ITU Foro de

"CEM – Qué significa Realmente?"

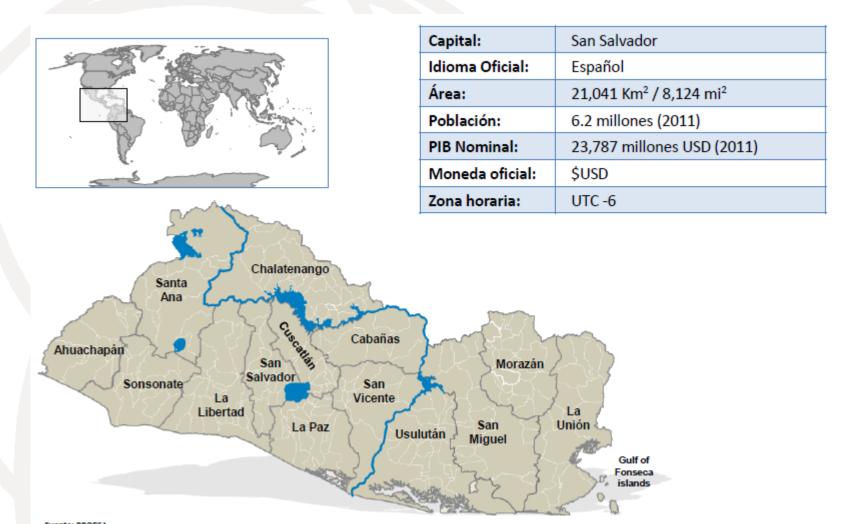
(Santo Domingo, República Dominicana, Septiembre 4, 2014)

CEM - La importancia de socializar los resultados de mediciones de campo y Caso El Salvador

Alexander Tejada

Jefe de Planificación e Ingeniería del Espectro
Radioeléctrico – SIGET
alex@siget.gob.sv

Indice


- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Introducción

Datos de El Salvador

Antecedentes del Proyecto

- Generación de iniciativa y auspiciantes
- Plan Piloto El Salvador

Número del Proyecto:

Aspectos Técnicos Relativos a las Título del Proyecto:

Emisiones Electromagnéticas No Ionizantes y regulación sobre la humana. exposición 0Los despliegues de redes inalámbricas

y sus infraestructuras asociadas

Fecha Estimada de

Marzo 2012

Diciembre 2012

Inicio:

Fecha estimada de

Conclusión:

Agencias de COMTELCA, SIGET

Cooperación o

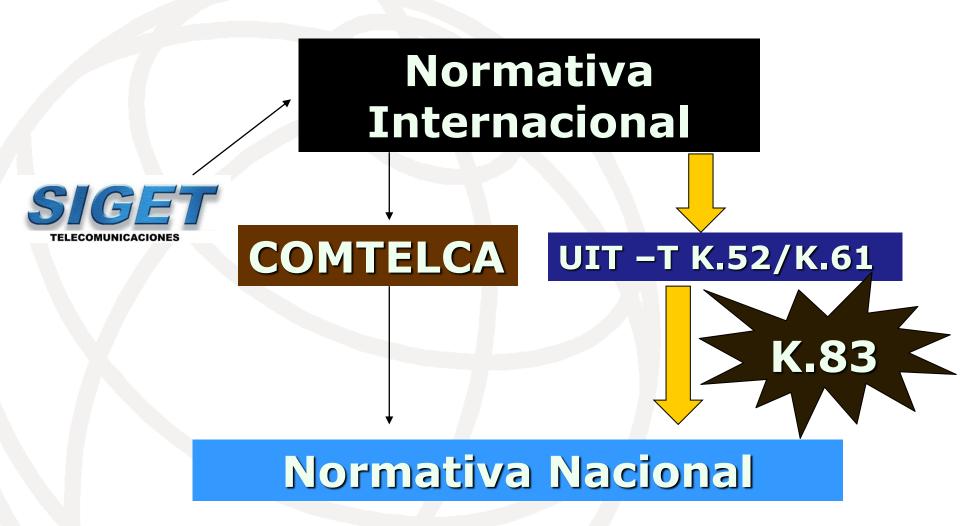
El Salvador

Gobierno:

Agencia de UIT

Implementación:

Países Beneficiarios: El Salvador, Honduras y Panamá


acuerdo con la tasa de cambio efectiva del mes de la Santo Domingo, República Dominicana, 04 septiembre de 2014

Descripción	*UIT en efectivo USD	SIGET en efectivo USD	SIGET en especie USD
Personal		-	
Misiones		-	
Servicios Externos	+	-	
Equipos			
Miscelanea		1	
Total:	2		
Grand Total:		USD	

Indice

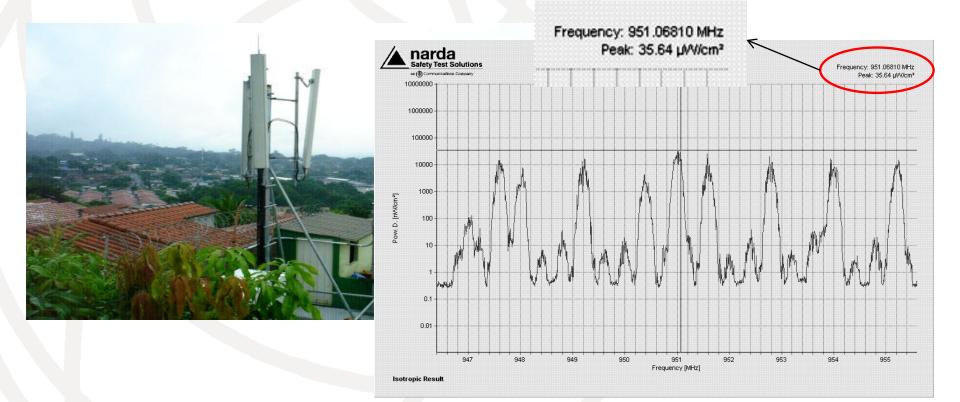
- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Normativa nacional

Experiencia de El Salvador

Niveles máximos encontrados

1	35.64 μW/cm ₂		
2	11.00 μW/cm ₂		
3	213.1 nW/cm ₂		
4	167.0 nW/cm ₂		
Otros niveles:			
< 100 nW/cm ₂			


446 μW/cm² y 587 μW/cm²

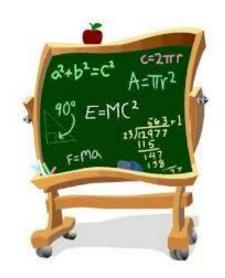
Experiencia de El Salvador

Nivel máximo encontrado

1 35.64 μW/cm₂

Sala-Estar frente a antenas en 3er piso. Monopolo a 12 m aprox

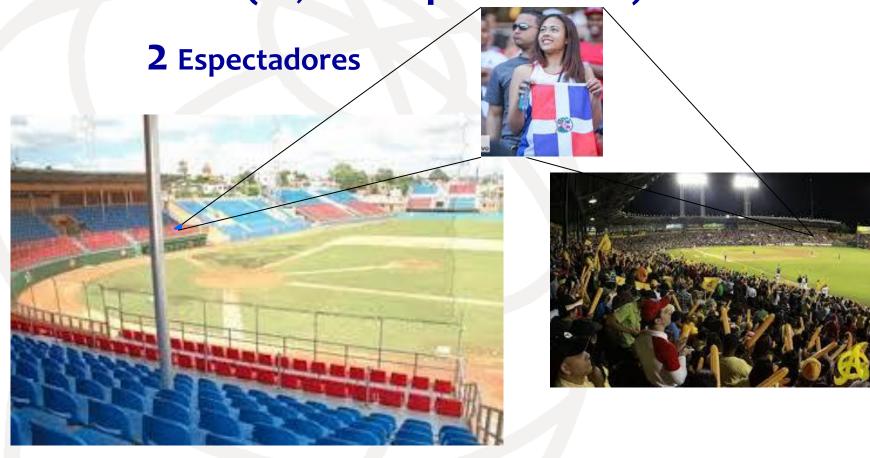
Ejemplo de resultados


Muchas de las mediciones realizadas son

< 100 nW/cm²

Tomemos un nivel de 44 nW/cm²

$$n = nano = 1x10^{-9}$$


$$\mu = micro = 1x10^{-6}$$

La Relación entre 440 μ W/cm² y 44 nW/cm² = 10,000

Analogías (1/2)

