### In-premise fibre-based communication standard progress in ITU-T SG15

### Tony Zeng Associate Rapporteur of ITU-T SG15 Q3

Presentation for 2024 Joint IEEE 802 and ITU-T Study Group 15 Workshop

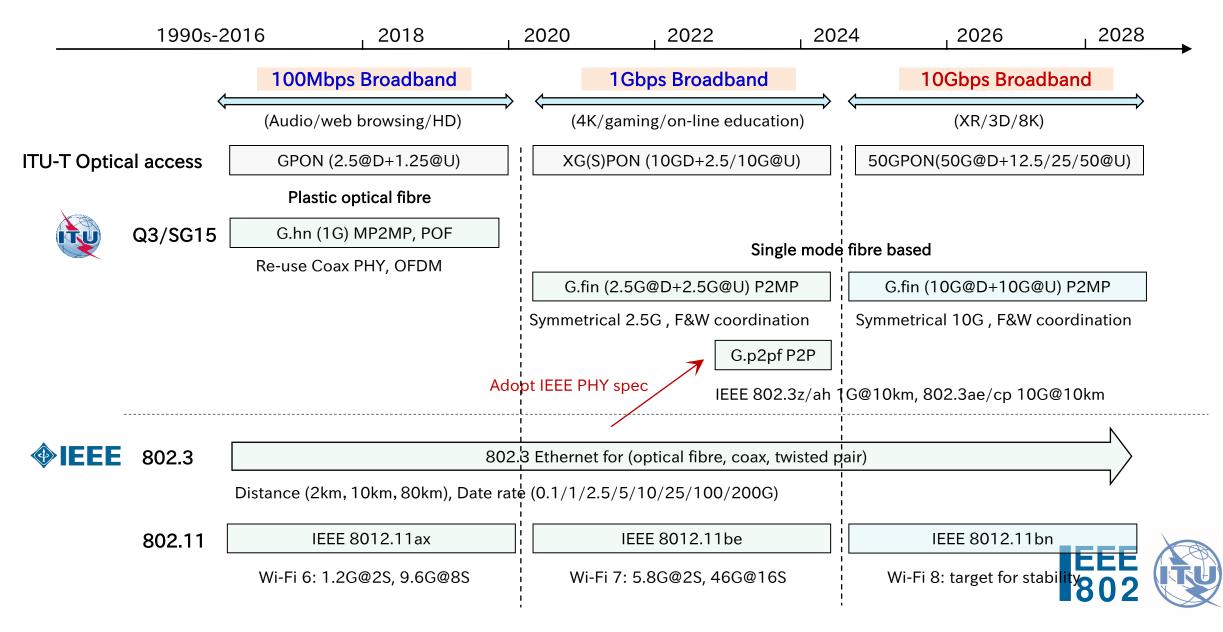


### **Roadmaps from ITU-T, IEEE and ETSI-F5G**

ITU Workshop on "The Evolution of Transport and Access Networks to Support IMT 2030/6G"

