

Fostering Smart City Development in Developing Nations: A Crime Series Data Analytics Approach

Omowunmi Isafiade
University of the Western Cape
oisafiade@uwc.ac.za

Nanjing, China 27-29 November 2017

Outline

- Introduction
 - Motivation and challenges
- Crime Control in South Africa
 - Current practice and gaps
- Proposed Intervention: CriClust System
 - Model formulation and design methodology
 - Results and discussion
- Conclusion and Outlook
- References
- Acknowledgements

Rapid urbanisation: More people live in cities than rural areas

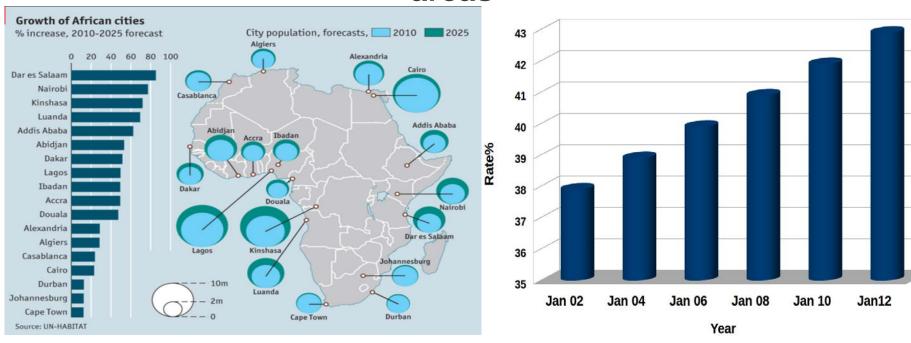
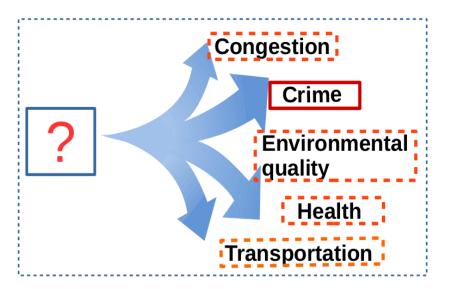


Fig: Growth of African cities

Fig: Trend in South Africa

- More than 50% of the world's population lives in cities.
- Continued rural-urban migration forecasted up to year 2025.

Smart City: Meeting the challenges of rapid urbanisatiion



 Smart city: using urban informatics and technology to improve the quality and efficiency of urban operation and services.

- Increase in crime anticipated with rapid urbanisation.
- Deterring crime is a top priority for realising a sustainable "safe and smart" city.
 - The use of armed weapons is not sufficient to tackle crime.

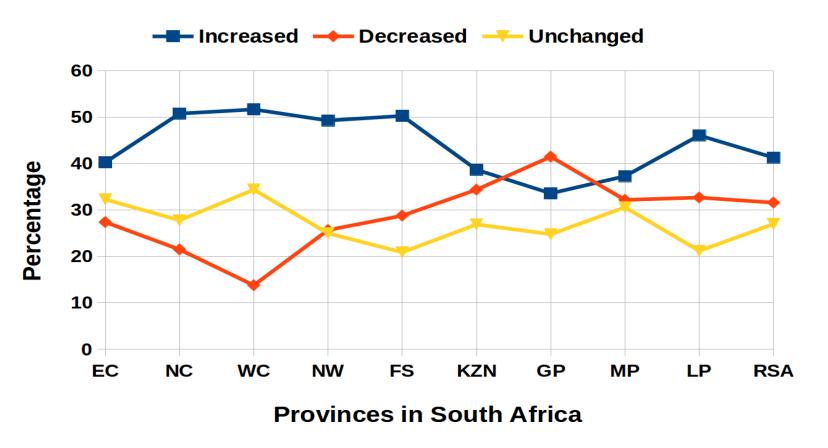


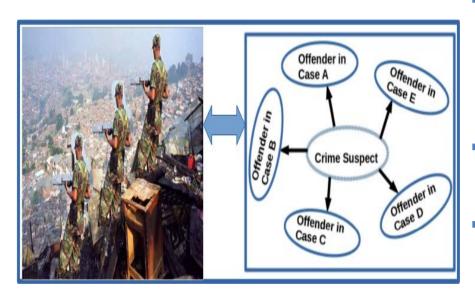
Fig: Distribution of crime across provinces in South Africa

Current Practice	Gaps/Limitations				
- Random patrols at locations	• Police: Citizen ratio is 1:347 (288 police per 100,000 citizen)				
 Manual means of data capture & processing (using excel software) Accumulated data is transferred to provincial level for processing 	 Limited technological tool for pattern detection Delay in knowledge discovery (inaccuracies) Mitigation practices hindered due to lack of domain experts and technological tools (e.g. Analyst's Notebook) 				
- CrimeHub statistics [Institute for Security Studies (ISS)]	 General background information – may not be actionable 				

Problem Statement: Challenges of squeezing crime to zero

- Despite the vast resources allocated to crime, people still fall victim of crime
- Plethora of under-utilised crime reports archived by public safety.
- Manual means adopted at local stations is a huge constraint to effective policing in developing nations (e.g. South Africa).
- Need to promote knowledge-driven decision support for public safety improvement in developing nations.
- Crime series pattern (CSP) detection is less explored in developing nations

