Convergence of Communication and Machine Learning

Heinrich Hertz Institute

Fraunhofer Heinrich Hertz Institute

- Globally active player in digital infrastructure research
- Annual budget of 50 M€ / 450 Researchers
- Research & Development in Photonics, Video & Wireless
- Every second bit on the internet touches Video or Photonic technology invented/made by Fraunhofer HHI

 $10^{0} - 10^{2} - 10^{4}$ Gbps

H.264 - H.265 - H.266

Outline

Machine Learning and

- Video Coding Standards
- Data Communication
- Decision Making Explained

Machine Learning and Video Coding Standards

Heinrich Hertz Institute

Visual Communication Systems

Visual Communication Systems

Heinrich Hertz Institute

Video Coding Standards

International standardization of video coding:

- Every 2nd bit on the Internet is H.264
- H.265 is starting to become relevant (12/2016: about 1 Billion devices)
- H.266 is in future planning stage

Implementations of video coding standards:

- Only decoder is specified
- Real-time video encoding is developed by manufacturers

Performance of Video Standards

Machine Learning

Natural video

H.265/MPEG-HEVC

Boundary conditions
Rate <= R,

Time <= T, ...

Learn to Encoder Program

 Video encoder needs to find a good parameter vector *p* fast (e.g. real time encoding)

Encoder program:

$$\begin{array}{c|c} \mathbf{p}_{A} & \rightarrow D_{A}, R_{B} \\ \hline \mathbf{p}_{B} & \rightarrow D_{B}, R_{B} \\ \hline \end{array}$$

- Calculating D,R values takes time
- Trade-off between rate, distortion and computational complexity

Construct a learning problem

- Continue or terminate the search for a better R,D?
- As cost, use RD-cost $J = D + \lambda R$ and time T
- Base decision on known information x (features)

- $C_k = J_k + \mu * T_k$ • $y = I\{C_1 < C_0\}$
- Cost for decision k Optimal decision (*I* is indicator func.)
- Collect data $(x, J_A, J_B, T_B)_{m=0..M-1}$ from the encoder
- construct a supervised learning problem,
 - i.e. find a function predicting y from x

$$\hat{y} = f(x)$$

Binary classification

- The target is $y \in \{0,1\}$, we have a **binary classification** problem
- Use logistic regression to find *f*.
- As hypothesis, logistic regression uses a linear combination of features θ^Tx, surrounded by the non-linear logistic function σ:

- The hypothesis is continuous: $f_{\theta}(x) \in [0,1]$
- Interpretation: $f_{\theta}(x)$ is an estimate of the probability that y = 1. $f_{\theta}(x) = P(y = 1 | x; \theta)$

First Results: Fraunhofer HHI H.265 Encoder

slide 13

Compressed-Domain Video Analysis

Heinrich Hertz Institute

Compressed Domain Video Analysis

Conventional video analysis in **pixel-domain**: Full decoding + processing on pixel levels

High complexity and storage requirements: a bottleneck for real-time analysis of multiple video streams

Billions of videos already stored in **compressed** form !

Compressed Domain Object Tracking

- Spatio-temporal Markov Random Field (ST-MRF) model the evolution of the MV field [Khatoonabadi14]
- In compressed domain Motion Vectors available

→Motion vectors may be ambiguous. →Use hybrid approach with inclusion of I Frames

Compressed Domain Object Tracking

Hall Monitor

Motion vectors (HEVC)

Optical flow [Brox04]

٢

Tracking accuracy (%):				
		MV	MV+I	OF
Coastguard	Precision	55.9	63.2	61.8
	Recall	90.9	89.6	94.1
	F-Measure	68.6	73.3	73.3
Hall Monitor	Precision	69.6	77.9	79.1
	Recall	79.4	72.6	85.6
	F-Measure	74.0	74.9	81.2

Coastguard

Motion vectors (HEVC)

Optical flow [Brox04]