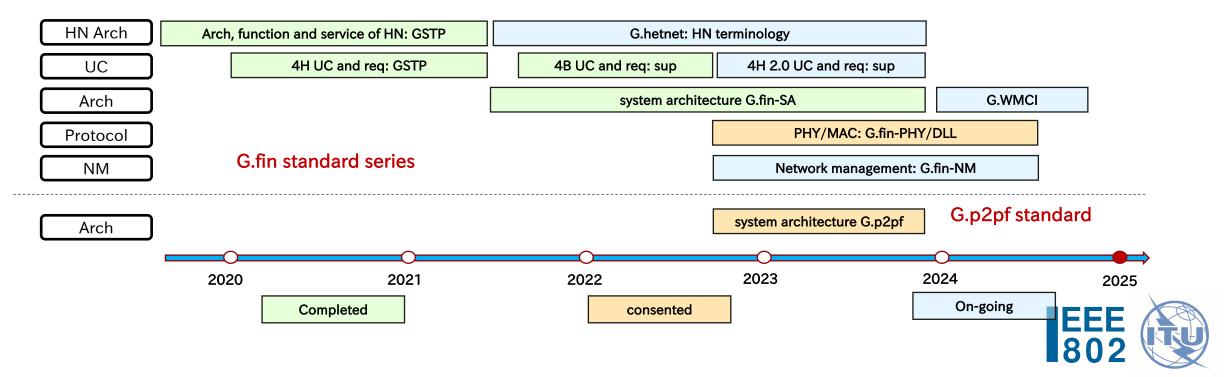
| 14:00 - 14:05 | Opening Remarks                                                                           |  |
|---------------|-------------------------------------------------------------------------------------------|--|
|               | Glenn Parsons, Chair, ITU-T SG15 I Ericason, Canada (Presentation)                        |  |
| 14:05 - 14:15 | Summary of GSTR-TN5G                                                                      |  |
|               | Stephen Shew, Rapporteur Q12/15   Clena, Canada (Presentation)                            |  |
| 14:15 - 14:45 | Ven Sampath, ITU-R S06/WPSA Vice-Chair I Encason, Canada: //IU-R 8//F-2030 [Presentation] |  |
| 14:45 - 15:05 | Jordan Melzer, Teks (Presentation)                                                        |  |
| 15:05 - 15:25 | Bhushan Padhiar, AT&T (Presentation)                                                      |  |
| 15:25 - 16:00 | Coffee Break                                                                              |  |
| 16:00 - 16:20 | Kazuhide Nakajima, Rapporteur G5/16 I NTT [Presentation]                                  |  |
| 16:20 - 16:40 | Li Han, China Mobile (Presentation)                                                       |  |
| 16:40 - 17:00 | Ian Horsley, WP1/15 Viol-Chair I BT (Presentation)                                        |  |
| 17:00 - 17:20 | Shen Shikul, China Unicom (Presentation)                                                  |  |
| 17:20 - 17:50 | Panel Discussion                                                                          |  |
|               | Moderators: Paul Doolan WP2/15 Chair (Presentation) & Maloolim Betts WP3/15 Chair         |  |

| <u>1970's</u><br>• G.651<br>• G.956/G.955<br>• 850-nm laser<br>• Multimode fiber<br>• 34-45 Mb/s<br>• 10 km reach<br>• PDH | <u>1980's</u><br>• G.652<br>• G.957<br>• 1300-nm laser<br>• Single-mode fiber<br>• 2.5 Gb/s<br>• 50 km reach<br>• SDH | <u>1990's</u> G.653/G.654  G.974  1550-nm laser  Single-mode fiber  10 Gb/s  100 km reach  SDH  C-band EDFA  WDM/DWDM | 2000's<br>• G.655<br>• G.694~698.x/G.<br>977/G.709<br>• 40 Gb/s<br>• >1000 km reach<br>• OTN<br>• L-band EDFA<br>• Raman<br>Amplifier | 2010's<br>• G.656/G.657<br>• G.672/G.680<br>• Digital coherent<br>transmission<br>• 100~400 Gb/s<br>• AON with<br>ROADM/OXC<br>• OTN | 2020's<br>• G.654.E/G.657.A1/A2<br>• G.698/ G.977.1<br>• SDM<br>• Multi-band OA<br>• MD-WSS<br>• P2MP<br>• 400Gb/s~1.6T<br>• B1T-OTN/fgOTN |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> Phase                                                                                                      | 2 <sup>nd</sup> Phase                                                                                                 | 3 <sup>rd</sup> Phase                                                                                                 | 4 <sup>th</sup> Phase                                                                                                                 | 5 <sup>th</sup> Phase                                                                                                                | 6 <sup>th</sup> Phase                                                                                                                      |


#### [1] Technical Report ITU-T TR-OFCS, under preparation by WP2 of ITU-T SG15.

| IEEE<br>INGR)<br>International Network | <ul> <li>PON Technology Evolution and<br/>Standard Trends</li> <li>2000s: GPON/EPON 1Gbps</li> </ul> | ETSI                                  | 2024~2027<br>R3 & R4 & R5       |                                           |
|----------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------|
| Generations Roadmap<br>2023 Edition    | <ol> <li>2010s: XG(S)PON, NGPON,<br/>10GEPON</li> <li>2020-2025: 50GPON, 50G</li> </ol>              | GAO<br>Green Agile<br>Optical Network | F5G<br>Advanced                 | <b>RRL</b><br>Real-time<br>Resilient Link |
| Optics                                 | EPON, 25GS-PON MSA<br>4. 2025s: Future PON                                                           | FFC                                   | Optical Sensing & Visualization | GRE                                       |

