#### Joint ITU-GISFI Workshop on "Bridging the Standardization Gap: Workshop on Sustainable Rural Communications"

(Bangalore, India, 17-18 December 2012)

### LTE Advanced eNB Small Cell System Design Challenges, Network Topologies and Applications

Dr Venkat Rayapati,
President &CEO,
SAI Technology, Inc
vrayapati@saitechnology.com





### **Presentation Out-line**

- Key Drivers for the LTE Technology
- Technologies and Network Topologies
- LTE Advanced Small Cell System Design
  - LTE Advanced Technologies
  - LTE Small Cell System Design Challenges
  - LTE Research areas
- 3GPP Standards Technical Gaps
- LTE Network Applications
- Conclusion and Recommendations



- Key factors drive for the LTE Technology
  - Broadband subscribers to reach 3.4 billion by 2014
  - 80% of the users will be mobile based
  - Fixed broadband growth expected to remain near static
  - Operators are being driven by two unique trends
    - Increase in smart mobile devices
    - Video Applications & Social Media
    - Data centric applications
  - ◆ India Mobile data growth rate >15%
- 4G Networks in North America will increase data traffic 26 fold from 2010 through 2015



Source: Verizon data published



Ericsson White Paper, "LTE – An Introduction". June 2009.



### LTE Advanced Small Cell Design

- Small Cell Design supports two design approaches:
  - In-door Small Cell (Femto Cells)
  - Out-door Small Cell (Roof-top Cells)
- Major Challenge is the Backhaul support for the small cells
  - Micro-wave Backhaul
  - OFDM Backhaul Licensed Spectrum versus Unlicensed
  - Custom Licensed Spectrum versus Unlicensed
- Integrated Small cell with Backhaul is best option for Rural deployment
  Bangalore, India ,17-18 December 2012



## LTE Advanced eNB Small Cell Scalable Architecture



SAI Supports own PHY Layer (L1), L2, L3 and Applications for small cell

# LTE Advanced Small Cell Design Physical Requirements

The small cell and backhaul unit combined should be...

- Small enough to fit in available street level locations
  - Planning/zoning may impose volume/dimension restrictions
- Lightweight to facilitate installation
  - A one man lift & mount can reduce costs
- Innocuous rather than sexy
  - Should not draw attention to itself
- Touch safe and tamper proof
  - Some sites may be within reach of the public





## LTE Small Cell Integrated with Backhaul



Integrated Small Cell for Rural Communication is the cost effective solution



## LTE Small Cell Design and Deployment Scenario

Congestion on fully upgraded macro sites



Need to densify

No rooftop space left smaller units needed to fit available locations



Smaller unit = less power = shorter range

Small, low power cells close to users
Near street level



 Small cell sites typically 4-6 m above street level, on sides of buildings or street furniture



### LTE Advanced Technologies Impact for Small Cell Design

- LTE Advanced Technologies:
  - Carrier Aggregation
  - Advanced MIMO Support
  - Positioning and Tracking
  - ◆ CoMP
  - Het Nets
- LTE Advanced technologies impact on LTE eNB Small Cell design

# LTE Carrier Aggregation impact on the Small Cell Design



- Carrier Aggregation will significantly enhance DL/UL bandwidth
- Maximum 100 MHz BW
- Non-contiguous implementation is very challenging
- Small Cell will be able to support more number of users with CA
- Small Cell over all design becomes more complex with CA

SAI Technology, Inc



## LTE MIMO Adaptive impact on the Small Cell Design





(a) MIMO Adaptive Switching



(b) LTE Advanced MIMO Modes

- Selecting the appropriate MIMO Scheme
- Multi-user MIMO offers the best complexity performance trade-off
- Single Site MIMO, we will connect with single eNB with one or multiple UE devices.
- Cooperative MIMO: Cell edge user throughput is boosted
- MIMO will be supported3 modes of operation:
  - Transmit diversity
  - Receive diversity
  - Spatial multiplexing boost data rate
- OR Beam forming to increase coverage

SAI Technology, Inc.

# SAI

# LTE Positioning & Tracking impact on the Small Cell Design



(a) A-GNSS working in LTE



(b) OTDOA working in LTE

- Stand-alone GNSS, A-GNSS provide excellent accuracy
- □ OTDOA method, the UE estimates the difference in the arrival times of the PRS(Positioning Reference Signal) signals from separate base stations.

# LTE Coordinated Multipoint (CoMP) impact on the Small Cell Design

Coordinated Multipoint (CoMP) transmission techniques are considered as promising candidates for efficient interference management to improve cell edge and/or system throughput





Coordinated Scheduling/Beamforming (Co-Sch/BF) CoMP Joint Processing/Transmission (JP/T) CoMP

Data sharing not needed
Smaller performance gain
Lower system requirement



Data sharing needed

Larger performance gain

Higher system requirement



## LTE Het Net impact on the Small Cell Design



Heterogeneous Network (HetNet): A network that consists of a mix of macro cells and low-power nodes, e.g. Pico, Femto, Relay Node (RN) and Remote Radio Head (RRH)

## LTE Advanced Small Cell Design challenges

- Seamless Hand-off & Mobility management
  - Soft hand-off process between 3G, 4G and WiFi
  - Inter-RAT and Intra RAT between legacy and Advanced LTE eNB
  - Non-Cellular Radio's inter-working with LTE for traffic offload
- Service Level QoS and SLA support
  - Early deployments focused on data only. Ensuring Voice,
     Video, and Gamming etc QoS has certain limitations.
  - SLA Enforcement for the different types of services
- Self Configuration, Plug and Play
  - LTE Small cells required today lot of hand crafting and tuning for performance



## LTE Advanced Research Areas specific to small cell

- Inter Channel Interference Coordination (ICIC) Methods and Optimization
- Backhaul Traffic Congestion
- Traffic offload and Load balancing
- Managing the small cells, edge coverage and performance KPI's
- Seamless connectivity between multiple LTE Devices for applications delivery
- Enhanced MIMO, Beam forming and Adaptive Antenna Technologies
- Het Net Robust Mobility Management



### LTE 3GPP Standard Gap's

- Carrier Aggregation for non-contiguous channel aggregation typical use case scenarios were not supported by the LTE standard.
  - For example: Group a,b,c,d,e has been classified, but no reference to groups d and e.
- Voice Over LTE with ultra low latency and high quality has not been supported by the LTE standard
- Small Cell load balancing has not supported by the LTE Standard



### LTE 3GPP Standard Gap's

- Het Nets Robust operational scenario's have not supported by the standard
- Backhaul Security issues have not been adequately addressed by the standard
- AMR Group level registration limitations not addressed by the standard
- Interference management control for small cells, Pico and Micro cells and isolation mechanisms not supported by the LTE standard



## LTE Advanced Network for India Rural Communication

Rural network comprises of WiFi and LTE combination to reduce cost



CAPX and OPEX has to be optimized



## LTE Applications for India Rural Communication



#### **Education**



### Sustainability



Applications: Tele-Medicine, Distance Education, Public Safety, and Disaster Management



## Conclusions and Recommendations

- LTE Small cell design challenges need to be addressed
- LTE Advanced Technologies impact on small cell design considered
- LTE Network topology for Rural Communications
- LTE Applications enablement

- LTE Standard gaps specific to small cells:
  - Small cell traffic load balancing need to be implemented
  - AMR Group level registration and support
  - Backhaul traffic management
  - Interference Control for Micro, Pico, and Femto cells
  - Het Nets Robust Mobility management support

### Thank You