- Higher tracking performance with OF input
- MVs only show performance degradation
- MVs + I comparable

performance

Machine Learning and Data Communication

Heinrich Hertz Institute

Visual Communication Systems

The Next Generation: 5G Network

Mobile High Speed Internet

Requirements

- 1000 x throughput
- 100 x devices
- 10 x battery life
- 1 ms latency

Car2Car & Car2X Communications

Industrial Wireless

Technology

- DSL boxes and street lights become senders
- Optical fiber

Wireless Fiber and Location Sensing

 3D beamforming with MIMO Antennas

 Location of users via sensors

Future Mobile Digital Infrastructure Example: Networked Autonomous Driving

Fraunhofer Heinrich Hertz Institute

The Tactile Internet

Human reactions times

source: ITU TechWatch Report: The Tactile Internet

source: https://netzoekonom.de

- Very low end-to-end latencies (1ms)
- Ultra high reliability
- Can be realised as part of WiFi, 5G or fixed networks

Collaborative Driving

Source: ITU TechWatch Report: The Tactile Internet

Driver assistance with AR of potentially dangerous objects and situations

Cognitive Network Management

- Develop awareness at the node level (e.g. nodal knowledge about network state) through cognition, real-time (machine) learning and stochastic control amidst network uncertainties
- Bring the awareness into the self-management loop to enable autonomic network operation via distributed adaptive (multiobjective) optimization and in-network processing
- Enhance network reliability and robustness by coping with resource and objective conflicts
- Counterfeit malicious and abnormal behavior through distributed fault diagnosis and network response mechanisms towards nullifying the malignant effects in the network

Learning of Radio Maps

- Radio map: **unknown** function f(x) that relates a geographic location x to a radio system parameter (e.g. path-loss)
- Path-loss map for one base station

Path-loss map where each location is related only to the base station with lowest path-loss

Goal: Online reconstruction and prediction of radio maps from user measurements

150

50

(¥) 100

Example: Path-loss Map Reconstruction

Berlin path-loss data (real measurement data):

- Size of area: 150x150 pixels, each pixel is an area of size 50x50 meters
- 187 base stations (BS)
- For each BS, there is path-loss data from the BS to each pixel
- Cells are defined by assigning each pixel to a BS with lowest path-loss

M. Kasparick et.al., "Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information," in *IEEE Transactions on Vehicular Technology*, vol. 65, no. 7, pp. 5461-5473, July 2016

Interpretable Machine Learning

Heinrich Hertz Institute

Classification using Machine Learning

Do we trust the machine ???

Revert the Deep Neural Network

Interpretability of Machine Learning

Interpretability is first step towards making sure (i.e. verifying) that ML algorithms do the <u>right</u> thing !

Idea for Interpretable Machine Learning

W. Samek, K.-R. Müller et al.: general method to explain individual classification decisions.

Thomas Wiegand: Machine Learning and Communication

slide 32

Classification

Explanation

Thomas Wiegand: Machine Learning and Communication

f(x)

 r_j

Relevance Propagation

Theoretical interpretation (Deep) Taylor Decomposition

(Montavon et al., **arXiv** 2015)

Relevance of upper layers is redistributed to lower layers proportionally (depending on activations & weights).

Relevance Conservation Property

Relevance Conservation Property

$$\sum_{p} r_p = \ldots = \sum_{i} r_i = \sum_{j} r_j = \ldots = f(x)$$

ML Decomposition Examples

what speaks for / against classification as "3"

[*number*]: explanation target class red color: evidence for prediction blue color: evidence against prediction

what speaks for / against classification as "9"

(Bach et al., PLOS ONE 2015)

ML Decomposition distinguishes between positive and negative evidence

Thomas Wiegand: Machine Learning and Communication

slide 37

Summary: Machine Learning and Communication are converging

Video Coding Standards and Machine Learning:

- H.264 → H.265 → H.266
- Improve Video Encoding using ML
- Data Communication and Machine Learning:
 - Next Generation 5G: High bitrates, low latencies (Tactile Internet), Sensors
 - Machine Learning necessary for efficient communication
 - Interpretable Machine Learning:
 - Decomposition explains classification results
 - Explanation required for Decision Making!

Acknowledgement & Support

ITU-T VCEG & ISO/IEC MPEG colleagues HHI/TUB members and research associates

- H. Schwarz, D. Marpe, T. Hinz, P. Helle
- T. Schierl, C. Hellge, R. Skupin, Y. Sanchez
- S. Bosse, B. Blankertz, A. Norcia, G. Curio
- K.-R. Müller, W. Samek
- S. Stanczak, T. Haustein, M. Kasparick