Cooperation with other SDOs to define optical networks towards 2030




# **ITU-T SG15 Standard Roadmap for Fibre In-premises Network**



### **Standard Series of ITU-T SG15 Q3**

- G.fin recommendations (High speed fibre-based in-premises transceivers)
  - 1. Use case & requirement: TP of 4H (published), supplement of 4B (published), supplement of 4H 2.0 (on-going)
  - 2. System Architecture (G.9940 approved): priority of P2MP, centralized fibre & wireless coordination
  - 3. Physical layer (G.9941, consented) and data link layer (G.9942, consented): common agreement in frame design
  - 4. Network management (G.9943): on-going
  - 5. Fibre & Wi-Fi coordination (G.wmci): on-going
- G.p2pf recommendation (High-speed point-to-point-fibre-based in-premises transceivers)

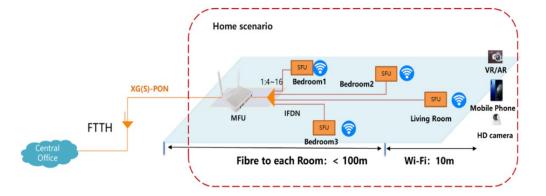


### Use cases & network characteristic for home applications

|                  | Wi-Fi<br>backhual | Seamless<br>roaming | Stable<br>Wi-Fi | Wi-Fi<br>+ mmW | Dense<br>depart | loT<br>support | Low<br>latency | Fibre<br>deploy | Network<br>slicing | East to<br>West | Multi<br>service | FIP diag | NAS | Security<br>threat |
|------------------|-------------------|---------------------|-----------------|----------------|-----------------|----------------|----------------|-----------------|--------------------|-----------------|------------------|----------|-----|--------------------|
| Throughput       |                   |                     |                 | • •            |                 |                | •              |                 | • •                | •               | •                |          |     |                    |
| Latency          |                   |                     |                 |                |                 |                |                |                 | • •                |                 |                  |          |     |                    |
| Connectivity     | •                 |                     |                 |                | •               |                |                | •               | • •                |                 |                  | •        | •   |                    |
| Roaming          |                   | • •                 |                 | •              |                 |                |                |                 |                    |                 |                  |          |     |                    |
| Security & green |                   |                     |                 |                |                 |                |                |                 |                    |                 |                  |          | •   |                    |
| O&M              |                   |                     |                 |                |                 |                |                |                 |                    |                 |                  |          | ••• |                    |

Source: ITU-T G.Suppl.FIP4H, "Use case & Requirements of Fibre-based In-premises networking for Home Application (FIP4H) "

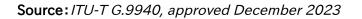


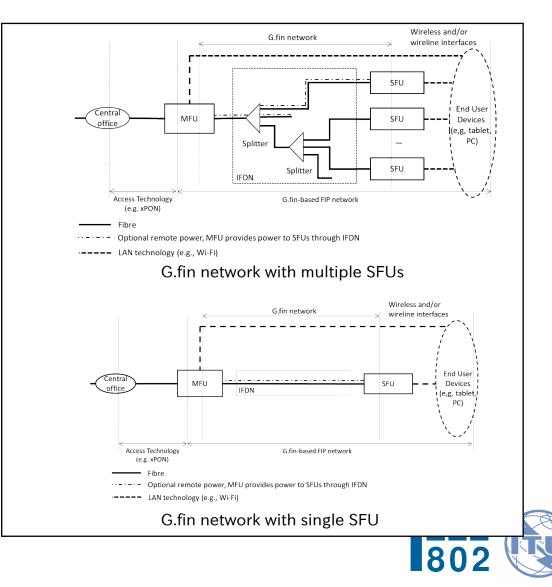

### **Use cases & network characteristic for SME applications**

|                | Live<br>application | Smart<br>office | Small<br>service hall | School | Business<br>buildings | Leisure | Advertising | Workshop | Smart<br>community |
|----------------|---------------------|-----------------|-----------------------|--------|-----------------------|---------|-------------|----------|--------------------|
| Stability      |                     |                 |                       |        |                       |         |             |          |                    |
| Throughput     |                     |                 |                       |        |                       |         |             |          |                    |
| Connectivity   |                     |                 |                       |        |                       |         |             |          |                    |
| Cloudification |                     |                 |                       |        |                       |         |             |          |                    |
| Security       |                     |                 |                       |        |                       |         |             |          |                    |
| O&M            |                     |                 |                       |        |                       |         |             |          |                    |

