YANG for above

Future projects

Proposed 1588 Projects (awaiting NesCom)

• Roll-up revision

- Editorial project to merge published amendments into revision
 Likely published as IEEE 1588-2026
- P1588h: Option to disable Announce
 - Announce message is required by 1588-2019
 - In-vehicle and industrial applications want to disable Announce
 - This project adds an option for that
 - Project requested in liaison from IEEE 802.1

P1588.1: Background

- In 1588-2019, the grandmaster shall transmit PTP messages periodically
- In recent years, a few open-source projects implemented a simple client/server mode
 - Grandmaster (server) waits for a request, and then-and-only-then sends a response

- Uses PTP messages, but does not conform to 1588-2019
 - Not formally a PTP Profile

P1588.1: Approved Project

- In PNCS (1588) Working Group, consensus on need
 - E.g., Client/server is needed for some data centers
- Adding mode in 1588 itself would require fundamental changes – Could add confusion to an already full-featured document
- Decision was to specify as 2nd standard from PNCS
 - IEEE P1588.1: Client Server PTP (CSPTP)
 - New protocol specification that uses PTP messages from 1588
- Approved by NesCom, so project is underway as subgroup of PNCS

- CSPTP Chair: Rodney Cummings of Keysight
- CSPTP Vice Chair: Liuyan Han of China Mobile

IEEE Industry Connection (IC) on Timing in Data Centers

Background

- For years, Meta has advocated use of PTP inside data centers

 Public presentations in <u>OCP-TAP</u> on this topic
- Recently, other data center operators have presented on timing
 - Forum varies: OCP-TAP, <u>ITSF</u>, <u>WSTS</u>, IEEE (1588), ITU-T, ...
 - Presentation often covers use cases and requirements
 - Opinions on standards vary
 - Some use NTP (not PTP) for timing
 - Some use P1588.1-like protocol
 - Some use traditional PTP Profile (e.g. ITU-T G.8275.1)
 - Not yet clear that a new standard project is needed

IEEE Industry Connections

- In IEEE terms, discussion is not yet at Working Group stage
 Discussion among experts to determine if/what standards are needed
- IEEE provides <u>Industry Connections</u> (IC) framework for this
 - Open and honest discussion among industry experts
 - Any relevant expert
 - Intentionally not limited to experts in IEEE
 - Output is typically a white paper
 - If standards are needed, forwarded to relevant standards organizations

IEEE IC on Timing in Data Centers

- Initiated by participants in IEEE PNCS (1588)
 - Not formally managed by PNCS, to avoid perception of "a 1588 thing"
 - Relevant standards can include ITU-T and IETF (for NTP)
- Connects timing experts and data center experts
- Hope is to have one set of calls for relevant discussion
 - Plans to merge with OCP-TAP calls
 - Plans to coordinate with ITU-T project
- Approved formally by IEEE SA on 28 June 2024 – Chair: Rodney.Cummings@keysight.com

