
D1

Proposal to use
ASN.1 & ECN

in ISO/IEC 7816-4
Olivier DUBUISSON John LARMOUTH
France Télécom R&D Larmouth Training & Protocol Design Services Ltd.
ITU-T ASN.1 Project leader ASN.1 Rapporteur
Olivier.Dubuisson@francetelecom.com J.Larmouth@salford.ac.uk

http://asn1.elibel.tm.fr/ecn

D2

France Télécom R&D

ASN.1: What is it?

Abstract Syntax Notation number One
International standard : ITU-T X.680 to X.683 | ISO/IEC 8824-1 to 4
Diversity of operating systems and programming languages
Describes data exchanged between two communicating applications
Formal notation supported by tools:

• no ambiguity;
• makes validation easier, at low cost;
• reduces the time-to-market;
• readable by experts of the application domains;
• easily understandable by implementors;
• translates easily into any programming language

(C, C++, Java, Cobol, etc, and over 150 platforms)
ASN.1 is a critical part of our daily lives; it's everywhere, but it works so
well it's invisible!
More information: http://asn1.elibel.tm.fr/introduction

D3

France Télécom R&D

Other advantages of ASN.1

Several associated standardized encodings, such as:
• efficient (binary) encoding: Packed Encoding Rules (PER)
• canonical encoding for digital signatures:

Distinguished Encoding Rules (DER)
• XML encoding rules (XER)

Mature, long record of reliability and interoperability
Sends information in any form (audio, video, data…)
anywhere it needs to be communicated digitally
Offers extensibility: interworking between previously deployed
systems and newer, updated versions designed years apart
Full and direct support of international alphabets (Unicode)
Has evolved over time to meet industry needs

D4

France Télécom R&D

Current uses of ASN.1

Audio & Video over the Internet
AT&T, Intel, IBM, Microsoft, 3COM
Electronic Commerce
American Express, GTE, MasterCard, VISA
Telephony
AT&T, MCI, Motorola, Nokia, Sprint
Aviation
FAA, ICAO
Manufacturing
Ford, Mercedes Benz, Mitsubishi
Network Management
Bull, Compaq, Hewlett-Packard, Sun
Routers
Bay Networks, Cisco, Racal, Xyplex
For other uses,
see http://asn1.elibel.tm.fr/uses/

D5

France Télécom R&D

ASN.1 and Encoding Rules standards
ITU-T Rec. X.680 | ISO/IEC 8824-1 - Basic ASN.1 Notation
ITU-T Rec. X.681 | ISO/IEC 8824-2 - Information Object Classes
ITU-T Rec. X.682 | ISO/IEC 8824-3 - Constraints
ITU-T Rec. X.683 | ISO/IEC 8824-4 - Parameterization

ITU-T Rec. X.690 | ISO/IEC 8825-1
Basic Encoding Rules (BER)
Canonical Encoding Rules (CER)
Distinguished Encoding Rules (DER)

ITU-T Rec. X.691 | ISO/IEC 8825-2
Packed Encoding Rules (PER)

ITU-T Rec. X.692 | ISO/IEC 8825-3
Encoding Control Notation (ECN)

ITU-T Rec. X.693 | ISO/IEC 8825-4
XML Encoding Rules (XER)

ITU-T Rec. X.694 | ISO/IEC 8825-5
Encoding XML-Defined Data Using ASN.1

All freely downloadable from http://www.itu.int/ITU-T/studygroups/com17/languages/

D6

France Télécom R&D

Development work flow

ASN.1
Syntax

ASN.1
Compiler

C Header
Files

Application
Source Code

C/C++
Compiler

Encoder/
Decoder

BER, PER, DER or ECN

Libraries

Linker

Executable Application

D7

France Télécom R&D

ASN.1 can be used with most modern programming languages, including Java and
C++, as well as older ones such as C and COBOL.

ASN.1 PersonalInfo ::= SEQUENCE {
married BOOLEAN,
age INTEGER (123456..124000),
name PrintableString}

Generated C header file: typedef struct PersonalInfo {
ossBoolean married;
int age;
char *name;

} PersonalInfo;

Encoding/decoding: ossEncode(world, PersonalInfo_PDU,
&unEncodedData, &EncodedData);

ossDecode(world, &pdunum, &EncodedData,
&outBufPtr);

Using ASN.1

D8

France Télécom R&D

Some free tools

OSS Nokalva syntax and semantics checker (ASN.1, ECN):
http://www.oss.com/products/checksyntax.html

France Telecom R&D ASN.1 syntax checker and pretty-printer:
http://asn1.elibel.tm.fr/tools/asnp

OSS Nokalva Visual ASN.1:
http://www.oss.com/products/visual.html

Translator of XML Schemas into ASN.1 modules:
http://asn1.elibel.tm.fr/xsd2asn1

List of other tools:
http://asn1.elibel.tm.fr/links/#tools

ITU-T database of ASN.1 modules:
http://www.itu.int/itu-t/asn1/database

Object identifiers (OID) database:
http://asn1.elibel.tm.fr/oid

D9

France Télécom R&D

To find more information

ASN.1 website: http://asn1.elibel.tm.fr

– ASN.1 - Communication entre systèmes hétérogènes
(Olivier Dubuisson, Springer Verlag, 1999)
http://asn1.elibel.tm.fr/fr/livre

– ASN.1 - Communication Between Heterogeneous Systems
(Olivier Dubuisson, Morgan Kaufmann, 2000)
free download: http://www.oss.com/asn1/dubuisson.html

– ASN.1 Complete
(John Larmouth, Morgan Kaufmann, 1999)
free download: http://www.oss.com/asn1/larmouth.html

D10

France Télécom R&D

e-tutorial
on ASN.1

http://asn1.elibel.tm.fr/tutorial

D11

France Télécom R&D

ITU-T ASN.1 Project

Promotes ASN.1 to all ITU-T study groups and also to other
standardization organizations (ISO, ETSI, ECMA, W3C, IETF…)
Helps users understand and write ASN.1 specifications
Provides tools and ensures quality of the specifications to be
published
First actions:

• Free ASN.1 module database
• Object identifier (OID) repository:
http://asn1.elibel.tm.fr/oid

Website: http://www.itu.int/ITU-T/com7/asn1

D12

France Télécom R&D

ASN.1 Consortium

Group of ASN.1 users (people and companies),
specifiers and tool-vendors
Shares resources and information
Promotes ASN.1 (towards newspaper and
journals, companies, universities…)
No standardization work
Three forums:

• Industry forum
• Standardization forum
• Academic forum

Website: http://www.asn1.org

D13

France Télécom R&D

So … What are we selling?

An ASN.1 specification for 7816-4 will add
clarity to the specification.

An ASN.1 specification for 7816-4 will allow
rapid implementation using ASN.1 tools.

Use of ASN.1+ECN will provide a specification
of exactly the same encoding as you have now.

D14

France Télécom R&D

Development of encoding
notation concepts (1)

Diagrams of bits and bytes - e.g. IPv4
(The earliest approach, simple and clear, but focusing totally on the bits-on-the-line.)

Tool support not possible.
Does not work well for optional or variable-length fields.

D15

France Télécom R&D

Development of encoding
notation concepts (2)

Each parameter has
Parameter ID (or type), length, value

Tables list each parameter: Tabular Notation

Tool support not possible.
Handles optionality and variable length and variable repetitions.
Handles extensibility. Very powerful. But verbose.

D16

France Télécom R&D

Problems solved by TLV
encodings

Variable length fields (Length determinants.)

Optionality (Optionality determinants)

Permits random order. Once – no longer – considered A GOOD
THING! (Testing and security problems)

Supports alternatives (Choice determinants)

Generalizes to arbitrary depth

Provides “extensibility” easily

D17

France Télécom R&D

The emergence of ASN.1

Clear separation of information content from encoding

Originally supported only by TLV-style Basic Encoding Rules, but now by other
encoding rules such as DER, PER and XER - all very important.