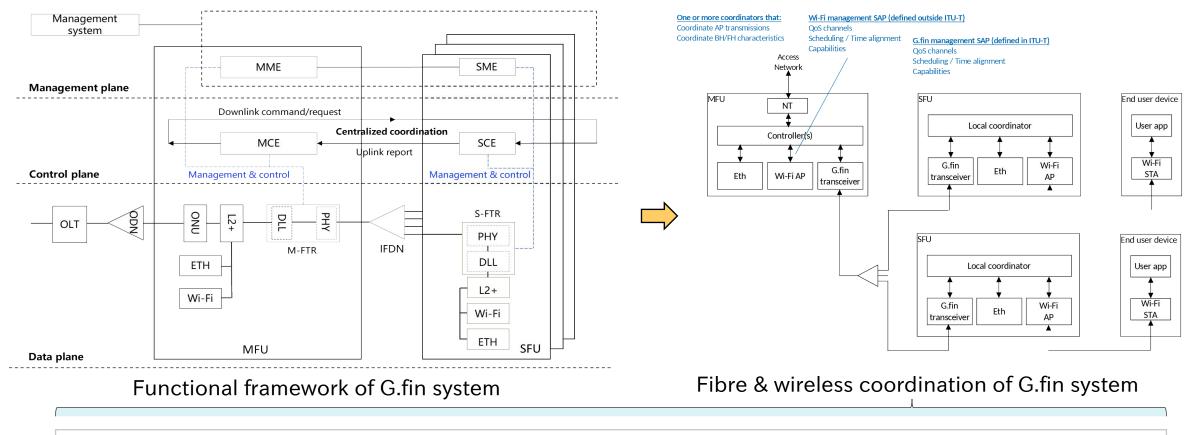
Source: ITU-T G Suppl. 78, "Use case and requirements of fibre-to-the-room for small business applications "




