

The Source for Voice and Video Quality Testing

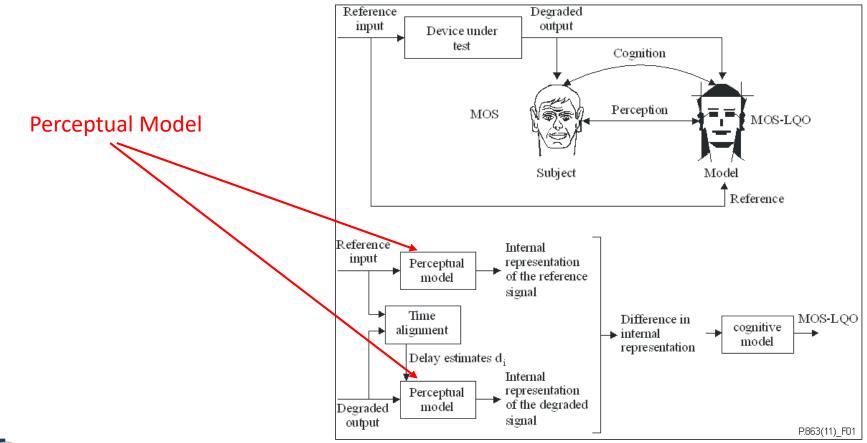
ITU Workshop Singapore, 19 – 21 August 2019

Recommendation ITU-T P.863.1: Application guide for Recommendation P.863 Perceptual objective listening quality prediction POLQA

Joachim Pomy, Consultant, Opticom GmbH, Germany Editor P.863 & P.863.1

P.863 v2 (09/14)

P.863 v3 (03/18)


P.863.1 (09/14)

P.863.1 (06/19)

ITU Workshop Singapore, 19 – 21 August 2019

© 2019 www.opticom.de

XXX

P.863 operational modes

- Fullband (50 Hz-20 kHz)
 - Preferred, future oriented scale
- Super-wideband (50 Hz-14 kHz)
 - Superseded
- Narrowband (300-3400 Hz)
 - If backward compatibility is required

Operatinal modes (ctd.)

- It is important to understand and consider the two different operational modes supported by the ITU-T P.863 algorithm:
 - fullband mode for listening over fullband headphones;
 - narrowband mode for listening over loosely coupled IRS type handsets.

Improvements from P.863 v2 to P.863 v3

- Expands scope of application to fullband speech codecs e.g., OPUS, EVS
- But there is much more:

Improvements in P.863 v3

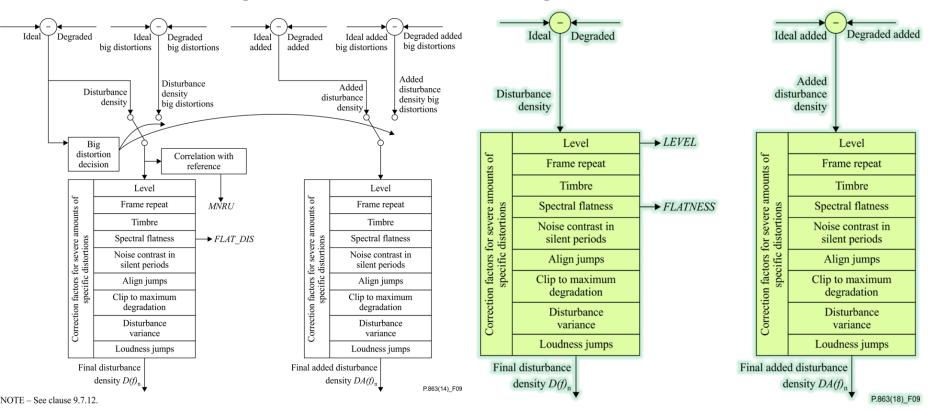
- 'Shift-jitter' which could be observed by repeated measurements with slightly differing delay, is decreased;
- Now adequately considering:
 - Gain variation introduced by automatic gain control;
 - Slowly time-varying linear frequency distortions;
 - Test conditions with inserted gaps in speech;
 - Discrimination of wideband (WB) and super-wideband speech;
 - Reverb conditions.

NOTE 1

- For the two operational modes, the quality ratings are obtained on two different scales
 - The traditional scale for the narrowband mode
 - The future oriented scale for the fullband mode.