Tools available to map ASN.1 specification into C, C++, Java classes / data
structures, so can implement on many many platforms. Library routines provide
many different encodings.

Used for embedded systems with little memory.

Minimum requirement is a C cross-compiler.

Provides rapid development of applications, with minimum de-bugging and testing.

D18

France Télécom R&D

The need for ECN (1)
Existence of legacy encodings:

• Encodings are informally described as diagrams of bits and bytes, or tables and tables
and more tables!

Legacy protocols won’t die:
Tools (and staff training) investments lead to new protocols being defined in the same
way, using the same encoding techniques, as old ones
Need to re-define with new notations that can provide tool support, but retain the bits-
on-the-line

Need to (formally) reverse-engineer:
• Clearer specification of the information content of messages;
• Easier evolution and addition of new messages;
• Automatic implementation with the help of tools;
• Reduces time and cost of test and validation
• Allows easier use of new encodings with relays mapping to (for example) XML

Many varied approaches to encodings (for example, use of hex 00 to represent 256!)
Need to have a formal notation to describe the encoding of these legacy protocols –
a challenging but rewarding task.

D19

France Télécom R&D

The need for ECN (2)
When is ECN needed?

• Not as often as you might think!
• Use of unaligned PER (or, for TLV-based protocols, of BER or DER) can often do 90% of

the job.
• But the last 10% matters!

The process of applying ECN:
Examine carefully the information content of messages, and define that in ASN.1
See if a combination of existing encoding rules will produce the required encoding
(if YES, you need only minimal ECN to switch between BER-encoded parts and PER-
encoded parts)
Otherwise identify the specialised encodings that are needed.

Examples from ISO 7816-4:
• The length field for Lc is an integer, but (if it is small enough) it can be encoded as either

a short form or a long form, as an encoder’s option (subject to constraints based on
previous messages), with the choice determined by whether the first octet is “00” or not.

• The Le field is an integer in the range 1 to 256, with the encoding “00” representing 256.
• These “curiosities” in an encoding cannot be handled by PER or BER, and need ECN to

provide specialized encodings for these fields.
There are some, but not many, places in ISO 7816-4 that need specialized
encodings

D20

France Télécom R&D

The ECN notation

Encoding Control Notation (ITU-T Rec. X.692 | ISO/IEC 8825-3)
Formal notation supported by tools
Helps integration: a common notation, common tools, for all protocols
Classification of techniques used in legacy protocols:

• length, choice, optionality determination,
• padding bits, alignment, self-delimited encodings…

ECN modules applied to ASN.1 modules:
• an encoding object defines the encoding of an ASN.1 type;
• the ASN.1 specification is “pure”: it only deals with data that has semantics

for the communicating applications;
• the ECN specification inserts auxiliary fields into the encoding structure

that are specific to the encoding
The addition of ECN to ASN.1 makes it very powerful in this area
Information, download: http://asn1.elibel.tm.fr/ecn

D21

France Télécom R&D

The Big Picture - ECN concepts

ASN.1 module

ASN.1
type

Standard Encoding Rules

e.g., BER,
PER XER

Specifies standard
encoding for types

Encoding definition modules

Encoding
class

Encoding
object

One encoding link module

Application
of encoding

Encoding
structures for
types

One possible
encoding for
each type

Applies
encodings to
types

Specifies
information
content
of a protocol
or message

References
specialized
encodings

References
standardized
encodings

D22

France Télécom R&D

In summary

All ASN.1 type definitions implicitly define (generate, in ECN terms) a basic “encoding
structure” which contains only the fields needed to carry the information content of the
ASN.1 type.

If, for example, BER is applied to this encoding structure, additional T and L fields will
be added. If PER is applied to this structure, different fields will be added for
determinants.

Means of encoding length, choice, and optionality determination are very varied (this is
one of the main focuses of ECN) and we need to control the addition of such fields, and
identification of their use as determinants.

Approaches to extensibility are very varied, all involve either differential encode/decode
or trailing bits in encodings. Use of “tail-end optionality” – if there are any bits left, use
them – is common.

D23

France Télécom R&D

Encodable item – an early concept
Part of an ASN.1 definition whose encoding can be independently specified.

Originally just the definition of encodings of bit-fields (boolean, integer, etc).
This is a straight-forward part of ECN!

Extended to the definition of procedures for length, repetition, choice, and
optionality determination, and for transforming values, for example, by adding a
constant value, or …. (a number of different transformations are available).

All encodable items can have an encoding defined for them that covers all
possible values of that item.

For a bit-field such as boolean or integer, the specification would cover the
encoding of all possible values.

For a procedure such as optionality determination, the specification covers how
the presence or absence is to be determined (often using some other field).

D24

France Télécom R&D

Detailed ECN - Encoding classes
The set of all possible encodings for an encodable item.

Includes encoding definitions for bit-fields (boolean and integer classes).

Includes definitions for handling sequence-of, optionality, etc.

The definitions of the encoding are encoding objects for the encoding class.

Encoding classes start with a “#” to make a clear distinction from ASN.1 types.

Examples: #INTEGER, #SEQUENCE, #My-defined-type.

These are synonyms for primitive classes #INT, #CONCATENATION.

These form the building blocks of encoding structure definitions.

D25

France Télécom R&D

Detailed ECN - Encoding
structure definitions

Specify the structure of fields (and construction mechanisms) in an encoding.

Similar to ASN.1 type definition, but underlying concepts very different.

Fundamental to ECN work.

The basic concept is that we can define the structure of an encoding (including
determinant fields) and then map the ASN.1 abstract information content into
some of those fields, defining the others as providing determinants.

D26

France Télécom R&D

Detailed ECN - Syntax to define
encoding objects

Encoding objects are to encoding classes as ASN.1 values are to
ASN.1 types:

my-int INTEGER ::=

my-boolean-encoding #BOOLEAN ::=

The syntax on the right for defining an encoding object of class
#BOOLEAN is specific to the #BOOLEAN class, and differs from the
#INT class syntax.

Some examples of the syntax for defining encoding objects is given in
the supplementary slides.

D27

France Télécom R&D

Detailed ECN - Encoding
structures

Describe the structure of an encoding.

Implicitly generated structures are defined as being produced by all ASN.1 type
definitions.

Explicitly generated structures are similar to an ASN.1 type definition, and are
freely written by the ECN specifier. Typically, the values carried by the fields of
an implicitly generated structure will be mapped into the fields of an explicitly
generated structure, and the values of other fields will be defined as
determinants.

Encoding objects both encode fields and perform transformations and identify
procedures for determinants.

D28

France Télécom R&D

Detailed ECN – A (fairly!) simple
example (1)

My-type ::= INTEGER (1..65536)

We want an encoding in which integer values 1 to 255 encode in a single octet, but values
above that have a zero octet then two octets giving the value, with all zeros in the last two
octets meaning 65536. (This is almost – but not quite! – the Lc field of ISO/IEC 7816-4. It is
“not quite” because values 1 to 255 can also be encoded in the 3 octet form. That adds an
encoder’s option that is not covered here.)

D29

France Télécom R&D

Detailed ECN – A (fairly!) simple
example (2)
The implicitly generated structure is just:

#My-type ::= #INTEGER (1..65536)

We define the explicit encoding structure as:
#My-type-encoding ::= #ALTERNATIVE {

one-octet #INTEGER (1..255),

three-octet #CONCATENATION {

determinant #PAD,

value #INTEGER (256..65536) }

There are three further things to do: We need to specify that the values of #My-type map
into the “one-octet” and “value” fields of #My-type-encoding; We need to specify that
#PAD is all zeros; We need to specify that the alternative determination depends on the value
of the first octet of the chosen alternative (zero or non-zero). All this is possible in ECN!

D30

France Télécom R&D

Detailed ECN - Coloring

It is frequently the case that some integers in a protocol need one sort of encoding,
and others a different one. Thus Lc is an INTEGER, but so are some fields that are
encoded in a more “normal” fashion!

