ITU Kaleidoscope 2016 ICTs for a Sustainable World

PAPR Reduction in SC-FDMA via a Novel Combined Pulse-Shaping Scheme

Ahmad R. Sharafat

Tarbiat Modares University, Tehran, Iran sharafat@ieee.org

Bangkok, Thailand 14-16 November 2016

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

2 SC-FDMA

- 3 Nyquist-I Pulse Shaping
- Proposed Pulse Shaping Scheme
- **5** Simulation Results

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Introduction

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping O	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions O	
Intro	duction						

- OFDM
- SC-FDMA
- Sub-Carrier Mapping
- PAPR Reduction
 - Linear
 - Non-Linear
- Our Pulse Shaping Scheme

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

SC-FDMA

Naser Ahmadi-Moghaddam and Ahmad R. Sharafat

Outline

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Nyquist-I Pulse Shaping

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions O	
Nyai	uist-I Pu	lse Shat	oing				

- Nyquist-I Pulse Shaping
- Different Versions of Nyquist-I Pulse Shaping
 - Raised Cosine
 - Root Raised Cosine
 - Parametric Linear Pulses
 - Parametric Exponential Pulses
 - Parametric Linear Combination Pulses

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Proposed Pulse Shaping Scheme

• Combination of K pulse shaping methods

$$h(t) = \sum_{i=1}^{K} a_i h_i(t)$$

s. t.
$$\sum_{i=1}^{K} a_i = 1$$

- Solving the problem for K = 3
- Optimization problem

$$\min_{\mu,\nu} \quad |h(t_1)| \times |h(t_2)| \\ \text{s. t.} \quad |h(t_1)| > |h(t_2)|$$

where

$$h(t) = \mu h_{\text{PEP}}(t) + \nu h_{\text{PLP}(2)}(t) + (1 - \mu - \nu) h_{\text{PLP}(1)}(t)$$

Proposed Pulse Shaping Scheme II

Impulse response of RC, modified PLP and our scheme.

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Simulation Results

~			0	00	000000000000000000000000000000000000000	0
Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Simulation Results I

Simulation Parameters

Parameter	Value
No. of subcarriers	512
No. of used subcarriers	128
Sampling frequency	10 MHz
Oversampling factor	4
Roll-off factor (α)	0.22
Sub-carrier mapping	interleaved

Simulation Results I

CCDF of PAPR for SC-IFDMA with QPSK for $\mu = 1$ and $\nu \in [0, 2]$.

Simulation Results II

CCDF of PAPR for SC-IFDMA with QPSK for $\mu = 1$ and $\nu \in [2, 100]$

CCDF of PAPR for SC-IFDMA with QPSK via different schemes.

Impulse response of RC, PLP, PEP and modified PLP schemes.

	muoducuon	be i biiit	0	00	000000000000000000000000000000000000000	0
Sim	ilation R	egulte V	T			

CCDF of PAPR for SC-IFDMA with QPSK via RC and modified PLP.

Impulse response of the RC and modified PLP schemes.

Frequency response of RC and modified PLP schemes.

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping O	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions O
а.	1.º D	1. 5	7.7.7.7			

Simulation Results VIII

CCDF of PAPR for SC-IFDMA with QPSK different schemes.

Frequency response of RC, PLCP, modified PLP, and our schemes.

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping O	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions O
Simu	ilation R	esults I				

Required time to generate a transmit string in different pulse shaping schemes (parallel filters)

Pulse Shaping	SC-IFDMA		
	QPSK(µs)	$16QAM(\mu s)$	
RC	643.74	720.79	
RRC	644.73	722.58	
PLP	637.06	718.92	
PEP	643.56	717.96	
PP(n=2)	637.44	719.50	
PLCP ($\mu = 1.6$)	687.09	755.12	
Proposed ($\mu = 1$ and $\nu = 2$)	710.26	774.42	

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping O	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions O
Simu	lation re	esults I				

Required time to generate a transmit string in different pulse shaping schemes (combined filters)

Pulse Shaping	SC-IFDMA		
	QPSK(µs)	$16QAM(\mu s)$	
RC	643.74	720.79	
RRC	644.73	722.58	
PLP	637.06	718.92	
PEP	643.56	717.96	
PP(n=2)	637.43	719.50	
PLCP ($\mu = 1.6$)	637.39	719.23	
Proposed ($\mu = 1$ and $\nu = 2$)	645.31	720.59	

Average values and variances of PAPR for different pulse shaping schemes

Pulse Shaping	QPSK		16QAM		64QAM	
	β	σ^2	β	σ^2	β	σ^2
RC	4.45	0.11	5.49	0.32	5.76	0.32
RRC	3.53	0.05	5.02	0.14	5.55	0.14
PLP	3.93	0.07	5.21	0.25	5.54	0.25
PEP	3.77	0.07	5.12	0.24	5.48	0.24
PP(n=2)	3.10	0.04	4.81	0.15	5.27	0.18
PLCP ($\mu = 1.6$)	3.70	0.08	5.09	0.23	5.45	0.23
Convex $(d = 5)$	3.90	0.16	4.99	0.23	5.39	0.21
Concave $(d = 1)$	3.64	0.08	5.04	0.25	5.42	0.22
Proposed	2.34	0.02	4.41	0.08	5.09	0.10

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions

Conclusions

Outline	Introduction	SC-FDMA	Nyquist-I Pulse Shaping O	Proposed Pulse Shaping Scheme	Simulation Results	Conclusions •
Conc	clusions					

- We proposed a novel pulse shaping scheme to reduce PAPR in SC-FDMA systems, and compared its performance with other existing schemes via simulation
- The PAPR in our scheme is 2.11 dB, 1.08 dB, and 0.67 dB less than those in RC pulse shaping for QPSK, 16-QAM and 64-QAM respectively.

outine introduction bei	DMA Nyquist-i Fuise S	naping Proposed Pulse Shaping Sc.	neme Simulation Results	Conclusions

Thank You