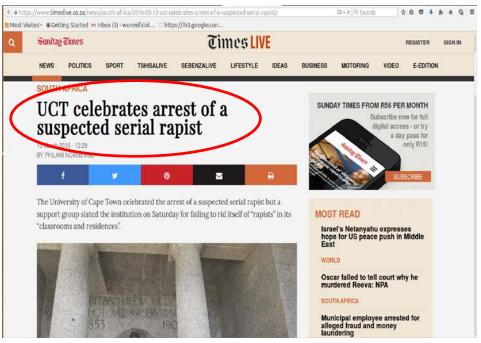
CriClust: Crime Series Pattern (CSP) detection



 Depiction of serial predator in related crime scenarios in a city.

- Research shows that many crimes are due to repeat (serial) offenders: **crime series**.
- Crime series are crimes committed by same offender.
- If patterns are identified timeously police can prevent further recurrence.
- Several tools exist but mostly able to estimate background information.

Crime Series Pattern (CSP) Detection



- CriClust serves to assist in CSP detection using rape data.
- However, can extend to other forms of crime
- Issues around rape and sexual violence still an ongoing concern in South African communities.
- Hence, crucial to devise smart means of assisting police in developing nations

Phases in CriClust System

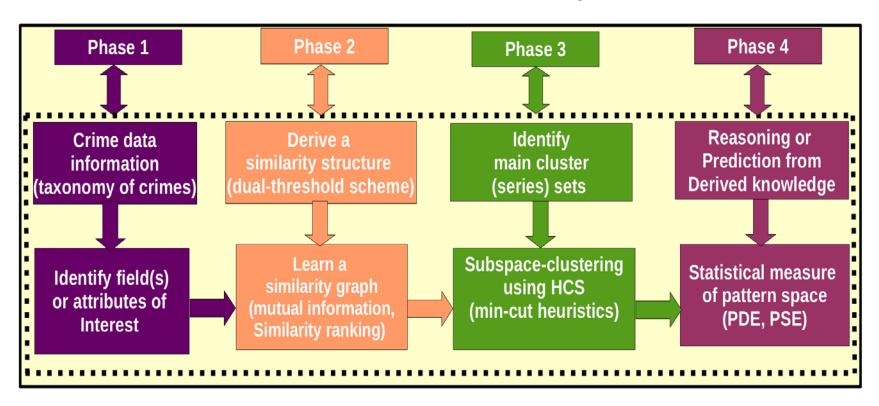


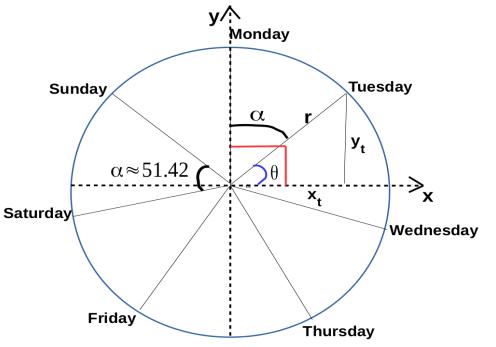
Fig: An overview of research phases in CriClust System

CriClust: Problem definition

	\boldsymbol{A}_1	$oldsymbol{A}_2$	• • •	\boldsymbol{A}_n
C_i	A_{1_i}	A_{2_i}	• • •	A_{n_i}
C_{j}	$A_{1_{i}}$	A_{2_i}	• • •	A_{n_i}
C_k	A_{1_k}	A_{2_k}	• • •	A_{n_k}
	:	•	:	:

• Let C be a set of crime objects, where each i in C is defined by a set of attributes A, our interest lies in crime objects that exhibit a coherent pattern on a subset of A.

Crime Series Pattern Detection: Algorithmic process



$$\alpha = \frac{360^0 (in \ a \ circle)}{7 (days \ in \ a \ week)}$$

- α is the angle between each pair of days
- The 2-D component is relevant because a 1-D component will assume that Sunday is far from Monday.

CriClust: Learning the similarity graph

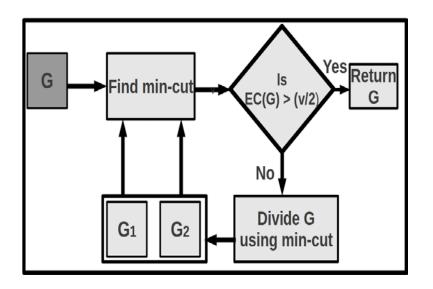


Fig: Flow of highly connected Subgraphs (HCS)

