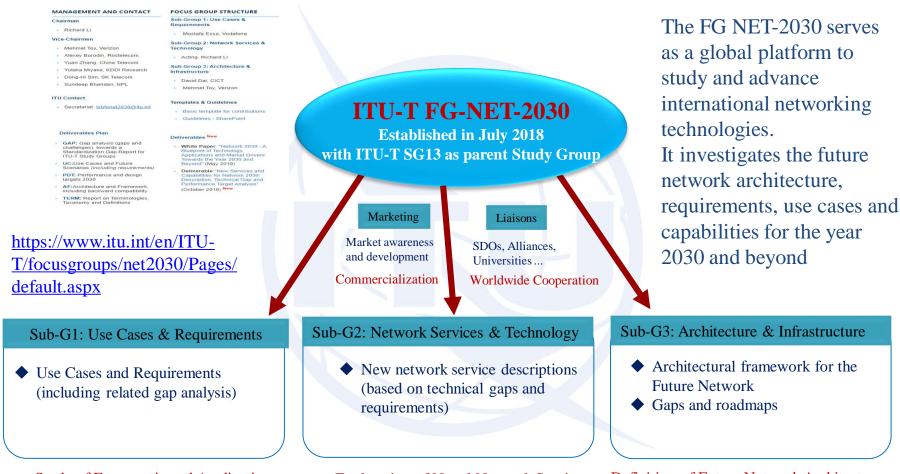
7th SG13 Regional Workshop for Africa on "ITU-T Standardization Work on Future Networks: Towards a Better Future for Africa" (Abuja, Nigeria, 3-4 February 2020)


Achievements of ITU-T Focus Group on Network 2030 (FG NET-2030)

Marco Carugi

Consultant, Huawei Research Contractor FG Network 2030 Sub-Group 1 co-Editor marco.carugi@gmail.com

FG NET-2030 organization

Structure and target outputs

Study of Future-oriented Application Scenarios and their Network Requirements Exploration of Novel Network Services and Enabling Technologies Definition of Future Network Architecture (including Protocol advancements)

FG Network 2030: international team, global platform, forward-looking orientation and consensus building

FG NET-2030 leadership

Chair: Richard Li (Futurewei)

Vice Chairs:

Yuan Zhang (CT), Mehmet Toy (Verizon), Yutaka Miyake (KDDI Research), Alexey Borodin (Rostelecom), Dong-Hi Sim (SK Telecom), Sundeep Bhandari (NPL)

Sub-G1 Chair: Mostafa Essa (Vodafone)

Sub-G2 Acting Chair: Richard Li (Futurewei) Sub-G3 Co-Chairs: Mehmet Toy (Verizon) David Dai (Fiberhome)

FG NET-2030 statistics

Statistics for FG NET-2030 Meetings

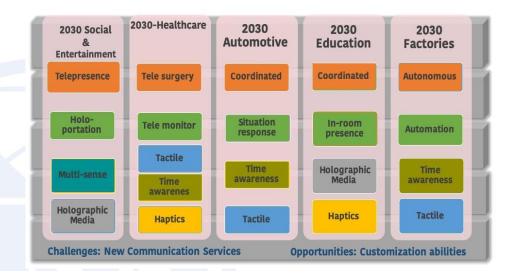
U Worldwide participation from Providers, Vendors, Research Institute and Academies, Administrations

Every FG meeting is complemented by a preliminary Workshop (1 or 1.5 days)

- o numerous interesting presentations (accessible via the FG Web page)
- relevant outcomes of the workshops have been/are taken into consideration in Sub-groups' activities

7th FG meeting planned in Tokyo, 20-22 May 2020 [7th Workshop on 20 May] – To be confirmed

NOTE – At Oct 2019 SG13 meeting, upon FG members' request, SG13 agreed to extend the FG life time till 31 Oct 2020 with same ToR


"Network 2030: A pointer to the new horizon for the future digital society and networks in the year 2030 and thereafter" – Dr. Richard Li

Network 2030 Vision

Source: FG White Paper

"Enabling new verticals within the emerging holographic society, a future digital society empowered by holographic technologies through a wave of innovations in networks to provide new communication services over federated, new infrastructures."