NOTE 2

- Acoustical recordings, as well as the influence of the presentation level, can only be predicted in fullband operational mode.
- The narrowband operational mode is restricted to electrical recordings and a nominal presentation for compatibility with P.862/P.862.1] application areas.



NOTE 3

- For backward compatibility, super-wideband reference files can be used in fullband mode as well.
- Distortions in the frequency range between superwideband and fullband may lead to significant differences
- If the degraded signal is also bandwidth limited to the super-wideband range, the results of ITU-T P.863 v3 and ITU-T P.863 v2 will be equivalent.

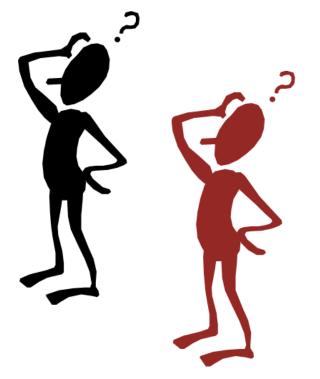
2nd part of Perceptual Model

Factors and applications included in the requirement specification and used in the selection phase of the ITU-T P.863 algorithm

Test factors
Speech input levels to a codec
Transmission channel errors
Packet loss and packet loss concealment
Bit rates if a codec has more than one bit-rate mode
Transcodings
Acoustic noise in sending environment
Effect of varying delay in listening-only tests
Short-term time warping of audio signal
Long-term time warping of audio signal
Listening levels between 53 and 78 dB(A) sound pressure level (SPL) in fullband mode
Packet loss and packet loss concealment with pulse code modulation (PCM) type codecs
Temporal and amplitude clipping of speech
Linear distortions, including bandwidth limitations and spectral shaping ('non-flat frequency responses')
Frequency response

Factors and applications included in the requirement specification and used in the selection phase of the ITU-T P.863 algorithm

Coding technologies
ITU-T G.711, ITU-T G.711 PLC, ITU-T G.711.1
ITU-T G.718, ITU-T G.719, ITU-T G.722, ITU-T G.722.1, ITU-T G.723.1, ITU-T G.726, ITU-T G.728, ITU-T
G.729
GSM-FR, GSM-HR, global system for mobile communications (GSM), enhanced full rate codec (EFR)
AMR-NB, AMR-WB (ITU-T G.722.2), AMR-WB+
PDC-FR, PDC-HR
Enhanced variable rate codec (EVRC) (ANSI/TIA-127-A), EVRC-B (TIA-718-B)
Skype (SILK V3, iLBC, iSAC and ITU-T G.729)
Speex, QCELP (TIA-EIA-IS-733), iLBC, CVSD (64 kbit/s, "Bluetooth")
MPEG-1 audio layer 3(MP3), advanced audio coding (AAC), AAC-LD
EVS
OPUS



Factors and applications included in the requirement specification and used in the selection phase of the ITU-T P.863 algorithm

Applications
Codec evaluation
Terminal testing, influence of the acoustical path and the transducer in sending and receiving direction. (NOTE –
Acoustical path in receiving direction only for fullband mode.)
Bandwidth extensions
Live network testing using digital or analogue connection to the network
Testing of emulated and prototype networks
Universal mobile telecommunications system (UMTS), code division multiple access (CDMA), GSM, terrestrial
trunked radio (TETRA), WB-DECT, voice over IP (VoIP), plain old telephone system (POTS), public switched
telephone network (PSTN), video telephony, Bluetooth
Voice activity detection (VAD), automatic gain control (AGC)
Voice enhancement devices (VEDs), noise reduction (NR)
Discontinuous transmission (DTX), comfort noise insertion

Any questions ?

Contact:

Joachim Pomy, freelance consultant Consultant@joachimpomy.de

Contact and Websites

OPTICOM Dipl.-Ing M. Keyhl GmbH Stintzingstr. 24 D – 91052 Erlangen, Germany +49 9131 53020-0

Register: AG Fürth, HRB 7169

Owners and Management:

Dipl.-Ing. Michael Keyhl, MBA Founder and CEO (Geschäftsführer) mk@opticom.de

Dipl.-Ing. Christian Schmidmer CTO (Geschäftsführer) cs@opticom.de

Company Homepage: POLQA Voice Quality Microsite: PEVQ Video Quality Microsite: www.opticom.de www.polqa.info www.pevq.com