Estadio Cibao (18,000 Espectadores)

Analogías (2/2) Distancia (Santo Domingo – New York)

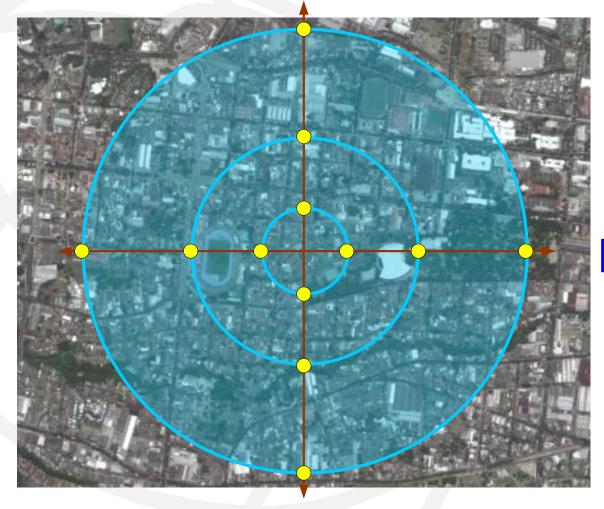


Limites Máximos Permisibles - Público En General

Establecidos por la Comisión Técnica Regional de Telecomunicaciones (COMTELCA) y plasmado en la Guía para la regulación de las radiaciones no-ionizantes

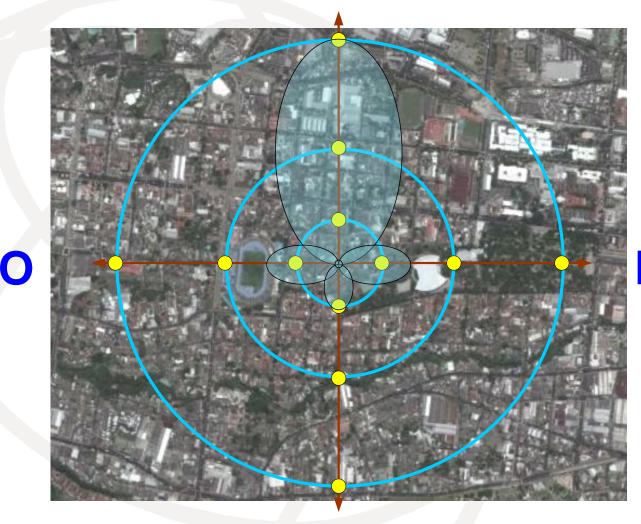
Banda	Frecuencia (MHz)	Permisible (W/M²)
800	806 a 894	4.03
900	894 a 960	4.47
1900	1850 a 1990	9.25

Puntos de Medición



Localización BTS , Km 23 carretera a Quezaltepeque, S.S. Puntos de medición

....Resultados de las Mediciones Cuadro con valores obtenidos


Puntos de medición	Distancia (metros)	Orientación Con respecto norte magnético	Densidad de Potencia (nW/cm²)	
1	50	0°	2.754	
2	100	20°	2.561	
3	10	120°	1.800	
4	50	120°	2.998	
5	100	120°	2.220	
6	10	180°	1.569	
7	50	220°	3.052	
8	100	230°	2.118	
9	10	270°	1.256	
10	50	270°	2.657	
11	100	280°	2.563	

Omnidireccional N

Direccional N

Potencias Típicas

Frecuencia de operación	Poten	icias típicas	Dispositivo
174-216 MHz	73 dBm	20,000 Watts	Potencia típica de un transmisor de TV
535 – 1,705 kHz	70.8 dBm	12,000 Watts	Potencia típica de un transmisor de AM
88-108 MHz	67 dBm	5000 Watts	Potencia típica de un transmisor de FM
2.45 GHz	60 dBm	1000 Watts	Radiación típica de RF de un horno de microondas
850 – 1,990 MHz	47 dBm	50 Watts	Potencia típica de transmisión de una BTS
800- 914 MHz	33 dBm	2 Watts	Máxima salida de potencia para un teléfono celular GSM850/900
1,860 – 1,910	30 dBm	1 Watt	Máxima salida de potencia para un teléfono celular GSM1800/1900
2.4 GHz	20 dBm	100mW (0.1 W)	Potencia típica de un router inalámbrico WiFi.