Enabling Vertical Markets with Network 2030 Source: FG White Paper

"Enabling new services which in turn will foster creation of cutting-edge applications in a wide variety of industries.

Customization via the flexibility offered through customization and programmability of the utilized resources.

Network communication industry boost by widening applicability across many vertical markets"

Sub-Groups: activities and deliverables (1/2)

Electronic meetings held regularly by the three Sub-Groups

• Usually bi-weekly (Sub-G1, Sub-G2), weekly (Sub-G3) [<u>https://extranet.itu.int/sites/itu-t/focusgroups/net-2030/Lists/Calendar/calendar.aspx</u>]

Sub-G1 deliverables

- Summary report "Representative use cases and key network requirements for Network 2030" (TR approved at last FG meeting, Jan 2020; it is now passed over to SG13)
- "Use Cases and Requirements for Future Networks towards 2030" (ongoing, May 2020 target)

Sub-G2 deliverables

- "New Services and Capabilities for Network 2030: Description, Technical Gap and Performance Target Analysis" (TR approved in 2019 and passed over to SG13; Q2/13 initiated at Oct 2019 SG13 meeting the "Supplement on Network 2030 Services: Capabilities, performance and design of new communications services for the Network 2030 applications")
- Sub-G2 decided at Jan 2020 FG meeting to extract the gap analysis from above Sub-G2 deliverable and deliver as standalone document to next FG meeting

Sub-G3 deliverables

- "Network 2030 Architecture Framework" (ongoing, target TBC [May meeting or final meeting])
 - Various Sub-G3 teams (post-3rd meeting) are working on different architectural aspects: team-specific deliverables might be possible produced

Sub-Groups: activities and deliverables (2/2)

Cross Sub-Group deliverables

"Terms and Definitions" – TR initial draft at Jan 2020 FG meeting

"Description of Demonstrations for Network 2030 on Sixth ITU Workshop on Network 2030 and Demo Day" – TR launch approved at Jan 2020 FG meeting

White Paper

"Network 2030 - A Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 And Beyond" – published in May 2019 (accessible on the FG home page)

Sub-G1: Use cases for Network 2030

Use cases identified in ongoing Sub-G1 deliverable (O-025 output Oct 2019 meeting)

<u>8.1</u>	New media supported use cases
<u>8.</u>	1.1 Holographic type communications (UC-HTC)
<u>8.</u>	1.2 Light Field 3D (UC-LF3D)
<u>8.</u>	1.3 Ultra-realistic immersive VR (UC-URVR)
<u>8.</u>	1.4 Digital avatar (UC-DA)
<u>8.2</u>	<u>New or enhanced network capability enabled use cases</u>
<u>8.</u>	2.1 Cognition in Het-Nets (UC-CHN)
<u>8.</u>	2.2 Tactile capability (UC-TC)
<u>8.</u>	2.3 Intelligent operation network (UC-ION)
8.	2.4 Flexible addressing (UC-FlexAdd)
8.	2.5 Real-time alert (UC-RtAt)
<u>8.</u>	2.6 Flexible multicast (UC-Mcast)
<u>8.</u>	2.7 Virtual time machine service (UC-VTM)
<u>8.</u>	2.8 Usable security (UC-USec)
<u>8.</u>	2.9 Deep-edge service access (UC-DESA)
<u>8.</u>	2.10 New transport capability (UC-NTC)
	2.11 Computing and networking convergence (UC-CNC)
<u>8.</u>	2.12 Edge computing (UC-ECp)
<u>8.</u>	2.13 Edge cloud (UC-ECd)
<u>8.</u>	2.14 Digital twin (UC-DT)
<u>8.</u>	2.15 Others
8.3	New or enhanced vertical industries and applications
8.	3.1 Industrial applications (UC-IIoT & UC-CPLC)
8.	3.2 Emergency and disaster recovery (UC-Emergency)
	3.3 Tele-medical applications (UC-TMed)
8.	3.4 Smart agriculture (UC-SAgr)
8.	3.5 Space-terrestrial integrated network (UC-STIN)
	3.6 Smart grids (UC-Grid)
<u>8.4</u>	Other use cases from workshop presentations
8	4.1 Smart city (UC-SC)
	4.2 Future smart IoT applications (UC-SIoT)
8.	4.3 Future IP networks (UC-FIP)
<u>8.</u>	4.4 Networld2020 views (UC-N2020)
<u>8.</u>	4.5 Beyond IP: Network Protocols to Meet the Demands of 2030 (UC-BIP)