It is necessary to distinguish between which integers are encoded one way and
which are encoded another way. (That is, what encoding object to apply to one
and what encoding object to apply to the other.) Another example is differences in
optionality determination.

This is normally handled by “coloring” – one is a “red” integer, and the other is a
“blue” integer. This has to be identified. (ECN does not use the word “coloring”.)

This is usually done by a RENAMES clause, changing the class name of one or
more fields in a generated structure.

Coloring is generally only needed for “generic” specification – see later.

D31

France Télécom R&D

Detailed ECN – Coloring example

Coloring-module {joint-iso-itu-t(2) -- etc. --}

ENCODING-DEFINITIONS ::=

BEGIN

IMPORTS

EXPORTS

RENAMES

#OPTIONAL AS #My-Optional IN ALL;

#SEQUENCE-OF AS #My-Sequence-of

IN ALL EXCEPT #Group-Identity-Uplink, #Proprietary;

#INTEGER AS #Mod256Int IN #Command-Lc-Length;

-- etc

END

D32

France Télécom R&D

Generic definitions

It is (fairly) easy to define special encodings (adding determinants, specifying
encodings of fields and constructions) for any single given ASN.1 type.

It is generally more difficult to define a complete set of new encoding rules
that can apply to any (perhaps not-yet-defined ASN.1 type).

ECN addresses this, but for a specific protocol, it is often simpler to encode
the given definitions, not to produce generic encoding rules.

Generic definitions (and coloring) are probably going to be needed for
SIMPLE-BER encoding in ISO/IEC 7816-4.

D33

France Télécom R&D

Parameterization is key to
generic definitions

It is possible to specify that the first action of an encoding object (particularly an encoding
object for the #OPTIONAL class of procedures) is to do a replacement of the optional
element. But the element can be anything. So we use parameterization.

For example, adding a preceding presence bit for optionality:
We replace

#Any-class #OPTIONAL

with
#New-component {< #Any-class >} ::=

#SEQUENCE { presence-bit #BOOL,

component #Any-class #My-Inner-Optional }

The #My-Inner-Optional identifies the “presence-bit” as the optionality determinant
for the “component” in the structure.
This is advanced stuff and unfortunately requires a good understanding of ASN.1
parameterization!

D34

France Télécom R&D

How to go about using ASN.1
plus ECN (1)?

The first task is to try to understand the protocol being worked on, and to
determine its information content.

That is never easy! Experience has shown that a domain expert working with an
ECN expert is essential in producing an ASN.1+ECN specification.

For ISO/IEC 7816-4, there are many parts of it that are already close to ASN.1
(use of the BER-TLV encodings). However, SIMPLE-TLV is ASN.1 BER-like, but
will need ECN to define the encodings.

For BER-TLV parts, the only real issue is to check carefully that no changes or
restrictions have been placed on BER. However, the ability to include “00” and
“FF” bytes at random before, between, and after TLV encodings is likely to be a
problem. Do these contribute to the “L” part of an enclosing “TLV”? This may
need a pre-filter.

D35

France Télécom R&D

How to go about using ASN.1
plus ECN (2)?

As with most work on ECN, putting brain-cycles in can often produce simple and
elegant (but not obvious) solutions. So, for example, defining the “T” part of a TLV
encoding as having arbitrary padding octets of “00” or “FF” could be possible to
solve the problem of those octets, but it would not address those that are inserted
after the last TLV – more thought needed!

There are also questions to be resolved on whether absence of an Lc field can be
determined by the CLA or INS fields, or whether it has to be based on how many
octets remain in the message. Only a domain expert can answer such questions,
and the need for complicated ECN (or not!) depends very much on the answer.

In general, understanding a specification is greatly eased (and speeded) by
interaction with people involved in its development.

D36

France Télécom R&D

How to go about using ASN.1
plus ECN (3)?

Once the protocol is fully understood, bog-standard ASN.1 can be produced for the
information content of its messages.

That is in principle easy! But there are always choices. Use of a BOOLEAN or an
INTEGER or an ENUMERATED can often make a big difference to the readability of
the ASN.1, and to the ease of producing ECN for it. This is an issue of the quality
of the result.

For ISO/IEC 7816-4, there are many parts of it that are already close to ASN.1
(use of the ASN.1 BER TLV-style encodings), and can be cast into ASN.1 notation
very easily.

For these parts, the only real issue is to check carefully that no changes or
restrictions have been placed on BER

D37

France Télécom R&D

How to go about using ASN.1
plus ECN (4)?

To be pure or not to be pure, that is the question!

It is often the case that inclusion of “determinants”, or of additional “reserved
values” (encoding aspects) in the ASN.1 specification itself can reduce or
eliminate the need for an ECN specification.

This is generally considered “dirty”, but is often pragmatically the best answer.

An example of “dirt”: PER normally encodes an integer with a range of -128 to 127
as the hex values 00 to FF. But a protocol wants to encode it as a 2’s complement
integer. ECN can be used to do this. But a “dirty” pragmatic solution is to define it
as on the following slide …

D38

France Télécom R&D

How to go about using ASN.1
plus ECN (5)?

We define:
MyInt ::= CHOICE {

positive INTEGER (0..127),

negative INTEGER (-128..-1) }

and encode with the standard PER encoding rules.

You need to understand PER to know why this works!

But it gives a two’s complement encoding without using ECN.

It is VERY VERY dirty! But it allows ASN.1 tools to be used. At least one
International Standard has chosen to take this approach.

D39

France Télécom R&D

How to go about using ASN.1
plus ECN (6)?

The above illustrates that to efficiently deploy ASN.1 with ECN, you need:
A domain expert that fully understands the protocol being defined
An ASN.1 expert that both understands the ASN.1 notation AND its encoding rules
An ECN expert that is conversant with the functionality and (less important) syntax of
ECN.

Access to an ECN tool to check for incorrect syntax is also desirable!

D40

France Télécom R&D

Reams and reams of ECN?

NO!

For most protocols only a small amount of ECN is needed – the
bulk is almost always standard ASN.1.

There are often only a few special encodings needed, and they
tend to be repeatedly used.

D41

France Télécom R&D

Using ASN.1 for a legacy protocol
Write the ASN.1 - no auxiliary fields, no encoding influence! Just clearly identify
the information content.

Then get dirty – that is, pragmatic!

To be pure or not to be pure, that is the question - again!

You can often get the encoding you want by slightly contorting the ASN.1 rather
than using ECN. It is important to get the balance right.

Apply “coloring” if needed.

Define mappings of structures

Define any needed encoding objects.

Applying the encodings (this is easy boiler-plate stuff, but ECN can be used to
combine BER and PER encodings, alongside specially-defined encodings).

D42

France Télécom R&D

Model for defining simple bit-field
encoding objects

101011110

Encoding so far

Alignment from start of encoding

Encoding-space
pre-padding

Encoding-space unit

Encoding-space

Value-encoding

1001100100100100

Value pre-padding

Value post-padding

Encoding then added to bits-on-the-line, possibly with
bit, octet, etc reversal

Likely not needed for ISO/IEC 7816-4!

D43

France Télécom R&D

Example #BOOL encoding object

my-bool-encoding #BOOL ::=

{ENCODING-SPACE

SIZE 1

MULTIPLE OF bit

TRUE-PATTERN bits:'0'B

FALSE-PATTERN bits:'1'B }

#BOOL2 ::= #BOOL

my-bool2-encoding #BOOL2 ::=

{ENCODING-SPACE

ALIGNED TO NEXT octet

SIZE 1

MULTIPLE OF octet

VALUE

TRUE-PATTERN octets:'00'H

FALSE-PATTERN other }

D44

France Télécom R&D

Defining encoding objects (1)
Use “defined syntax” (see ITU-T Rec. X.692 | ISO/IEC 8825-3, Annex A and
previous slide) – this is pretty simple for specialised encodings of bit-fields.