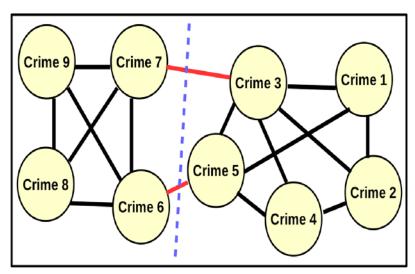


Fig: A depiction of crime cluster detected by HCS

Overview: CriClust System Visualisation

CriClust: Scalability and trend of series observed

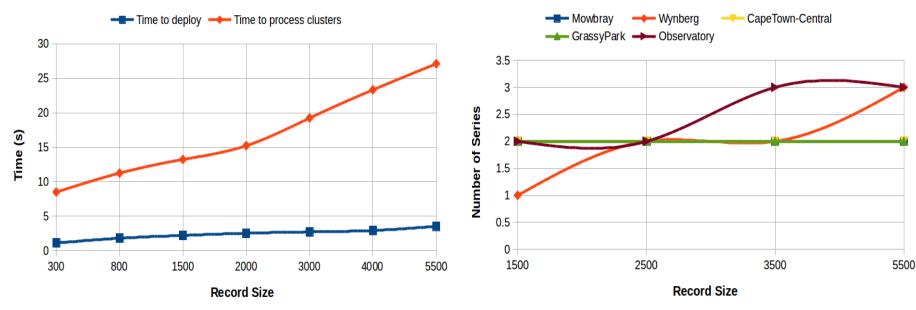


Fig: Scalability trend

Fig: Trend of series observed across locations

Characterising features emerging for each series

						~ ··	,					, ·	-,	
S/N	Location	PDE(%)	Day	Time	Vic	Sus	VAge	SAge	SFr	Mot	МО	HCol	Mask	Sub-Ab
1		35 (S1)	1	1	1	1	0	0	1	0	1	1	0	0
	Mowbray													
2		65 (S2)	1	1	1	1	0	1	1	1	1	1	1	1
3	CapeTown	50 (S1)	0	1	1	1	0	0	1	1	1	1	0	0
4	Central	50 (S2)	1	1	1	1	0	1	1	0	1	0	0	0
5		40(S1)	1	1	1	1	0	1	1	0	1	1	0	0
6	Wynberg	34(S2)	1	1	1	0	1	0	0	1	1	0	1	1
7		26(S3)	0	1	0	1	0	1	1	0	1	1	0	0
8	Grassy-	21(S1)	1	1	1	0	0	0	0	1	1	1	0	1
9	Park	79(S2)	1	1	1	1	0	1	1	1	1	0	1	0

Systematic comparison of CriClust with existing research

S/N	Features	Crime Linkage [5]	Mining Rotten Core [6]	Serial Crime Pattern [7]	Crime Linkage [8]	CriClust Model (our work)	
1	Exploratory basis	Crime linkage	Crime series detection	Serial criminal pattern detection	Crime linkage	Crime series detection	
2	Crime explored	Breaking & entering crimes	Burglary (housebreaking)	Armed robberies	Burglary crimes	Sexual crime	
3	Modelling approach	Statistical approach	Conventional optimisation	Neural Network (NN)	Bayesian Network (BN)	Dual threshold scheme & graphical model	
4	Techniques used	Bayes factor, Hierarchical clustering	Integer linear programming, clustering, BFS	Cascaded network of Kohohen NN	Bayes Network	Geometric projection, HCS clustering	
5	Empirical observation	Posterior odds, Bayes factor & number of clusters	Map location of series, pattern space, precision & recall	Percentage of predicted & actual patterns	Posterior probabilitie s & BN	Map (PDE, PSE) of series, scalability,precisi on & recall	

Summary and Conclusion

- Challenge of crime is magnified in resource constraint settings.
- Police need to be empowered with context-aware and costeffective technologies for effective policing.
- Crime series detection is less explored in developing nations
- CriClust serves to assist in crime series identification, using a dual threshold mechanism and geometric projection.
- CriClust is not a panacea but can assist with underperformance in policing.
- CriClust is to be considered for deployment with the police, and there is an ongoing collaboration with an NGO on community policing.

References

- 1) A. Milgram: Why smart statistics are the key to fighting crime. TED Talk, Retrieved from: https://www.ted.com/talks, 2013.
- 2) International Association of Crime Analysts (IACA): Crime Pattern Definitions for Tactical Analysis. Standards, Methods, and Technology (SMT) Committee White Paper, 2011.
- 3) S. Writer: South African Police force vs the world, Business Tech, 2015
- 4) F. Húffner and C. Komusiewicz and M. Sorge: Finding Highly Connected Subgraphs, 41st International Conference on Current Trends in Theory and Practice of Computer Science, Pec pod Snězkou, Czech republic pp 1-20, 2015.

References

- 5) M. D. Porter: A statistical approach to crime linkage. arxiv e-prints. pp. 1-33, 2014.
- 6) T.Wang, C. Rudin, D.Wagner, and R. Sevieri, Finding patterns with a rotten core: Data mining for crime series with core sets. Big Data, vol. 3, no. 1, pp. 3-21, March 2015.
- 7) K. Dahbur and T. Muscarello. *Classification system for serial criminal pattern*. Artificial Intelligence and Law, 11(4):251-269, 2003.
- 8) J. Zoete, M. Sjerps, D. Lagnado, and N. Fenton: *Modelling crime linkage with Bayesian networks*. International Journal of Science and Justice: Elsevier Ireland, 7(5):1-9, 2014

Acknowledgements

Thank You