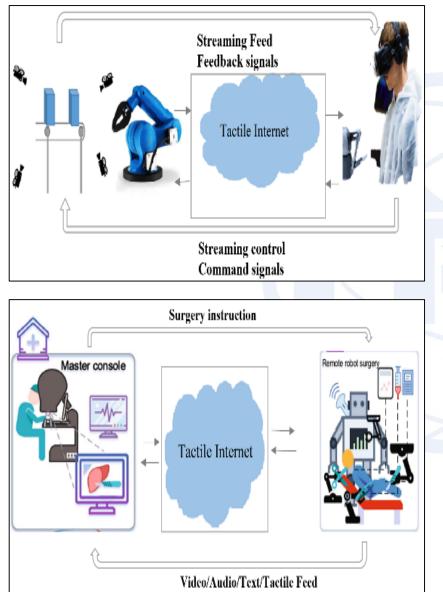
The 7 representative use cases included in the approved Sub-G1 Summary report

- Holographic-type communications (HTC)
- Tactile Internet for Remote Operations (TIRO)
- Intelligent Operation Network (ION)
- Network and Computing Convergence (NCC)
- Digital Twin (DT)
- Space-Terrestrial Integrated Network (STIN)
- Industrial IoT (IIoT) with cloudification

Sub-G1: Requirement Gaps Analysis of the use cases

a) Analysis of the use cases for different requirements dimensions and identification of gaps with respect to current network vision and/or existing capabilities

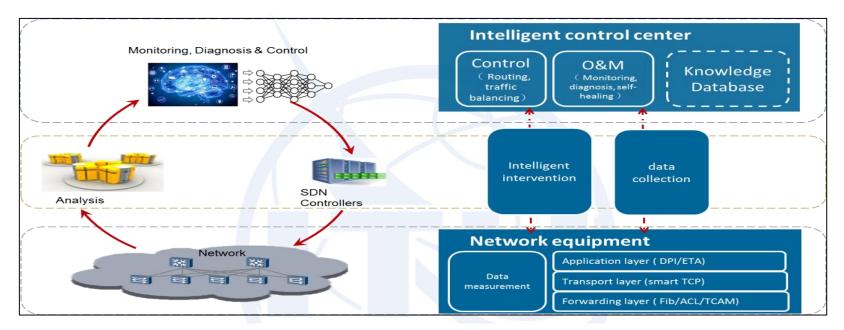
Dimensions	Current vision	<u>Network</u>	<u>Gaps for</u>
<u>from</u>	and/or existing	<u>2030</u>	<u>network</u>
<u>requirements</u>	<u>capabilities (e.g.</u>	<u>goals</u>	<u>requirements</u>
<u>gaps</u>	expected to be	(Matching	<u>(where</u>
<u>perspective</u>	<u>supported by</u>	<u>ToR)</u>	<u>applicable)</u>
	<u>existing</u>		
	<u>networks)</u>		


b) Association of the representative use cases (use cases having some prominent requirements) to the different dimensions

Sub-G1 Use Case examples [from Sub-G1 Summary Report] Holographic-type communications (HTC)

Sub-G1 Use Case examples [from Sub-G1 Summary Report] Tactile Internet for Remote Operations (TIRO)