Use an existing encoding object set – utterly simple! When it works!:

per-int-encoding #INTEGER ::= {ENCODE WITH PER-BASIC-UNALIGNED}

per-structure1-encoding #Structure1 ::= {ENCODE WITH DER}

Use value mappings – the advanced stuff! True ECN!:
encoding-for-old-class #Old-class ::=

{ USE #Replacement-structure

MAPPING

......

WITH {ENCODED WITH PER-BASIC-UNALIGNED}

-- The above line is defining encoding

-- for the class #Replacement-structure.

-- The whole definition defines the encoding

-- for #Old-class --}

D45

France Télécom R&D

Defining encoding objects (2)

Encoding a structure component by component:
#My-Sequence ::= #SEQUENCE {

a #Structure1,

inserted #BOOLEAN,

b #INTEGER #OPTIONAL,

c #OCTET-STRING }

An encoding object could be:
My-sequence-encoding #My-Sequence ::= {

ENCODE STRUCTURE {

b OPTIONAL-ENCODING

{ PRESENCE DETERMINED BY field-to-be-set

USING inserted }}

WITH PER-BASIC-UNALIGNED }

D46

France Télécom R&D

Mapping values (1)

These slides illustrate some of the functionality of ECN. Most functionality will
probably NOT be needed for ISO/IEC 7816-4!
Mapping single values:
encoding-for-old-class #UTF8String ::=

{ USE #INTEGER

MAPPING VALUES {

"0" TO 0, "1" TO 1, "2" TO 2, "3" TO 3,

"4" TO 4, "5" TO 5, "6" TO 6, "7" TO 7,

"8" TO 8, "9" TO 9, "*" TO 10, "#" TO 11 }

WITH encoding-of-integer }

Mapping by matching fields (usually when determinants are added):
encoding-for-old-class #Old-class ::=

{ USE #Replacement-class

MAPPING FIELDS

WITH encoding-of-replacement-class }

Mapping using #TRANSFORM objects:
encoding-for-old-class #INTEGER1 ::=

{ USE #INTEGER2

MAPPING TRANSFORMS { {INT-TO-INT divide:2} }

WITH encoding-of-integer2 }

D47

France Télécom R&D

Mapping values (2)

Mapping by abstract value ordering:
encoding-for-old-class #Old-class ::=

{ USE #Replacement-class

MAPPING ORDERED VALUES

WITH encoding-of-replacement-class }

Mapping by distributing values:
encoding-for-old-class #Old-class ::=

{ USE #Replacement-class

MAPPING DISTRIBUTION {

0 .. 9 TO field1,

10 .. 99 TO field2,

REMAINDER TO field3}

WITH encoding-of-replacement }

Mapping integer values into bits and Huffman encodings

D48

France Télécom R&D

Example of a complete ECN module

EncodingLinkModule LINK-DEFINITIONS ::= BEGIN

IMPORTS

Specialized-encodings FROM EncodingDefinitionModule

#TopLevelType FROM ASN1Module;

ENCODE #TopLevelType WITH Specialized-encodings COMPLETED BY PER-BASIC-UNALIGNED

END

EncodingDefinitionModule ENCODING-DEFINITIONS ::= BEGIN

IMPORTS #BooleanType, #PositiveInteger, #NegativeInteger, #BitStringType,

#OctetStringType, #CharacterStringType, #NormallySmallValues,

#SparseEvenlyDistributedValueSet, #IntegerRightAligned, #ChoiceBetweenIntegers

FROM Example-ASN1-Module;

Specialized-encodings #ENCODINGS ::= { -- encoding object set

bool-encodingobject | positiveInteger-encodingobject |

negativeInteger-encodingobject | bitString-encodingobject -- ... -- }

sparseEvenlyDistributedValueSet-encodingobject
#SparseEvenlyDistributedValueSet ::= {

USE #INT (0..7) MAPPING ORDERED VALUES WITH integer-Encoding }

-- ...

END

D49

France Télécom R&D

ECN and legacy protocols
Context:

Protocol messages have originally been specified without ASN.1, e.g., as bits
diagrams or tables of parameters or in simple English.

Problem:
Need for ASN.1 to express logical message contents, e.g., for test purposes,
for clarity, for API specification, or to enable ASN.1 tools to be used for
implementation.

Solution:
ECN can be used to fill the gap between message content definitions and
message encoding

Use of ASN.1 plus ECN produces:
Separation of abstract message content and auxiliary information
Clear specification of presence and length determinants, and avoidance of
ambiguity
But …. A complex message encoding => complex ECN! Unavoidable!

D50

France Télécom R&D

ECN and specialization

Context:
Protocol messages can easily be defined using ASN.1
Standard ASN.1 encoding rules (e.g., UNALIGNED PER, or BER) can
be used to provide encoding for messages in almost all cases.

Problem:
Standard encoding rules do not provide all the needed encodings, or a
mix of PER and BER is needed.

Solution:
Use standard encoding rules for the majority of encodings
Use ECN for specialized encodings, and to identify when BER is to be
used and when PER is to be used

D51

France Télécom R&D

Application domains

UMTS (RAN, GERAN)
GSM, GPRS
Bluetooth
HIPERLAN
TETRA (Terrestrial Trunked Radio)
SS7 ISUP (ISDN User Part)
INAP (Intelligent Network Application Protocol)
SCCP (Signalling Connection Control Part)
Can we add ISO/IEC 7816-4?

D52

France Télécom R&D

Some free ECN tools

OSS Nokalva syntax and semantics checker (ASN.1, ECN):
http://www.oss.com/products/checksyntax.html

France Telecom R&D ECN syntax checker and pretty-printer:
http://asn1.elibel.tm.fr/ecnp

List of other tools:
http://asn1.elibel.tm.fr/links/#ecn

D53

France Télécom R&D

ISO/IEC 7816-4 First example (1)

Let us take the “simple” case of the encoding of an integer for a length of 1 to 256
(or 1 to 65536) with zero representing 256 (or 65536).

How to do that? Brain-CPU-cycles whir!

Maybe a CHOICE, with field-mappings? That would probably work.

Maybe mapping to bits? That looks simpler:
special-integer-encoding #Lc ::= {

USE #BITS (SIZE (8))

MAPPING TO BITS {

256 TO '00'H,

1 .. 255 TO '01'H .. 'FF'H }

WITH PER-BASIC-UNALIGNED }

But there is another option!

D54

France Télécom R&D

ISO/IEC 7816-4 First example (2)

ISO/IEC 7816-4 is actually specifying a well-known mathematical transform
(although it does not say so!)

Try this:
special-integer-encoding #Lc ::= {

USE #INT (0 .. 255)
TRANSFORM {INT-TO-INT modulo:256} }

This says that the Lc value is to be encoded in an integer field capable of
carrying values in the range 0 to 255, with the value encoded being the
original value taken modulo 256.

Which do you prefer? Mapping to bits or the modulo transformation? This is
purely a matter of style! They both work.

D55

France Télécom R&D

ISO/IEC 7816-4 Second example

If extended encodings are agreed, then 7816-4 allows an Lc value (which is in the
range 1 to 65536) to be encoded as EITHER a single octet OR as three octets if it is in
the range 1-255 (as an encoder's option).

This needs to be specified as an encoder's option in ECN. We get an ECN
specification for an encoding object for Lc of:

encoding-of-Lc #Lc ::= {

OPTIONS {one-octet-encoding, three-octet-encoding}

WITH {DETERMINED BY use-handle

HANDLE "first-octet" }

-- The last line tells a decoder how to distinguish the two cases

The one-octet-encoding and three-octet-encoding need to be defined as outlined earlier.
They need to declare a handle of "first-octet", which in one case will be any non-zero
value, and in the other case a zero value.

D56

France Télécom R&D

ISO/IEC 7816-4 Third example (1)
This example is pure ASN.1 – no ECN is involved. The majority of new text (if
it is agreed to use ASN.1) will be like this. (Forget the esoteric stuff!)