Santo Domingo, República Dominicana, 04 septiembre de 2014

Ejemplo de método de predicción-Modelo por ordenador

Para el caso a 50 metros de la torre y a una altura de dos metros la densidad de potencia es de 21 nW/cm²

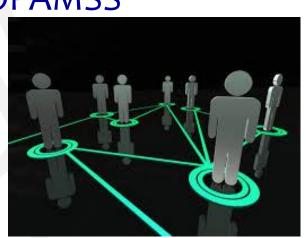
Experiencia de El Salvador

- Quejas comunes
 - Daños a la Salud;
- Altura de Torre;
- No se les consultó;

- Ruido de Equipo (Aires Acondicionados);
- Ruidos Atmosféricos (Caída de Rayos)

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo y resultados del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión


1, Mesa interinstitucional sobre la regulación nacional de las RNI;

- 2. Mesa liderada por la SIGET, es necesario definir roles y responsabilidades;
- 3. Los productos ofertados fueron los adquiridos;
- 4. El desarrollo se llevó de acuerdo a lo planificado más una Enmienda

Actores nacionales

- 1. Ministerio de Medio Ambiente MARN
- 2. Comité de Municipalidades COMURES
- 3. Oficina de Planificación de SS OPAMSS
- 4. Derechos Humanos PDDH
- 5. Ministerio de Salud MINSAL
- 6. Normas Técnicas OSARTEC
- Fiscalía General de la República- FGR
- 8. Superintendencia General de Electricidad y Telecomunicaciones SIGET

Objetivos de la mesa

- 1. Tomar decisión sobre el problema;
- → Construcción? → Medio Ambiente?;
- → Niveles de exposición?;
- \rightarrow Salud?; \rightarrow Técnica?;
- 2. Lograr acuerdos concretos y claros;

- 3. Decidir dónde deben acudir las personas que solicitan ayuda, canalizar adecuada y oportunamente;
- 4. Abordar la temática en forma integral por todas las instituciones gubernamentales vinculadas;

- 5. Buscar la sinergia adecuada que permita generar una política alineada y coherente, municipios y asociaciones;
- 6. Brindar respuestas a las inquietudes expresadas por los posibles riesgos a la salud ocasionados por los CEMs;
- 7. Que el Ministerio de Salud, logre emitir Reglamento de RNI (artículo 191 del Código de Salud), ya que tiene las facultades nacionales en la materia;
- 8. Encontrar la forma de gestionar la aceptación social al despliegue de infraestructuras inalámbricas.

Categorización Medio Ambiental

Grupo A: Actividades, obras o proyectos de carácter urbano y similares

Torres, antenas y postes de telefonía y de radio comunicación, redes de distribución eléctricas secundarias, vallas y pasarelas, siempre que no se localicen en áreas frágiles

GRUPO A:

Actividades, obras o proyecto con POTENCIAL IMPACTO AMBIENTAL BAJO

(No Requieren la presentación de DOCUMENTACIÓN AMBIENTAL)

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Avances del Proyecto

- Continuidad al tema participación en exposiciones a otros sectores de la sociedad;
- 2. Se inició plan de monitoreo continuo en WEB;
- 3. Mapa de radiaciones completo para AMSS;
- 4. Se inició plan de socialización;
- 5. Mediano plazo, se contempla adquisición de más estaciones (sondas de medición).

Avances del Proyecto

- En 2013, se desarrolló taller de capacitación sobre el uso del equipo de medición, teoría, normativa y práctica en campo para la realización de mapeo de radiaciones. Impartido por el consultor de la UIT y técnicos expertos en equipo de monitoreo.
- Personal técnico de instituciones nacionales y extranjeras participaron en ese encuentro.

