ITU Kaleidoscope 2015

Trust in the Information Society

Proactive-Caching based Information Centric Networking Architecture for Reliable Green Communication in ITS

Presenter: Prof. PhD. Takuro SATO

Waseda University, Tokyo, Japan t-sato@waseda.jp

IEEE Fellow

Table of Content

- Introduction
 - Problem statement
 - Proposal Objective
- The proposal ICN Model for Green ITS (Intelligent Transportation System)
 - Network topology
 - Proactive caching based strategy
 - Link-rate adaptive operating policy
- Mathematical models for energy consumption
- Result and Discussion
- Conclusion and Future work

Introduction

Problem statement and research motivation

In this research, the train system is stated for the case of ITS.

- Nowadays, train is a popular public transportation vehicle.
- The train's commuters also have high tendency to use their mobile devices for getting their interested information from Internet during the time they spend on train.
- Motion of a commuter can be predicted from path of a train line and the moving direction, stopping time along with the moving time between two stations can be pre-determined.

Proposal goal

Construct a concrete model as a prototype of energyefficient and reliable DAN (Data Aware Networking) based wireless communication technology within the context of ITS.

NOTE: In ITU (standardization) documentations, ICN (Information Centric Networking) concept is reflected as DAN (e.g. ITU-T, "Recommendation ITU-T Y.3033: Framework of data aware networking for future networks," 2014).

Proposed DAN Network Topology for ITS

 5-level tree based topology with server as root node

Proactive-caching scheme and smart scheduler

- Proactive-caching based scheme
 - Choose aggregation points (Station CRs at level 2) as the location of proactive caching for enhancing the scope of sharing of the content.
 - Mechanism: When the CP receives an interest asked for a content, that content data is divided into several segments then is pre-cached to N Aggregation nodes (expected number of stations that one commuter stays on the train).

Smart scheduler

- decides the appropriate location (station) for pre-caching and calculate amount of content segment should be cached.
- the system generates fake interest (for same content) from the neighbor Aggregation node. Moreover, the precaching process for a suitable segment of content c to station N's CR only happens in case station (N-1) still get the interest for content c at that time → prevent redundant content traffic.

Proactive-caching base scheme for ITS

Green ICN Architecture for ITS

Moving direction

Content Node Rate Adaptive Scheme for Green Networking in DAN

CN Rate Adaptive scheme

– Let R_k be the link rate enter on level k CR for a content $c \in C$ and R_{ICN} is the link rate with caching in the conventional ICN network, then maximum load in first level

$$R_1 = R_{ICN}$$
 and $R_1 > R_k (\forall k > 1)$

- Let S_k be the set of content come to a level k router and S is maximum number of contents that each ICN routers can cache → Enhanced R_k (1 < k ≤4)
 - In case there is at least one popular content is asked

$$\begin{aligned} Optimized \ R_{k,ICN} \ = \\ \alpha \ \{ \ R_{ICN} \ \ [1 - \min \left(P_{1c} + \sum_{l=1}^{k-2} Q_{lc} \right)] \} \\ \forall Content \ c \in S_k \ and \ |S_k| \ \leq S \end{aligned}$$

In case only unpopular content(s) are asked

$$\begin{aligned} Optimized \ R_{k,ICN} &= \\ \alpha \ \{ R_{ICN} \ \frac{\max P_{1c}}{T_P} \ [1 - \min \left(P_{1c} + \sum_{l=1}^{k-2} Q_{lc} \right)] \} \\ \forall Content \ c \in S_k \ and \ |S_k| &\leq S \end{aligned}$$

where a is the proportional coefficient of link rate and power consumption of Content Nodes (APs and CRs) and $a \ge 1$.

 \rightarrow the Enhanced Link Adjusting Factor E_A is defined as

$$E_A = \frac{Enhanced R_{k,ICN}}{R_{ICN}} \ (0 < E_A \le 1)$$

Mathematical model for energy consumption evaluation

$$E_{IP} = N \ E_{R-IP} + E_{S}$$

$$= N P_{R1-IP} T_{w} + N_{1} P_{R2-IP} T_{w} + N_{2} P_{R2,AP-IP} T_{w} + (P_{S1} T_{w} + P_{S2} T_{w} + P_{S3} T_{w})$$

where E_{R-IP} , E_S are the energy consumed by a IP router and energy consumed by the server; P_{RI-IP} , P_{R2-IP} , $P_{R2,AP-IP}$ are the embodied power of a network node (router/AP), working power of a IP router, and working power of an AP, respectively; N_I , N_2 and N are the number of routers, number of APs, and number of CNs respectively ($N_I + N_2 = N$) and P_{S1} , P_{S2} , P_{S3} are the embodied power, power for server storage and operating power of a server (same value for both ICN and IP based network system), respectively. Besides, T_W is the working time of the whole network system.