Tables 2 and 3 in the current draft (see 5.1.1) would be replaced or
supplemented (probably with added comments) by:

CLA ::= CHOICE {

inter-industry-class Inter-Industry-CLA,

other-class UndefinedClass }

UndefinedClass ::= BIT STRING (SIZE (7))

-- Values and meaning not standardized

Inter-Industry-CLA ::= CHOICE {

type-four Type-Four-CLA,

type-sixteen Type-Sixteen-CLA } (cont)

D57

France Télécom R&D

ISO/IEC 7816-4 Third example (2)
Type-Four-CLA ::= CHOICE {

current Type-Four-2002,

reserved BIT STRING (SIZE (5)) }

Type-Four-2002 ::= SEQUENCE {

last-or-only-of-chain BOOLEAN,

secure-messaging ENUMERATED {

no-SM-or-no-indication,

proprietary-SM-format,

SM-not-authenticated,

SM-authenticated },

logical-channel-number INTEGER (0..3) }

Type-Sixteen-CLA ::= SEQUENCE {

no-SM-or-no-indication BOOLEAN,

last-or-only-of-chain BOOLEAN,

logical-channel-number INTEGER (0..15) }

D58

France Télécom R&D

Bottom line stuffBottom line stuff
Does SC17 want to proceed with the inclusion of an ASN.1 (with ECN where
necessary) specification?

As a replacement of current text, or as a separate normative annex?

Is there a "domain expert" prepared to work with ASN.1/ECN experts on this?

What is the time-scale for production of the ASN.1+ECN specification?

Decision time! (Hope I manage to get to this slide!)

D59

France Télécom R&D

ASN.1 and XML

How each can benefit the other

This may not be directly relevant to ISO/IEC 7816-4, but is
likely to be of interest.

(Time permitting, the following slides will be presented!)

D60

France Télécom R&D

Benefits of a linkage
between ASN.1 and XML

Allows a closer integration of XML schema
specification languages and traditional tools
for protocol implementation
Browser support to display ASN.1 values
(useful for testing and monitoring purposes)
Very compact encodings become available
for XML
Exploits the very real advantages of both

ASN.1/XML
Application

Mobile
application

Browser

SGBD,
Excel…

XML
(+ XSL)
HTML

Compact
binary encoding

(PER, ECN)

Textual encoding

D61

France Télécom R&D

XER encoding rules

XML Encoding Rules, ITU-T Rec. X.693 | ISO/IEC 8825-4
Defines an XML syntax (with a canonical variant) for ASN.1 values
Offers the advantages of both techniques (win-win) :

Display in a browser data encoded in BER, DER or PER
ASN.1 applications can now generate XML data
Compact (PER, ECN) and/or canonical (DER) transmission of data:

• XML has no efficient and mature binary encoding (Binary XML is not a
good answer)
• PER reduces the size by a factor 3 to 4 over a Binary XML encoding
• XML has no easy-to-implement canonical encoding for digital signatures

Encodings associated with ASN.1 are now binary and textual
The ASN.1 module is the unique schema to validate data
Used by OASIS XCBF (XML Common Biometric Format),
OASIS UBL (Universal Business Language),
ITU-T Rec. F.515 (Unified Directory Specification)…
More information: http://asn1.elibel.tm.fr/xml

D62

France Télécom R&D

XER-encoding example (1)
ChildInformation ::= SEQUENCE {

name AnyName,

dateOfBirth INTEGER (1..MAX) } -- yyyymmdd

AnyName ::= SEQUENCE {

givenName VisibleString,

initial VisibleString (SIZE (1)) OPTIONAL,

familyName VisibleString }

<ChildInformation>

<name>

<givenName> Lee </givenName>

<familyName> Owen </familyName>

</name>

<dateOfBirth> 19501003 </dateOfBirth>

</ChildInformation>

D63

France Télécom R&D

XER-encoding example (2) – Yup,
it’s ISO/IEC 7816-4!

<Type-Four-CLA>
<current>

<last-or-only-of-chain>
<true/>

</last-or-only-of-chain>
<secure-messaging>

<no-SM-or-no-indication/>
</secure-messaging>
<logical-channel-number>

5
</logical-channel-number>

</current>
</Type-Four-CLA>

Would this be interesting or not???

D64

France Télécom R&D

XER encoding instructions

Ability to tune the generated XML encoding (ITU-T Rec. X.693/Amd. 1):

<employee id="51">
<recruited>19710917</recruited>
<salaries>121.96 76</salaries>

</employee>

Company DEFINITIONS ::= BEGIN
Employee ::= SEQUENCE {

id INTEGER(0..MAX),
recruited Date,
salaries SEQUENCE OF salary REAL }

ENCODING-CONTROL XER
NAME Employee AS UNCAPITALIZED
ATTRIBUTE Employee.id
LIST Employee.salaries

END

Company DEFINITIONS ::= BEGIN
Employee ::= [UNCAPITALIZED] SEQUENCE {

id [ATTRIBUTE] INTEGER(0..MAX),
recruited Date,
salaries [LIST] SEQUENCE OF salary REAL }

END

or

D65

France Télécom R&D

So… ASN.1 today offers….
A simple, mature, well-known (among the best people!) notation for
protocol (abstract syntax == API) definition.
V1 with V2, etc, interworking, with support for vendor-specific
additions in a controlled way (the ASN.1 Information Object Class
and related concepts). **
Support for “legacy” protocols
Ability to generate XML marked-up data.
Very strong links with SDL and TTCN. **
Mappings to C, C++, Java, etc. **
Good support via mature canonical encodings, for security concepts.
**

Wide use in a large range of industries: **
Keeping the lights burning!
Portable phones – we need them!
Keeps aircraft from crashing!
Your impending marriage could suffer!

* = Not really discussed* = Not really discussed

D66

France Télécom R&D

Questions? And perhaps some
answers? Are you interested?

No
!

No
!

AS
N

AS
N.
1
ov
er
lo
ad
!!

.1
 o
ve
rl
oa
d!
!

D67

France Télécom R&D

Example of an EDM

Example-EDM {joint-iso-itu-t(2) -- to be supplied --} ENCODING-DEFINITIONS ::=

BEGIN

RENAMES;

IMPORTS

#MyType -- Implicit encoding class for an ASN.1

FROM Example-ASN1; -- type, #MyType ::= #INT (0..7)

MyEncodings #ENCODINGS ::= { myType-encoding }

-- Encoding object set with one object.

myType-encoding #MyType ::= { -- Encoding object which produces

ENCODING { -- the same encoding as PER would.

ENCODING-SPACE

SIZE 3

MULTIPLE OF bit

ENCODING positive-int } }

END

D68

France Télécom R&D

The Encoding link module (ELM)

A (unique) link module specifies how encoding objects are applied to ASN.1 types

Example-ELM LINK-DEFINITIONS ::=

BEGIN

IMPORTS

#MyType -- Implicit encoding class for an ASN.1 type

FROM Example-ASN1

MyEncodings -- Encoding object set containing

-- an encoding object for #MyType

FROM Example-EDM;

ENCODE #MyType -- MyEncodings is used for #MyType

WITH MyEncodings

COMPLETED BY PER-BASIC-UNALIGNED

-- The rest is encoded using PER

END

D69

France Télécom R&D

Applying encodings

Define encoding objects for encoding classes.
Form an encoding object set (only one object for each class).
“Apply” (in the ELM) an encoding object set to an ASN.1 type.
Not quite true - to a structure generated from the ASN.1 type.

D70

France Télécom R&D

Syntax to define encoding
objects

Encoding objects are to encoding classes as ASN.1 values are to ASN.1
types:

my-int INTEGER ::=

my-boolean-encoding #BOOLEAN ::= ...…

Governor concept carries over.