Otras consideraciones:

- 1. Firme conducción o liderazgo en el tema;
- 2. En cada país este rol podría ser distinto por las distintas leyes; Santo Domingo, República Dominicana, 04 septiembre de 2014

Beneficios Nacionales

- 1. Se ha logrado un nivel de concientización alto entre las instituciones, sobre un tema que preocupa a la población;
- Se cuenta con mapa de radiación completo del área metropolitana de San Salvador;
- 3. Beneficiados con Plan Piloto para CA;
- 4. Sistema de Monitoreo Continuo basado en la **Recomendación UIT-T K.83 en vigor**, funcionando adecuadamente.
- 5. Se informa a la población de nuevas herramientas.

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Planes futuros

- Continuar apoyo al Ministerio de Salud y Alcaldías - OPAMSS;
- 2. Mejora continua de página WEB, más información y documentación pertinente de los entes especializados;
- 3. Nuevo formulario para interposición de quejas/inspecciones;
- 4. Fomentar el involucramiento de la sociedad y de las universidades.

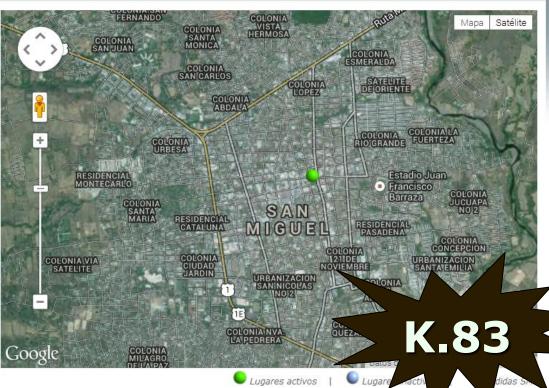
Desafíos

- Contar con código de buenas prácticas para dotar a Alcaldías como guía general a la hora de elaborar ordenanzas municipales;
- Que el Ministerio de Salud, emita un Reglamento de RNI;
- 3. Que los niveles de socialización causen impacto y exista una efectiva difusión;
- 4. Adquisición de más equipos para otras áreas del país.

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Ciudad de San Miguel San Miguel

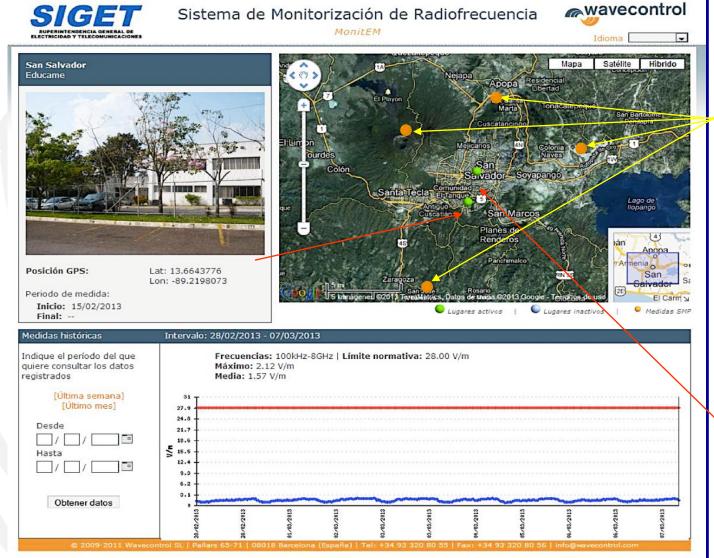

Posición GPS:

Lat: 13.48239 Lon: -88,17568

Periodo de medida:

Inicio: 30/10/2013

Final: --

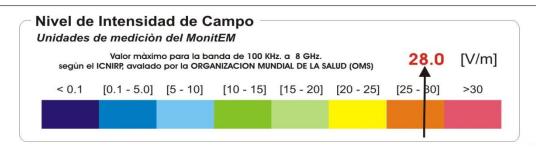

Enlace del monitoreo continuo: www.siget.gob.sv/rni

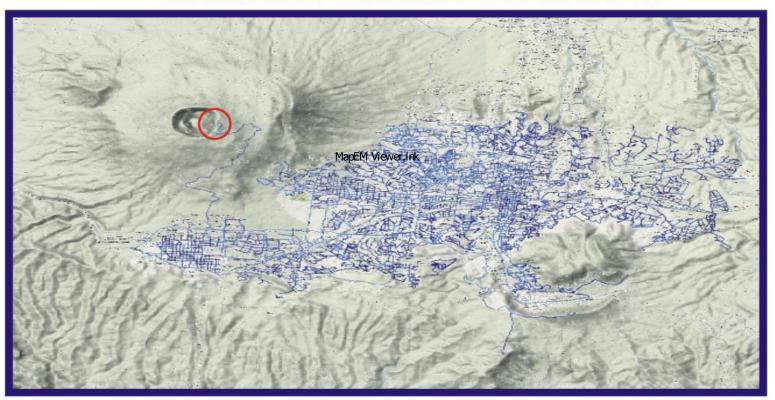
http://rni.siget.gob.sv/gmap/EISalvador.html

