

How to make the interoperability of **IoT** data

Shao Weixiang ZTE Corporation shao.weixiang@zte.com.cn

Challenge of IoT data interoperability due to IoT standards

- IoT standards are no doubt the key enablers for IoT industries.
- But the growth looks a bit "wild" and still extending

Technologies in IoT Stack

Applications

ITUKALEIDOSCOPE

Challenges for a data-driven society

NANJING 2017

landscape of IoT technologies, 2017

ETSI White Paper: Achieving Technical Interoperability

Technical Interoperability is usually associated with hardware/software components, systems and platforms that enable machine-to-machine communication to take place. This kind of interoperability is often centred on (communication) protocols and the infrastructure needed for those protocols to operate. **Semantic Interoperability** is usually associated with the meaning of content and concerns the human rather than machine interpretation of the content.

Figure 1: Different levels of interoperability

Syntactical Interoperability is usually associated with data formats. Certainly, the messages transferred by communication protocols need to have a well-defined syntax and encoding, even if it is only in the form of bit-tables. However, many protocols carry data or content, and this can be represented using high-level transfer syntaxes such as HTML, XML or ASN.1.

Nanjing, China 27-29 November 2017 **Organizational Interoperability** is the ability of organizations to effectively communicate and transfer (meaningful) data (information) even though they may be using a variety of different information systems over widely different infrastructures, possibly across different geographic regions and cultures. Organizational interoperability depends on successful technical, syntactical and semantic interoperability.

oneM2M Technical View on Interworking

oneM2M flexible framework of interworking from transparent, translucent to semantic

data models and semantics

Figure 1: Different levels of interoperability

Source: ETSI IOP Whitepaper 3rd Edition, 2008

OCF IoT Scope

27-29 November 2017

OCF consider for Interoperability

- **Full interoperability** from the connectivity layer up to the service layer is the only way to truly guarantee a satisfactory UX
- Interoperability at the Connectivity and/or Platform layer only provides partial interoperability which can ultimately lead to fragmentation

OCF Core Framework Spec

- Discovery: Common method for device discovery (IETF CoRE)
- 2 Messaging: Constrained device support as default (IETF CoAP) as well as protocol translation via bridges
- 3 Common Resource Model: Real world entities defined as data models (resources)
- CRUDN: Simple Request/Response mechanism with Create, Retrieve, Update, Delete and Notify commands
- 5 ID & Addressing: OCF IDs and addressing for OCF entities (Devices, Clients, Servers, Resources)
- 6 Protocol Bridge/GW: Handled by the Bridging Spec with some implications on the Core

Security is fundamental to the OCF ecosystem and applies to all elements

OCF Bridge Specification

Specifies a framework for bi-directional translation between devices in OCF and non-OCF ecosystems.

- Specifies general requirements for translation between OCF and non-OCF ecosystems
 - ◆Requirements for resource discovery, message translation, security, and handling of multiple bridges.
- ◆ Specifies specific requirements for translation between OCF and AllJoyn ecosystems
 - ◆Requirements for mapping core resources, propagating errors, and algorithmically translating custom resource types.
 - ◆Refers to OCF to AllJoyn Mapping specification for translating well-known resource types.

OCF to AllJoyn Mapping

- Models the interworking between OCF and AllJoyn
- Makes use of derived model syntax
- Defines the mapping in terms of:
 - Device Type equivalency
 - Resource <-> Interface equivalency
 - Detailed Property by Property mapping on a per Interface Basis (Derived Models)