D71

France Télécom R&D

Encoding structures

Describe the structure of an encoding.
Implicitly generated structures derived from ASN.1 type definitions.
Explicitly generated structures transform these into the actual fields needed in
the final encoding.
Encoding objects both encode fields and perform transformations.

D72

France Télécom R&D

Encoding structure features

Encoding structures are simpler than ASN.1 types, but still have primitive fields
and constructors.
Primitive fields could be just bit strings, but easy mapping from ASN.1 requires
richer primitive fields.
Constructors have different names from ASN.1 because they operate on bit-
fields, not on abstract values.

D73

France Télécom R&D

Encoding structure definition (1)
#Structure1 ::= #CONCATENATION {

field1 #INT,

-- Comment can be embedded, as in ASN.1

field2 #BOOL,

field3 #NUL,

field4 #PAD,

field5 #ALTERNATIVES {

alt1 #CHARS,

alt2 #BITS },

field6 #REPETITION { #OCTETS },

field7 #Structure2 }

#Structure2 ::= #CONCATENATION {

field1 #OBJECT-IDENTIFIER,

field2 #RELATIVE-OID,

field3 #OPEN-TYPE,

field5 #REAL,

field6 #Structure3 }

D74

France Télécom R&D

Encoding structure definition (2)

#Structure3 ::= #TAG #CONCATENATION {

field1 #BOOL,

field2 #INT #OPTIONAL,

field3 #TAG #Structure4,

field4 #INT (0..7),

field5 #OCTETS (SIZE (6)) }

#Structure4 ::= #CONCATENATION {

field1 #INT,

#EXTENSIONS {

#VERSION-BRACKET {

field1 #INT,

field2 #BOOL } ,

#VERSION-BRACKET {

field1 #CHARS,

field2 #OCTETS } } ,

field2 #BOOL,

field3 #Structure5 }

D75

France Télécom R&D

Encoding structure definition (3)

#Structure5 ::= #SEQUENCE {

field1 #INTEGER,

-- Looks rather like #Structure1, yes?

-- But the names are more like ASN.1

field2 #BOOLEAN,

field3 #NULL,

field5 #CHOICE {

alt1 #UTF8String,

alt2 #BIT-STRING },

field6 #SEQUENCE-OF {

#OCTET-STRING } }

D76

France Télécom R&D

Built-in synonyms for classes

#SEQUENCE ::= #CONCATENATION

#INTEGER ::= #INT

#BOOLEAN ::= #BOOL

#NULL ::= #NUL

#CHOICE ::= #ALTERNATIVES

#UTF8String ::= #CHARS

#BIT-STRING ::= #BITS

#SEQUENCE-OF ::= #REPETITION

#OCTET-STRING ::= #OCTETS

Note the assignment of synonyms for Note the assignment of synonyms for
constructor classes.constructor classes.

D77

France Télécom R&D

Implicitly generated encoding
structures

ASN.1 types => Implicit structure.
Value references resolved.
Named bits ignored.
Names of enumerations lost.
Parameterization resolved.
Components of and Selection types expanded.
etc.

D78

France Télécom R&D

ASN.1 example

Color ::= [1] INTEGER {red(10), orange(20), yellow(30),

green(40), blue(50), indigo(60), violet(70)}

Version ::= [2] BIT STRING {version1(0), version2(2)}

My-type ::= SEQUENCE {

field1 Version,

field2 Color,

field3 CHOICE {

alt1 [3] INTEGER (0..15),

alt2 [4] INTEGER (16..MAX) },

field4 SEQUENCE OF

OCTET STRING (SIZE (6)) DEFAULT ‘000000'B}

D79

France Télécom R&D

Corresponding implicitly
generated structure

#Color ::= #TAG #INTEGER

#Version ::= #TAG #BIT-STRING

#My-type ::= #SEQUENCE {

field1 #Version,

field2 #Color,

field3 #CHOICE {

alt1 #TAG #INTEGER (0..15),

alt2 #TAG #INTEGER (16..MAX) },

field4 #SEQUENCE-OF {

#OCTET-STRING (SIZE (6)) #OPTIONAL }

D80

France Télécom R&D

Explicitly generated encoding
structures

Sometimes called “coloring” an implicitly generated structure.
Replacing some classes with synonyms to identify places needing different
encodings.

EDM-coloring-module {joint-iso-itu-t(2) -- to be supplied --}

ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS My-encodings; -- An object set containing all specialized encodings

RENAMES

#OPTIONAL AS #My-Optional IN ALL

#SEQUENCE-OF AS #My-Sequence-of

IN ALL EXCEPT #Group-Identity-Uplink, #Proprietary;

-- etc

END

D81

France Télécom R&D

Defining encoding objects –
another example

Differential encode/decode:
object-for-tail-end-additions #PAD ::=

{ ENCODE-DECODE

-- Specifies an empty encoding for ENCODE

{ENCODING-SPACE

SIZE fixed-to-max

PAD-PATTERN bits:''B}

DECODE AS IF

{SIZE variable-with-determinant

DETERMINED BY container}}

User-defined functions:
encoding-of-funny-type #Funny-type ::=

NON-ECN-BEGIN {joint-iso-itu-t –- etc --} -- specifies the notation used

-- Pseudo-code for encoding values of #Funny-type

......

-- Pseudo-code for decoding values of #Funny-type

......

NON-ECN-END

D82

France Télécom R&D

ECN & Bluetooth

ECN has been used to (re-)define the Bluetooth “Service Discovery Protocol”

Provides greater precision, and a formal definition

Rules for extensibility (version-1 actions on receipt of version-2 data) are more
explicit

Can use ASN.1 (and hence SDL, etc) tools for Bluetooth implementations

There was some difficulty in determining what "extensions" were envisaged for
Bluetooth version 2, and what extensions equipment suppliers could make in
their version 1 specifications.

More at http://asn1.elibel.tm.fr/en/ecn/bluetooth/

D83

France Télécom R&D

Bluetooth Service Discovery Protocol
(ASN.1 with ECN) – a snippet

bluetooth-tag-encoding #TAG ::=

{ENCODING SPACE SIZE 8

EXHIBITS HANDLE “Bluetooth tag” AT {0..7} }

more-bit-delimited-repetition{< REFERENCE:more-bit > #REPETITION ::=

{REPETITION-ENCODING

{REPETITION-SPACE

SIZE variable-with-determinant

MULTIPLE OF octet

DETERMINED BY flag-to-be-set

USING more-bit } }

D84

France Télécom R&D

Additional slides

(HIPERLAN example)

D85

France Télécom R&D

ECN and legacy protocols

Context:
Protocol messages have originally been specified without ASN.1, e.g., as octet tables

Problem:
Need for ASN.1 to express logical message contents, e.g., for test purposes

Solution:
ECN can be used to fill the gap between message content definitions and message
encoding

Forces:
Separation of abstract message contents and auxiliary information
Specification of presence and length determinants
Complex message encoding => complex ECN

D86

France Télécom R&D

Hiperlan example

Purpose of the example:
Show how messages that were originally specified using tables can be
specified using ASN.1 and ECN

Real-life Hiperlan protocol:
Existing ASN.1 definitions
Existing tables for message encoding
RLC-RADIO-HANDOVER-COMPLETE-ARG used as an example
message

URL

D87

France Télécom R&D

Hiperlan - Message table form
8 7 6 5 4 3 2 1

Octet 1 Defined in DLC TS MSB Sequence number
Octet 2 Sequence number MSB EXTENSION-TYPE Future use
Octet 3 MSB RLC LCH PDU type
Octet 4 Future use mac-id-old
Octet 5 mac-id-old ap-id-old
Octet 6 ap-id-old net-id-old
Octet 7 net-id-old
Octet 8 mac-id-new
Octet 9 cl-id
Octet 10 Duc-ext-ind cl-conn-attr-length(L) # of DUC:s
Octet 11 # of DUC:s(N) Future use
Octet12 (DUC1) direction dlcc-id