Santo Domingo, República Dominicana, 04 septiembre de 2014

A través de INTERNET puede consultar el público en general Proyecto Piloto SIGET-UIT-COMTELCA

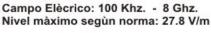
http://rni.siget.gob.sv/


Sonda en Edif. SIGET



MapEM Viewer

NIVELES DE RADIACION NO IONIZANTE DE ESTACIONES RADIOELECTRICAS AREA METROPOLITANA DE SAN SALVADOR



ITU

Lectura Màxima: 11.611 V/m

Coord. UTM: X: 253482.17 Y: 1519684.00

Localización: Sitio de Transmisiones - El Boquerón, volcàn de San Salvador

Periodo de medición: 12 al 25 de febrero, 2013

http://www.siget.gob.sv/rni

Radiaciones Electromagnéticas No Ionizantes

Inicio RNI

Conceptos sobre Radiaciones

Electromagnéticas

La Norma de la UIT sobre las

RNI'S

La Norma COMTELCA sobre las

RN'S

Proyecto RNI'S UIT-SIGET-

COMTELCA

Cartas RNI'S

Instrumento de Medición y su

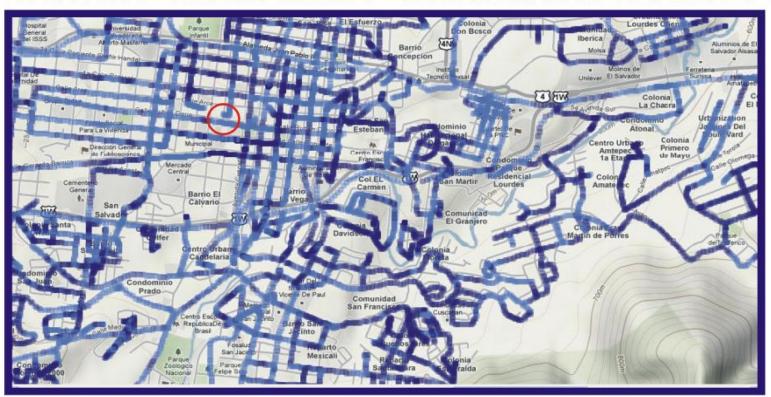
Ubicación

WaveControl

Enlaces RNI'S

Preguntas y Respuestas

Frecuentes sobre RNI'S



Santo Domingo, República Dominicana, 04 septiembre de 2014

NIVELES DE RADIACION NO IONIZANTE DE ESTACIONES RADIOELECTRICAS ISSS - ZOOLOGICO - BO. SAN JACINTO - COL. LA CHACRA - BO. CONCEPCION

Lectura Màxima: 2.8645 V/m

Coord. UTM: X: 262824.16 Y: 1515446.38

Localización: entre Calle Rubèn Dario y 1a. Calle Pte., Cd.

Campo Elècrico: 100 Khz. - 8 Ghz. Nivel màximo segùn norma: 27.8 V/m

Perìodo de medición: 12 al 25 de febrero, 2013

Indice

- 1. Introducción
- 2. Experiencia de El Salvador
- 3. Desarrollo del Proyecto
- 4. Avances y Beneficios nacionales
- 5. Planes futuros y Desafíos
- 6. Socialización de resultados
- 7. Alternativas de difusión

Alternativas de difusión

- Difusión de Panfletos o volantes explicativos;
- 2. Charlas informativas;
- 3. Foros y Talleres;
- 4. Más contenido e información página Web;

Reflexión final

No se trata de convencer a la gente....

Se trata de informar los resultados!!

Muchas Gracias!

Email: alex@siget.gob.sv