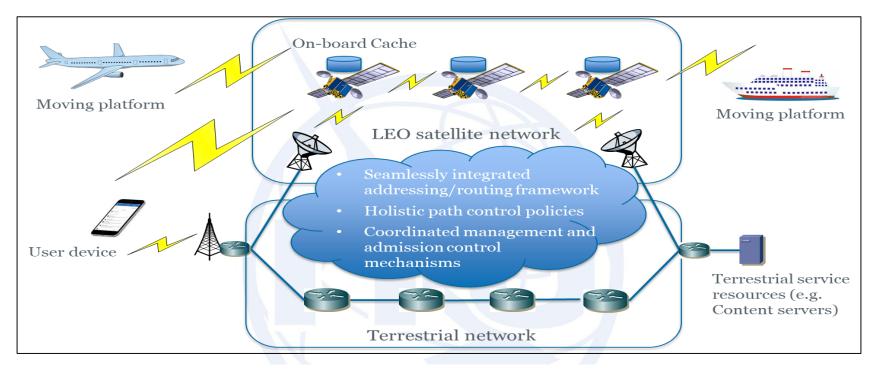
Typical use case A: remote industrial management (involves real-time monitoring and control of industrial infrastructure operations)


Key network requirements

- Ultra-low latency
- Ultra-low loss
- Ultra-high bandwidth
- Strict synchronization
- Differentiated prioritization levels
- Reliable transmission
- > Security

Typical use case B: remote robotic surgery

Sub-G1 Use Case examples [from Sub-G1 Summary Report] Intelligent Operation Network (ION)


Example framework for fully automated and intelligent closed-loop control for ION-type applications

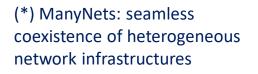
Key network requirements

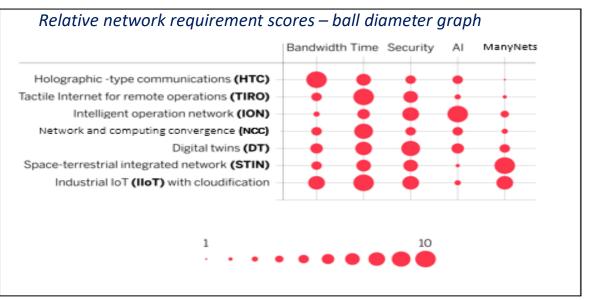
- Intelligent closed-loop control
- Instantaneous high-volume data collection for network status
- Programmability and softwarization
- Low latency event driven response with data prioritization

Sub-G1 Use Case examples [from Sub-G1 Summary Report] Space-Terrestrial Integrated Network (STIN)

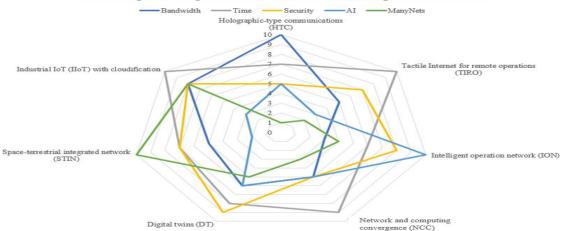
The trend of satellite and terrestrial Internet integration

Key network requirements


- New addressing and routing mechanisms
- Bandwidth capacity at the satellite side
- Admission control by satellites
- Edge computing and storage



Sub-G1 Representative Use Cases (Sub-G1 Summary Report): abstract network requirement dimensions and graphic representation of relative network requirements


5 ABSTRACT NETWORK REQUIREMENT DIMENSIONS

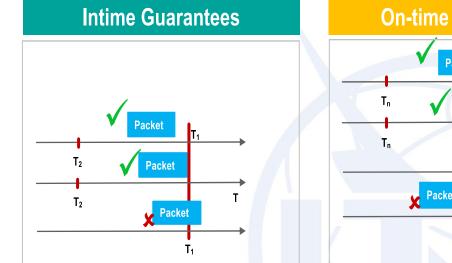
- Bandwidth, Time, Security, Artificial Intelligence (AI), ManyNets (*)
- abstracted over more than 20 network requirement dimensions considered within Sub-G1
- scored according to relative importance of specific network requirement [1 to 3 (low), 4 to 6 (medium), 7 to 9 (high), 10 (extremely high)]