Octet(12+L)
cl-connn-attr

Octet Y (DUC1-FW) allocation-type Future use cyclic-prefix fec-used ec-mode
Octet ... (DUC1-FW) arq-nr-of-retr Future use (DUC1-FW) arq-window-size

(DUC1-FW) fec Future Use
Octet ... sch-per-nb-frames lch-per-nb-frames
Octet ... nb-of-sch phy-mode-sch phy-mode-lch
Octet ... nb-of-lch
Octet ... min-nb-of-lch
Octet X (DUC1-BW) allocation-type Future use cyclic-prefix fec-used ec-mode
Octet ... (DUC1-BW) arq-nr-of-retr Future use (DUC1-BW) arq-window-size

(DUC1-BW) fec Future Use
Octet ... sch-per-nb-frames lch-per-nb-frames
Octet ... nb-of-sch phy-mode-sch phy-mode-lch
Octet ... nb-of-lch
Octet … min-nb-of-lch
Octet ...
Octet ...
Octet 51

Not used

Padding
bits

Octet-
aligned
fields

Length determinant field for
several octet fields

Presence determinants

D88

France Télécom R&D

Hiperlan - ASN.1

The ASN.1 definition for the RLC-RADIO-HANDOVER-COMPLETE-ARG
message is simple

Some determinant fields are visible in ASN.1:
cl-conn-attr-length, common length for all cl-conn-attr fields

fec-used presence determinant
Some reserved values:

ALLOCATION-TYPE

Otherwise the definitions are plain old ASN.1

⇒ ASN.1 definitions can be used as is after determinant fields have been
removed

D89

France Télécom R&D

Hiperlan - ASN.1
RLC-RADIO-HANDOVER-COMPLETE-ARG ::= SEQUENCE {

mac-id-old MAC-ID,

ap-id-old AP-ID,

net-id-old NET-ID,

mac-id-new MAC-ID,

cl-id CL-ID,

duc-ext-ind DUC-EXT-IND,

duc-descr-list DUC-DESCR-LIST}

There are additional requirements:
Every DUC-DESCR.cl-conn-attr in DUC-DESCR-LIST is of the same length.
This cannot be simply expressed formally in ASN.1 but will be enforced in the ECN
specification.

DUC-DESCR-LIST ::= SEQUENCE (SIZE(1..cMAX-DESCR-LIST)) OF DUC-DESCR

D90

France Télécom R&D

Hiperlan - ECN

Encoding structure
Insertion of padding bits

aux-future-use

aux-pad

Binding of determinant and determined fields
cl-conn-attr-length

fec-used

Space for reserved values
allocation-type

coder-type

interleaver-type

D91

France Télécom R&D

The encoding structure for RLC-RADIO-HANDOVER-COMPLETE-ARG has two
additional fields:

aux-future-use for the reserved bits,
aux-cl-conn-attr-length for length determinant for
duc-desc-list.*.cl-conn-attr

#RLC-RADIO-HANDOVER-COMPLETE-ARG-struct ::= #CONCATENATION {

aux-future-use #PAD, -- ** Inserted

mac-id-old #MAC-ID,

ap-id-old #AP-ID,

net-id-old #NET-ID,

mac-id-new #MAC-ID,

cl-id #CL-ID,

duc-ext-ind #DUC-EXT-IND,

aux-cl-conn-attr-length #INT(0..31), -- ** Inserted

duc-descr-list #DUC-DESCR-LIST }

Encoding structure for the message

D92

France Télécom R&D

Encoding object for the message

The encoding object for #RLC-RADIO-HANDOVER-COMPLETE-ARG
maps fields to the fields of the encoding structure;
specifies how padding is encoded;
links the determinant field to the determined fields.

rlc-radio-handover-complete-arg-encoding #RLC-RADIO-HANDOVER-COMPLETE-ARG ::= {

USE #RLC-RADIO-HANDOVER-COMPLETE-ARG-struct

MAPPING FIELDS

WITH { ENCODE STRUCTURE {

-- Components

aux-future-use reserved-bits-encoding{< 4 >},

duc-descr-list duc-descr-list-encoding{< aux-cl-conn-attr-length >}

-- Structure

STRUCTURED WITH per-sequence-encoding }}}

D93

France Télécom R&D

Encoding object for one message
field

Encoding of the DUC-DESCR-LIST

duc-descr-list-encoding{< REFERENCE : aux-cl-conn-attr-length >}
#DUC-DESCR-LIST ::= {

ENCODE STRUCTURE {

-- Components

duc-descr-encoding{< aux-cl-conn-attr-length >}

-- Structure

STRUCTURED WITH per-sequence-of-encoding}}

The length determinant
for a sub-field is passed
as an argument.

PER is used to construct
the rest of the list encoding

D94

France Télécom R&D

Encoding object for list element

duc-descr-encoding{< REFERENCE : aux-cl-conn-attr-length >} #DUC-
DESCR ::= {

ENCODE STRUCTURE {

-- Components

cl-conn-attr

cl-conn-attr-encoding{< aux-cl-conn-attr-length >},

forward-descr USE-SET OPTIONAL-ENCODING

-- simplex-forward, duplex, duplex-symetric

is-present-if{< direction, {0|1|3} >},

backward-descr USE-SET OPTIONAL-ENCODING

-- simplex-backward, duplex

is-present-if{< direction, {1|2} > }

-- Structure

STRUCTURED WITH octet-aligned-sequence-encoding}

WITH-PER-BASIC-UNALIGNED}

Length determinant
is passed further
down

List elements are
octet-aligned

Conditional fields

D95

France Télécom R&D

Encoding object for a field in the
list

Finally the length determinant is passed to the encoding object that uses it as a
length determinant for an octet string:

cl-conn-attr-encoding{< REFERENCE : aux-cl-conn-attr-length >}
#CL-CONN-ATTR ::= {

REPETITION-ENCODING {

REPETITION-SPACE

DETERMINED BY field-to-be-used

USING aux-cl-conn-attr-length }}

D96

France Télécom R&D

Spare values

Spare values can be expressed by reserving more encoding space for fields:
allocation-type-encoding #ALLOCATION-TYPE ::=

fixed-length-int-encoding{< 3 >}

Parameterized encoding object for fixed length integer fields
Two's complement, big-endian, size is nbits

fixed-length-int-encoding{< #CONDITIONAL-INT.&encoding-space-size:

nbits >} #INT ::= {

ENCODING { ENCODING-SPACE SIZE nbits }}

D97

France Télécom R&D

Collection of encodings

Encoding definitions are collected as an encoding object set:

Hiperlan-Encodings #ENCODINGS ::= {

rlc-radio-handover-complete-arg-encoding |

duc-direction-descr-encoding |

allocation-type-encoding |

arq-data-encoding |

fec-encoding |

fca-descr-encoding }

D98

France Télécom R&D

Hiperlan - ELM

Encodings are applied to top-level types in the ASN.1 module:

Hiperlan-ELM LINK-DEFINITIONS ::=

BEGIN

IMPORTS

#RLC-RADIO-HANDOVER-COMPLETE-ARG FROM Hiperlan-ASN1

Hiperlan-Encodings FROM Hiperlan-EDM;

ENCODE #RLC-RADIO-HANDOVER-COMPLETE-ARG

WITH Hiperlan-Encodings

COMPLETED BY PER-BASIC-UNALIGNED

END

D99

France Télécom R&D

Hiperlan example summary

Application of ASN.1 + ECN for Hiperlan is straightforward

ASN.1 definitions shall contain only application-specific definitions
Encoding structures contain also auxiliary fields like length and
presence determinants
Encoding objects

specify relations between determinant fields and determined fields
specify special encoding (octet-alignment, padding, spare bits)

The encoding link module applies the encoding objects to the ASN.1
types

D100

France Télécom R&D

ECN and specialization

Context:
Protocol messages are defined using ASN.1
Standard ASN.1 encoding rules (e.g., PER) are used to provide encoding for messages

