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Why ML so powerful?

• Models patterns in data
• Allows automation, reducing costs
• Scales better than humans
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Gives away information about 
training data
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✔ The adversary infers that 
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Prediction     Likely to develop tuberculosis 
Confidence   94%

Model Inversion 
[F+’15]
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Desiderata

• Measure if/how much private data an ML model 
reveals before deployment

• No need to understand what's inside

• Mathematical guarantees
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How to measure security? 
Black-box security approach [C’10, C’17, C+’19]

Basic idea:   Estimate the probability of success of an optimal adversary from data
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TL;DL
• ML models may reveal information about their 

private training data 

• Before releasing them, we need to measure how 
much information they leak 

• Black-box security techniques allow this, without 
the need to understand how the models work 

• There's more: adversarial learning



Background 

https://www.who.int/dg/speeches/2018/artificial-intelligence-summit/en 

"Model inversion attacks that exploit confidence information and basic countermeasures" (M. 
Fredrikson, S. Jha, T. Ristenpart, 2015) 

"Membership inference attacks against machine learning models" (R. Shokri, M. Stronati, C. 
Song, V. Shmatikov, 2017) 

Measuring security 

"Statistical measurement of information leakage.” (K. Chatzikokolakis, T. Chothia, G. Apratim, 
2010) 

“Bayes, not Naïve: Security Bounds on Website Fingerprinting Defenses” (G. Cherubin, 2017) 

“F-BLEAU: Practical Channel Leakage Estimation” (G. Cherubin, K. Chatzikokolakis, C. 
Palamidessi, 2019)  [Under submission] 

More   https://giocher.com/pages/bayes.html 

Code   https://github.com/gchers/fbleau
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Estimate: 
Pr(s ≠ ŝ) 

where ŝ is the prediction of optimal 
adversary (Bayes adversary)
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