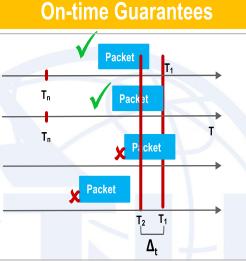
Reverse Spider Graph: Use Cases with Relative Requirement Scores

Sub-G2: New Network Services (1/2)

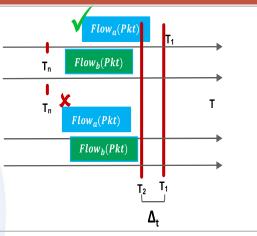
New Network Services [services below - defined in the approved Sub-G2 deliverable - focus on data plane services]

- In-time and on-time services -> see next slide
- Coordinated services -> see next slide
 - o guarantee of delivery of multiple flows in a dependent manner
- > Qualitative communication services
 - allowing applications to differentiate between different portions of packet payload (chunks) and describe their relative priority to the network [discarding of lower priority packets, if needed, can then reduce congestion and continuity of delivery of critical data to the application, while minimizing the need for retransmission, can be ensured]
- Compound services (depending on more than a single constraint)


Compound Services


Compound Service	Criteria	Use cases	Time scales*
Qualitative Service	Conditional to network state	High throughput multimedia such as Holographic applications	~ 40 ms
Holographic Type Communications	Coordinated, time dependence and high bandwidth	High bandwidth requirements, different encoding for teleconferencing vs 3D medical imaging	~30 ms
Digital Teleportation	Coordinated, synchronized,	Digital replicated live- environment	~30ms
Tactile communications	Time dependence and reliability (zero packet- loss)	Variable encodings of haptics, optionally high bandwidth requirements, fast responses.	< 10ms

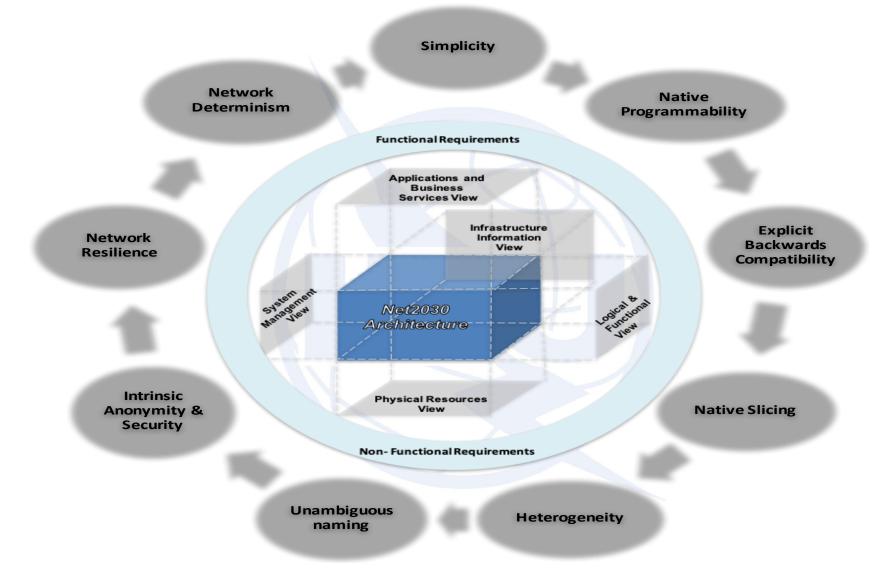
*note: Time scales depend on physical distances between the end points; numbers here represent general guidelines


Sub-G2: New Network Services (2/2)