-				AllJoyn Interface	OCF Resource Type	OCF Resource Type ID	OCF
Classification	ASA Device Type	OCF Device Type	OCF Device Type ID		Name		Interface(s)
Air Care	Air Conditioner	Air Conditioner	oic.d.airconditioner	Environment.CurrentAirQuality	Air Quality Collection	oic.r.airqualitycollection	oic.if.s
	AirPurifier	Air Purifier	oic.d.airpurifier	Environment.CurrentAirQualityLevel	Air Quality Collection	oic r airgualitycollection	oic if s
	AirQualityMonitor	Air Quality Monitor	oic.d.aqm		All Quality Collection	ole.i.aliqualitycollection	010.11.5
	Dehumidifier	Dehumidifier	oic.d.dehumidifier	Environment.CurrentHumidity	Humidity	oic.r.humidity	oic.if.s
	Humidifier	Humidifier	oic.d.humidifier				
	ElectricFan	Fan	oic.d.fan	Environment.CurrentTemperature	Temperature	oic.r.temperature	oic.if.s
	Thermostat	Thermostat	oic.d.thermostat	Environment TergetHumidity			
Fabric Care	Clothes Washer	Washer	oic.d.washer	Environment. LargetHumidity	Humany	oic r selectablelevels	UIC.II.a
	Clothers Dryer	Dryer	oic.d.dryer				
	Clothers Washer-Dryer	Washer-Dryer	oic.d.washerdryer	Environment.TargetTemperature	Temperature	oic.r.temperature	oic.if.a
Food Preservation	Refrigerator	Refrigerator	oic.d.refrigerator				
	Ice Maker	Ice Maker (Resource)	oic.r.icemaker	Operation.AudioVolume	Audio Controls	oic.r.audio	oic.if.a
	Freezer	Freezer	oic.d.freezer	Operation.Channel	Mode	oic r mode	oic if a
	Oven	Oven	oic.d.oven	operation.commatecontronmode	Mode	010.1.1110000	010.11.4
	Cooktop	Cooktop	oic.d.cooktop		Operational State	oic.r.operational.state	oic.if.s
Food Preparation	Cookerhood	Cooker Hood	oic.d.cookerhood				
	Foodprobe	Food Probe	oic.d.foodprobe	Operation.ClosedStatus	Door	oic.r.door	oic.if.s
Dish Care	Dishwasher	Dishwasher	oic.d.dishwasher	Operation.CycleControl	Operational State	oic.r.operational.state	OIC.IT.S
Floor Care	Robot Cleaner	Robot Cleaner	oic.d.robotcleaner	Operation.FanSpeedLevel	Air Flow	oic.r.airflow	oic.if.a
Entertainment	τv	Television	oic.d.tv	Operation.HeatingZone	Heating Zone Collection	oic.r.heatingzonecollection	oic.if.s
	Set Top box (STB)	Set Top Box	oic.d.stb		-	-	
	- · · · ·	·	-	Operation.HvacFanMode	Mode	oic.r.mode	oic.if.a
				Operation.OnOffStatus	Binary Switch	oic.r.switch.binary	oic.if.s
				Operation OvenCyclePhase	Operational State	oic r operationalstate	oic if c

CONSORTIUM **IIC Industrial Internet Reference Architecture (IIRA)**

configuration updates

IIRA Implementation Viewpoint

Nanjing, China 27-29 November 2017

industrial internet

IIoT Connectivity enables Interoperability

Increasing

Capability for Interoperation

Interoperability is about sharing Data governed by Quality of Service (QoS)

Compatible meaning of **data models** in the context of the vertical application domain.

Compatible means of sharing **datatypes**. Be able to evolve those datatypes.

Compatible means of **signaling and protocols**

http://en.wikipedia.org/wiki/Conceptual_interoperability

IIC Connectivity Framework

Interoperability requires a Suitable Connectivity Infrastructure for Meaningful Communications between...