### In-premises fibre networking (G.fin) for Gigabit Broadband




Home environment

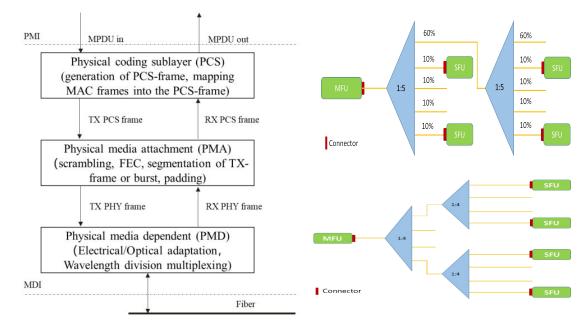



• Business environment



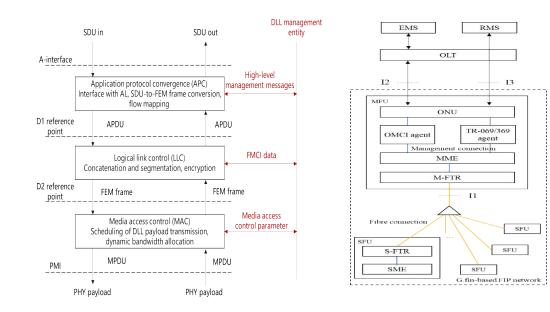


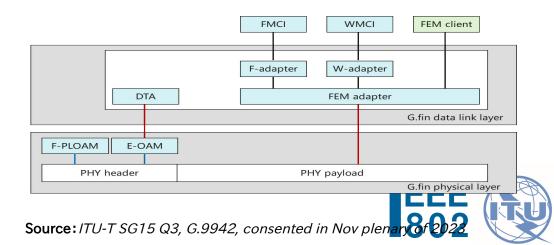
### **G.fin system architecture**



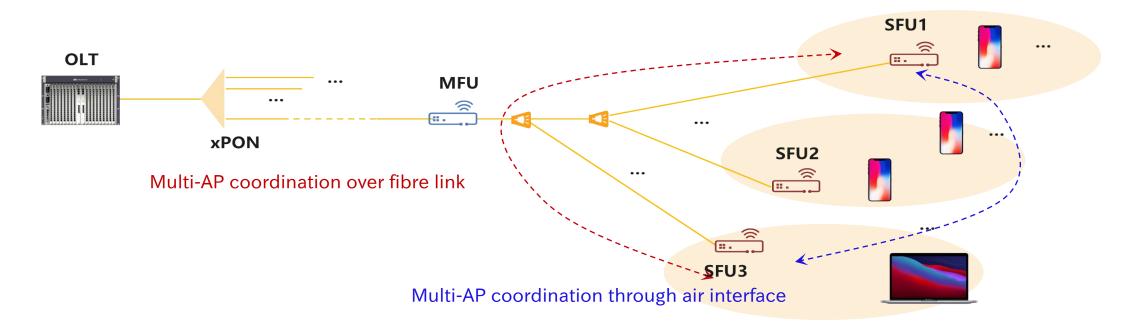

- 1. Identify service flow and differentiate the service QoS
- 2. MFU dynamically collects the Wi-Fi and network relevant information such as data buffer, link status, etc.
- 3. The MFU controller does analysis and makes decision
- 4. The decision is sent to each SFU through the fibre network




# G.fin physical layer (PHY) & data link layer (DLL)


#### PHY: symmetric rate, optimized link budget, flexible splitting

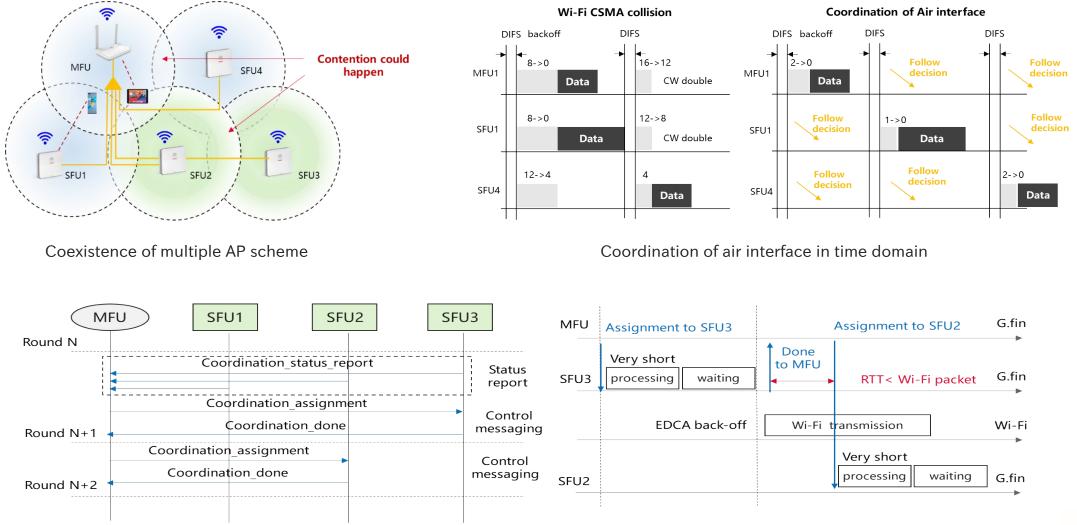



| Optical link budget | Typical         | Upstream/downstream wavelength set |                        |  |  |  |  |
|---------------------|-----------------|------------------------------------|------------------------|--|--|--|--|
| Optical link budget | splitting ratio | 2.5/2.5 Gbit/s                     | 10/10 Gbit/s           |  |  |  |  |
| 0-18 dB (home)      | 1:8             | Up: 1300-1320 nm                   | Left for further study |  |  |  |  |
| 0-18 dB (nome)      |                 | Down: 1480-1500 nm                 | Left for further study |  |  |  |  |
|                     |                 |                                    | Option 1:              |  |  |  |  |
|                     |                 |                                    | Up: 1300-1320 nm       |  |  |  |  |
| 13-28 dB (SME)      | 1:32            | Up: 1300-1320 nm                   | Down: 1480-1500 nm     |  |  |  |  |
| 13-28 dB (SME)      | 1.52            | Down: 1480-1500 nm                 | Option 2:              |  |  |  |  |
|                     |                 |                                    | Up: 1260-1280 nm       |  |  |  |  |
|                     |                 |                                    | Down: 1567-1587 nm     |  |  |  |  |

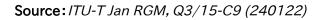
#### DLL: TDMA, F/WMCI dynamic control, OLT enabled management






### WLAN management & control interface (WMCI) complements to UHR




- Fibre link should be a complement way for multi-AP coordination in UHR
  - Guaranteed low latency channel for control message exchange in PHY and DLL
  - Data are well coordinated by TDMA scheme for uplink and broadcasting in downlink
  - Tree topology, in which controller is set in MFU
  - High throughput backhauling over fibre, best for Co-BF & Joint transmission
  - Nature high synchronization over fibre network (OOK modulation over 2.5G/10G)