Time Engineered Services

Coordinated Guarantees

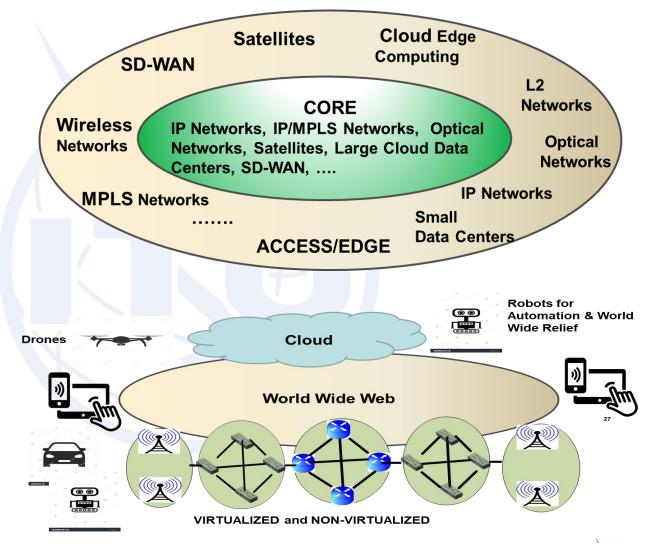
Time Engineered service criteria


Time centric	Criteria	Use cases	Time scales
In-time service	no later than requested time	Manufacturing automation Remote surgery	t ~ 1-10 ms
On-time service	at a requested time	Instantaneous response to emergency situation Synchronized operations such as drone swarms	∆t ~ 1 ms
Coordinated service	Relative time	Multi-sense communication Autonomous Traffic communication	t < 5ms

Coordinated guarantees based services:

- ✓ Source aggregation cooperative transmission service
- Challenge: time synchronization, resource synchronization, network assurance

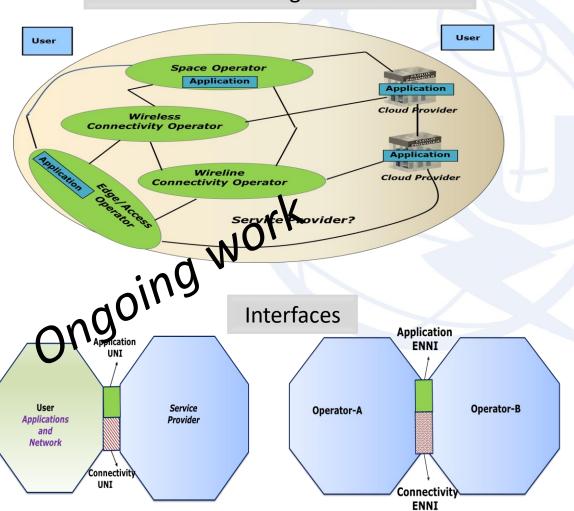
Sub-G3 Network 2030 Architecture Framework (1/3)



Relationships between Network 2030 principles, requirements and architecture(s) Extract from Sub-G3 ongoing draft

Sub-G3 Network 2030 Architecture Framework (2/3)

Network2030infrastructureisexpectedtofixedandwirelessnetworks,cloudspacecommunicationsinfrastructures


Network 2030 is expected to be used by various devices including robots, selfdriven cars, and drones

Example of future network infrastructure and end devices

Sub-G3 Network 2030 Architecture Framework (3/3)

The future integrated network will comprise highly automated and intelligent one or more Operator networks supporting compute, storage, and applications, and connectivity among them, that may be accessed by a user from one or more locations

Actors of future integrated network

Sub-G3 architectural teams:

- > Principles
- Addressing
- > Security
- > Routing
- > Mobility
- > QoS
- Access Network and Edge Computing
- Network Management and Orchestration
- Space Networking
- Resiliency, reliability and high availability
- Microservices and Control Plane, Softwarization

Steps forward

- **Sub-G1**
 - Completion of the use cases for the main Sub-G1 deliverable (in addition to the 7 representative use cases described in approved TR), including clustering, gap analysis and graphical representation
 - Aggregation, consolidation and appropriate formulation of the requirements for all identified use cases
 - To be confirmed: mapping of the requirements to Sub-G2 Networking Services and Sub-G3 Architectural framework dimensions
 - Sub-G2
 - Development of a gap analysis deliverable based on Sub-G2 deliverable findings (to be coordinated with Sub-G1 gap analysis findings)

Sub-G3

- Progress of the work of the various Sub-teams (each with focused scope) and integration of different findings in the draft
- It is expected that in the final document further study be recommended on different aspects of the architecture
- Cross Sub-Group deliverables
 - Progress of the deliverables on terminology and on description of demonstrations for Network 2030

Thank you very much for your attention