IIoT Connectivity Stack Model

IIoT Horizontal Interoperability

	NANJING 2017	industrial internet							
	Challenges for a data-driven society			CC	NSORTIUM				
	Connectivity Core Standards Criteria Applied								
	Core Standard Criterion	DDS	Web Services	OPC-UA	oneM2M				
1	Provide syntactic interoperability	\checkmark	Need XML or JSON	\checkmark	\checkmark				
2	Open standard with strong independent , international governance	\checkmark	\checkmark	\checkmark	\checkmark				
3	Horizontal and neutral in its applicability across industries	\checkmark	\checkmark	\checkmark	\checkmark				
4	Stable and deployed across multiple vertical industries	Software Integration & Autonomy	\checkmark	Manufacturing	Home Automation				
5	Have standards-defined <i>Core Gateways to all other core connectivity standards</i>	Web Services, OPC- UA*, oneM2M*	DDS, OPC-UA, oneM2M	Web Services, DDS*, oneM2M*	Web Services, OPC-UA*, DDS*				
6	Meet the connectivity framework functional requirements	\checkmark	X	Pub-Sub in development	\checkmark				
7	Meet non-functional requirements of performance, scalability, reliability, resilience	\checkmark	X	Real-time in development	Reports not yet documented or public				
8	Meet security and safety requirements	\checkmark	\checkmark	\checkmark	$\overline{\mathbf{v}}$				
9	Not require any single component from any single vendor	\checkmark	\checkmark	\checkmark	\checkmark				
10	Have readily-available SDKs both commercial and open source	\checkmark	\checkmark	\checkmark	\checkmark				

* = work in progress V= supported, X = not supported

GREEN = Gating Criteria

OpenFog Smart Object prefer to reuse existing standards

The Fog/Cloud can be (dynamically) configured to process/analyze, route, cache and archive data in multiple tiers of the Fog. Data, devices, and code are all smart objects in a registry which can be mapped onto physical locations.

OpenFog

OpenFog Interoperability, Interconnectivity, Interchangeability

Figure 1: Different levels of interoperability

OpenFog Architecture to build a multi-vendor interoperable fog computing ecosystem

ETSI ISG CIM: establish an info-exchange layer on top of IoT platforms like oneM2M, especially targeting Smart City applications

Goal = interoperable exchange of data & metadata between systems

ETSI ISG CIM Features

- Flexible exchange of information between domains
 - Graph-based
 - Core concepts include Entities and Relationships
 - Entities can have Properties and Relationships
 - Relationships/Properties can also have Properties and Relationships
- Aim to be developer-friendly
 - Using familiar technologies (e.g. HTTP, JSON-LD)
 - Simple query interface
 - Based on entity type or identifier
 - Scoping of query (e.g. by time/geography)
 - Filtering of results
- **API** is agnostic to the deployed architecture
- Applications need only know the URL where the API is exposed
 Actual choice of architecture depends on (changeable) trade-
- offs
- Centralised Architecture is simplest
- Distributed architecture may be chosen to improve scalability
- Federated architecture enables different organizational units to transparently integrate their information sources

NOT yet another IoT/M2M standard

- NOT for low-layer protocol or
- network-centric connectivity
- NOT just a semantic annotation vocabulary
- **NOT** specific to one particular environment
- **♦**NOT restricted to one type of information source
- NOT dedicated to one particular type of application

ETSI ISC CIM entities are represented by URIs

Entities are "first class citizens" in the Information Model and API

All entities must reference some ontology (to define their type)

ETSI

ITUKALEIDOSCOPE

NANJING 2017

Conclusion

IoT SDO	IoT focus area	Technical Interoper ability	Syntactic interoper ability	Semantic Interoperability	Pragmatic Interopera bility	Dynamic Interopera bility	Concept ual Interop erability
					Organizational Interoperability		
oneM2 M	Telecom platform	V	V	√ (OIC, Alljoyn, LWM2M, DDS, OPC- UA, OSGI, Modbus, etc)			
OCF	Smart home	٧	٧	√(Alljoyn)			
IIC	Industry, Manufacturi ng	V	v(Web service)	√(oneM2M,DDS, OPC-UA)			
openfog	Fog/edge computing	V	√ starting	√ starting		ideal	
ETSI ISG CIM		٧			V		
Better solution?							