$$E_{ICN} = N E_{R-ICN} + E_S = N (P_{R1-ICN} T_w + P_{R3-ICN} T_w) + N_1 P_{R2-ICN} T_w + N_2 P_{R2-ICN,AP} T_w + (P_{S1} T_w + P_{S2} T_w + P_{S3} T_w)$$

where P_{R1-ICN} , P_{R2-ICN} , P_{R3-ICN} are the embodied power, working power and power to cache memory of a ICN CN (CR/AP), respectively. For the purpose of power consumption evaluation, both the current IP-based network system and conventional ICN system share the same power consumption for servers, whereas a ICN node consumes slightly higher power compared to a normal IP node because of the CN's caching function.

$$Proposal \ E_{ICN} = \sum_{k=1}^{N} Enhanced \ E_{R-ICN,r_k} + Enhanced \ E_{S-ICN}$$

$$\sum_{k=1}^{N} Enhanced \ E_{R-ICN,r_k} = N \left(P_{R1-ICN} \ T_w + P_{R3-ICN} \ T_w \right) + \sum_{k=1}^{N} Enhanced \ P_{R2-ICN,r_k} \ T_{Or_k}$$

$$Enhanced \ E_{S-ICN} = \left(P_{S1} \ T_w + P_{S2} \ T_w \right) + \left[P_F \ T_{O_S} + P_I \left(T_w - T_{O_S} \right) \right]$$

where T_{Or_k} is the operating time of CN r_k with proposed ALR design, and T_{Os} is the operating time of server S. Besides, assume that systems user server (CP) with 2 specific state: Idle mode when no content interest send to server and Full mode otherwise (there is at least one interest come to CP). Then let P_F and P_I are working power of Full mode and Idle mode, respectively.

Proposal Evaluation

• Simulation parameter (in ndnSIM)

Simulation Parameters	
Connection bandwidth	1Gbps
Content size	1000MB
Payload size (Content Chunk size)	1024 bytes
Content Store Size	20,000 objects
Number of Station CRS (Aggregation Node)	4
Numbers of child nodes which each "parent" has	2
Content request rate	25% of network utilization
Content Popularity distribution	Zipf Distribution (similar to Zip-like distribution)
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipflike Distributions: Evidence and Implications. In Proc. Of INFOCOM, 1999	
Time stay at each Station &Time move between 2 stations	18s & 90s

Proposal results and discussion

 Power consumption comparison in case of different cache size (GB)

Though the conventional ICN (DAN) system consumes slightly more power than the current IP-based system, simulation with tree topology proves the efficiency proposed Green ICN system compared to the IP-based system (about 20% power saving with suitable hardware support).

Proposal results and discussion

Performance evaluation for Average Hop Count of ITS

The Average Packet Hop count is kept stable at value of 2 with the simulation time as shown, except the cases that the Mobile Node (MN) is involved in the Hand-offs period when it move to change the Point of Attachment (PoA). This is the **result** of proposed proactive caching strategy.

Conclusion and Future work

- In this paper, we propose and evaluate a cross-layer wireless content access model in ICN (DAN) for ITS (train/railway system)
 - Integrate both green networking and innovated proactive-caching based scheme in ICN mobility together to raise energy efficiency and effectiveness for the goal of green mobility in ICN.
 - The simulation results corroborate theoretical idea and prove the efficiency of proposed scheme, compared to both current IP-based network and conventional ICN design.

→ propose our work for DAN standardization process of ITU for a reliable and safe human-centric system toward an ubiquitous intelligent and trusted society.

Future work

- Extend our proactive caching scheme in ICN with various practical use-cases with different kinds of content services, such as: VoIP, Multimedia Services, etc in larger scalability for Future Mobile Communication.
- Conduct the scheme under field experiment to further evaluate proposal's efficiency.

Thank you very much for your kind attention!

t-sato@waseda.jp quang.nguyen@fuji.waseda.jp (Quang N. Nguyen - corresponding author)