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Rapid urbanisation: More people live in cities than rural
areas

| Growth of African cities
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Fig: Growth of African cities Fig: Trend in South Africa
* More than 50% of the world’s population lives in cities.
« Continued rural-urban migration forecasted up to year 2025.
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Smart City: Meeting the challenges of rapid
urbanisatiion
"""""""""""""""""""""""""""""""""" .= Increase in crime
anticipated with rapid
urbanisation.
? :EﬁxiiF&ﬁﬁméﬁt‘a[l'-E = Deterring crime is a top
' jquality______ . : priority for realising a
‘ | [ Health | sustainable “safe and
‘fransporiaion . Smart’ city.

| _ | ~ = The use of armed weapons
and technology to improve the .

quality and efficiency of urban crime.
operation and services.
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Provinces in South Africa
 Fig: Distribution of crime across provinces in South Africa
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Current Practice

Gaps/Limitations

- Random patrols at locations

Police: Citizen ratio is 1:347

(288 police per 100,000
citizen)

- Manual means of data capture &
processing (using excel software)

- Accumulated data is transferred
to provincial level for processing

Limited technological tool
for pattern detection
Delay in knowledge
discovery (inaccuracies)
Mitigation practices
hindered due to lack of
domain experts and|
technological tools (e.g.
Analyst's Notebook)

- CrimeHub statistics
[Institute for Security Studies
(ISS)]

General background
information — may not be
actionable
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Problem Statement: Challenges of squeezing crime to zero

» Despite the vast resources allocated to crime, people still fall
victim of crime

» Plethora of under-utilised crime reports archived by public
safety.

« Manual means adopted at local stations is a huge constraint to
effective policing in developing nations (e.g. South Africa).

* Need to promote knowledge-driven decision support for public
safety improvement in developing nations.

* Crime series pattern (CSP) detection is less explored in
developing nations

Nanjing, China
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CriClust: Crime Series Pattern (CSP) detection

- Research shows that many
crimes are due to repeat
(serial) offenders: crime
series.

= Crime series are crimes
committed by same offender.

- If patterns are identified
timeously police can prevent
further recurrence.

Depiction of serial predator in . Several tools exist but mostly
related crime scenarios inacity.  ahle to estimate background
Information.
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Crime Serles Pattern (CSP) Detection

T T e __ = CriClust serves to assist in
o rows e sacuue_ o wnes o v oo CSP detection using rape

UCT celebrates arrest of a S T W 6 VAT data.
suspected serial rapist s-ory

Subscribe now for full

- However, can extend to
other forms of crime

= gl - Issues around rape and

w e T ©C sexual violence still an
bl T ongoing concern in South
st African communities.

= Hence, crucial to devise
smart means of assisting
police in developing nations
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Phases in CriClust System

Crime data Identify Reasoning or
information main cluster Prediction from
(series) sets Derived knowledge

Subspace-clustering
using HCS
(min-cut heuristics) (PDE, PSE)

Statistical measure
of pattern space

Identify field(s)

Interest

U attributes of
=

Fig: An overview of research phases in CriClust System
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CriClust: Problem definition

A, A, A,
Ali AZI. An,.
Ali AZI. Ani
Alk Azk Ank

 Let C be a set of crime objects, where each i in C is defined by
a set of attributes A, our interest lies in crime objects that
exhibit a coherent pattern on a subset of A.
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Crime Series Pattern Detection: Algorithmic process

_360° (inacircle)

7 (days in a week)

= ais the angle between each
pair of days

= The 2-D component is
Wednesday relevant because a 1-D
component will assume that
Sunday is far from Monday.

Sunday

Friday
Thursday
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CriClust: Learning the similarity graph

Yes
|i'—HFind min-cu Retum)
_ G
‘ ‘ No
Divide G
G |G H using min-cut

Fig: Flow of highly connected  Fig: A depiction of crime cluster
Subgraphs (HCS) detected by HCS
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Overview: CriClust System Visualisation
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CriClust: Scalability and trend of series observed
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Fig: Scalability trend Fig: Trend of series observed

across locations

Nanjing, China
27-29 November 2017



-
T\

/ aa

wnbfs  NANJNG 2017
'i‘ L4 ’f l

-

Challenges for a data-driven society

TUKALEIDOSCOPE

Characterising features emerging for each series

S/N Location PDE(%) | Day | Time | Vic | Sus | VAge | SAge | SFr | Mot | MO | HCol | Mask | Sub-Ab
1 35 (S1) 1 1 1 1 0 0 1 0 1 1 0 0
Mowbray
2 65 (S2) 1 1 1 1 0 1 1 1 1 1 1 1
3 CapeTown | 50 (51) 0 1 1 1 0 0 1 1 1 1 0 0
4 Central 50 (S52) 1 1 1 1 0 1 1 0 1 0 0 0
5 40(S1) 1 1 1 1 0 1 1 0 1 1 0 0
6 Wynberg 34(52) 1 1 1 0 1 0 0 1 1 0 1 1
7 26(S3) 0 1 0 1 0 1 1 0 1 1 0 0
8 Grassy- 21(51) 1 1 1 0 0 0 0 1 1 1 0 1
9 Park 79(52) 1 1 1 1 0 1 1 1 1 0 1 0

Nanjing, China

27-29 November 2017




J”"_-
i‘*’f

TUKALEIDOSCOPE

NANJING 2

Challenges for a data-driven society

Systematic comparison of CriClust with existing research

S/N | Features Crime Mining Serial Crime CriClust Model
Linkage [5] Rotten Core [6] | Crime Pattern [7] | Linkage [8] | (our work)
1 Exploratory | Crime Crime series Serial criminal Crime Crime series
basis linkage detection pattern detection |linkage detection
2 |Crime Breaking & entering | Burglary Armed Burglary Sexual
explored crimes (housebreaking) | robberies crimes crime
3 |Modelling |Statistical Conventional Neural Bayesian |Dual threshold
approach |approach optimisation Network (NN) Network scheme &
(BN) graphical model
4 | Techniques |Bayes factor, Integer linear Cascaded Bayes Geometric
used Hierarchical programming, network of Network projection, HCS
clustering clustering, BFS | Kohohen NN clustering
5 |Empirical Posterior odds, Map location of |Percentage of Posterior |Map (PDE, PSE)
observation | Bayes factor & series, pattern | predicted & probabilitie |of series,
number of clusters | space, precision |actual patterns |s & BN scalability,precisi
& recall on & recall

Nanjing, China
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Summary and Conclusion
« Challenge of crime is magnified in resource constraint settings.

« Police need to be empowered with context-aware and cost-
effective technologies for effective policing.

« Crime series detection is less explored in developing nations

« CriClust serves to assist in crime series identification, using a
dual threshold mechanism and geometric projection.

« CriClust is not a panacea but can assist with underperformance
In policing.
« CriClust is to be considered for deployment with the police, and

there is an ongoing collaboration with an NGO on community
policing.
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