# **Coordinated Wi-Fi transmission in domain based on G.wmci**



Concept of coordination procedure





# **G.p2pf system architecture**

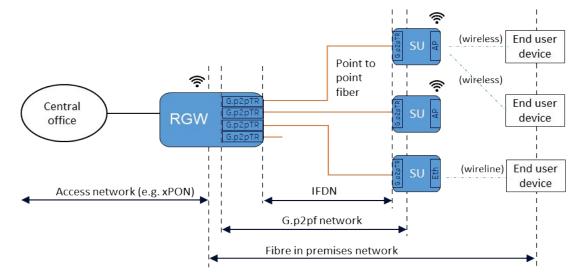
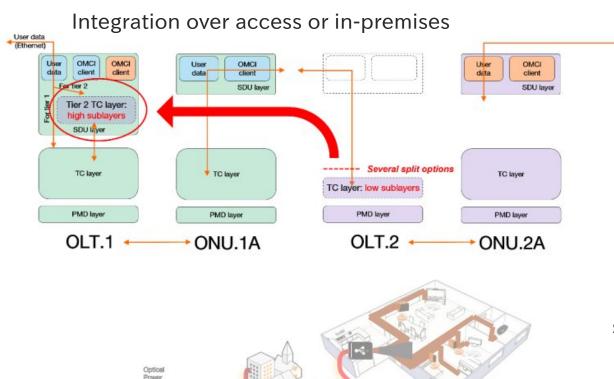



Illustration of a G.p2pf-based FIP network

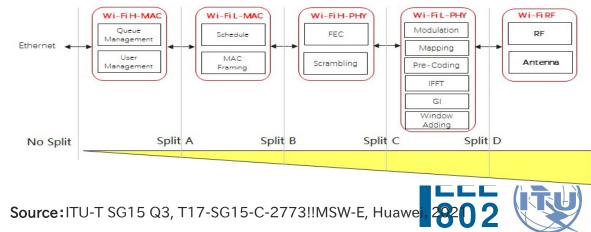
| G.p2pf<br>option | Nominal<br>line rate | Single or<br>dual fibre | Fibre length supported by | Optical link<br>budget | Wavelength<br>(nm)             | Referenced<br>IEEE 802.3   | Ethernet PMD<br>types |
|------------------|----------------------|-------------------------|---------------------------|------------------------|--------------------------------|----------------------------|-----------------------|
| Option 1         | 1 Gbit/s             | Dual fibre              | 10km                      | 8dB                    | 1270-1355                      | [IEEE 802.3]<br>Clause 38  | 1000BASE-LX           |
| Option 2         | 1 Gbit/s             | Single fibre            | 10km                      | 5.5dB                  | DS: 1480-1500<br>US: 1260-1360 | [IEEE 802.3]<br>Clause 59  | 1000Base-BX10         |
| Option 3         | 10 Gbit/s            | Dual fibre              | 10km                      | 6.3dB                  | 1260-1355                      | [IEEE 802.3]<br>Clause 52  | 10GBASE-LR            |
| Option 4         | 10 Gbit/s            | Single fibre            | 10km                      | 6.3dB                  | DS: 1320-1340<br>US: 1260-1280 | [IEEE 802.3]<br>Clause 158 | 10GBASE-BR10          |

#### Summary of G.p2pf PHY options based on IEEE 802.3


#### Description

- Optical Ethernet connections are used for connecting RG and subtended unit (SU)
- Two types of connectivity:
  - RG/SUs are connected directly to the fibre infrastructure (IFDN) using devices with optical outputs
  - RG/SUs are connected to external optical/electrical converters using Ethernet. In this case, an external switch is needed on the RG side

Source: G.9930 draft - Under review in the approval process




# Further consideration: deep integration over fibre or Wi-Fi



Integration betwen multiple AP

#### Source: ITU-T SG15 Q3, T22-SG15RGM-Q3-230131-C-0019, Maxlinear, 2023



C-FAN Centralised-FAN (Fixed Access Network)

-> Simplified G.fin devices

Solitte

Typ.: 1:84

-> Centralized control in central office

Source: 2<sup>nd</sup> FTTR joint workshop, 2022, Orange



### Committed to connecting the world