Problem:
Standard encoding rules do not provide all the needed properties for encoding

Solution:
Use standard encoding rules for the majority of encodings
Use ECN to specialize encoding for wanted properties

Forces:
A kind of specialization vs. a generic property

D101

France Télécom R&D

Specialization of CHOICE index
encoding (1)

Context:
There is a top-level message container type which encapsulates specific messages and
provides identification for them

Messages ::= CHOICE {

a MessageA,

b MessageB,

c MessageC }

Problem:
New messages are wanted to be added in the container.
Encoding for the new messages should be similar to the old messages, i.e., no extension
container is needed.
The number of new messages is not limited

Solution:
Encode CHOICE index using a Huffman-like encoding

D102

France Télécom R&D

Specialization of CHOICE index
encoding (2)

The following encoding object specifies that the encoding structure for the
Messages type consists of

an aux-messageId field, which is used as a message determinant
a message field, which contains the selected message

messages-encoding #Messages ::= {

REPLACE STRUCTURE

WITH #Messages-struct

ENCODED BY messages-struct-encoding }

#Messages-struct{< #OriginalMessages >} ::= #SEQUENCE {

aux-msgId #MessageIdentifier,

message #OriginalMessages }

#MessageIdentifier ::= #INT

D103

France Télécom R&D

Specialization of CHOICE index
encoding (3)

The following encoding object specifies how the fields are encoded:
the aux-msgId field is encoded as an open-ended integer field;
the aux-msgId acts as a determinant for the message field.

messages-struct-encoding{<#OriginalMessages>}

#Messages-struct{<#OriginalMessages>} ::= {

ENCODE STRUCTURE {

aux-msgId msgId-encoding,

message {ALTERNATIVE DETERMINED BY field-to-be-set

USING aux-msgId }}

WITH PER-BASIC-UNALIGNED }

msgId-encoding #MessageIdentifier ::= {

USE #BITS MAPPING TO BITS {

0 .. 2 TO ‘000’B .. ‘010’B,

-- 0 = MessageA, 1 = MessageB, 2 = MessageC

3 TO ‘1’B

-- 3 = Extensions, like 10000, 10001, 10010 etc --}

WITH self-delimiting-bits }

D104

France Télécom R&D

Length determinant for SEQUENCEs
(1)

Context:
There is a group of SEQUENCE types which need to be extensible

MessageA ::= SEQUENCE {

-- Whatever

extensions MessageA-Extensions OPTIONAL }

MessageA-Extensions ::= SEQUENCE { -- Extensible -- }

Problem:
The size of the encoding needs to be smaller than in case of normal PER extensibility

Solution:
Introduce a length determinant for the selected SEQUENCE types
Length of encoding of extensions is delimited by the SEQUENCE length determinant

D105

France Télécom R&D

Length determinant for SEQUENCEs
(2)

The following generic encoding structure is used as a replacement structure
for extensible SEQUENCEs

#Sequence-with-length-determinant ::= #SEQUENCE

sequence-with-length-determinant-encoding
#Sequence-with-length-determinant ::= {

REPLACE STRUCTURE

WITH Seq-with-length-struct

ENCODEB BY seq-with-length-struct-encoding }

#Seq-with-length-struct{< #OrigSequence >} ::= #SEQUENCE {

aux-length #INT (0..512),

seq #OrigSequence }

D106

France Télécom R&D

Length determinant for SEQUENCEs
(3)

The following parameterized encoding object specifies that:
the aux-length field is used as a length determinant for the seq field;
length of seq field is measured in bits;
otherwise the normal PER rules are used.

seq-with-length-struct-encoding{< #OrigSeq >}

#Seq-with-length-struct{< #OrigSeq >} ::= {

ENCODE STRUCTURE {

-- aux-length as in PER

seq {ENCODING SPACE

SIZE variable-with-determinant

MULTIPLE OF bit

DETERMINED BY field-to-be-set

USING aux-length }}

WITH PER-BASIC-UNALIGNED }

D107

France Télécom R&D

Length determinant for SEQUENCEs
(4)

The generic encoding structure and encoding object are applied for
selected SEQUENCE types as follows:

RENAMES #SEQUENCE

AS #Sequence-with-length-determinant

IN #MessageA-Extensions, #MessageB-Extensions,

#MessageC-Extensions

FROM Example-ASN1;

As a result the property of length determined encoding is associated
with the selected SEQUENCE types

D108

France Télécom R&D

Context:
There are integer types which need to have limited extensibility
The maximum number of extensions can be predicted
It is specified what to do when a spare value is received

-- Used range in version 1 is 1..224,

-- values 225-256 are spare values.

-- If a spare value is received, then the following error

-- procedure shall be initiated...

ExtensibleInteger ::= INTEGER (1..256)

Problem:
Minimize the encoding size
Make sure that senders do not send spare values

Extension of value sets of
INTEGER types

D109

France Télécom R&D

Ignore spare values

The following encoding object specifies that
it is not allowed to send spare values but it is allowed to receive them.

extensibleInteger-encoding #ExtensibleInteger::= {

ENCODE-DECODE {

USE #INT (1..224) -- no padding bits needed

MAPPING ORDERED VALUES

WITH per-int-encoding }

DECODE-AS-IF per-int-encoding }

per-int-encoding #INTEGER ::= {

ENCODE WITH PER-BASIC-UNALIGNED }

D110

France Télécom R&D

Additional slides

(character-based vs. binary
encoding)

D111

France Télécom R&D

The Montagues and Capulets

A long and on-going civil dispute
Montagues ⇒

Binary-based specification
Capulets ⇒

Character-based specification

With apologies to William Shakespeare
and to those from a non-UK culture!

D112

France Télécom R&D

The stone-age Montagues

Diagrams of bits and bytes - e.g. IPv4
(The earliest approach, simple and clear, but focusing totally on the bits-on-the-line.)

Tool support not possibleTool support not possible - but see ECN discussion later.

Extensibility support crudeExtensibility support crude - based on reserved fields.

D113

France Télécom R&D

The stone-age Capulets

Simple “command lines” – in ASCII!
Three character mnemonics
Simple comma-separated parameters
Good for simple dialogues
Extensibility by adding commands, with
unknown commands ignored by V1 systems
It worked, but the Capulets are still not
much beyond the stone-age!

D114

France Télécom R&D

The Bronze Age Montagues
invent TLV and Tabular Notation

Each PDU and each parameter has an ID (or Type), a Length, and a Value
Tables list each parameter: Tabular Notation

D115

France Télécom R&D

Tabular Notation and TLV was a
break-through

Extensibility was EXCELLENT.
Version 1 systems just skipped (using TLV) anything they did not know.
Tool-support, however, not possible (but see the ECN discussion later).

But it was utterly verbose!

But not as verbose as the character-based
encoding used by the Capulets!

D116

France Télécom R&D

The Bronze Age Capulets invent
BNF

The Capulets’ main concern was with precise specification of the character
strings used for communication.
This was the dawning of Backus Naur Form (BNF).
This potentially allowed more complex information to be specified in a
“command”.
But it never really made it to the modern era of automatic mapping to Java,
C++, etc.

D117

France Télécom R&D

Last remarks on the Capulets
– a biased view!

Extensibility provision for protocols defined using BNF/ABNF was and remains
weak.
Have the Capulets gone down a (verbose) blind alley?
But will XML (the Capulets fight back!) rescue them?
All is still to play for. (To enter the Euro or not, that is the question!)

D118

France Télécom R&D

150 Million seconds after the
Bronze Age

Recognition of:
Separation of abstract and transfer syntax
Encoding rules

ASN1 (later ASN.1 – see the difference?) emerges!
ASN.1 specs define a de facto API.
Tools emerge to support the transformation of ASN.1 to an API, and the
encoding of data across that API.
Profits for all!

D119

France Télécom R&D

300 Million seconds later

Sophisticated approaches to extensibility (without a simple, verbose, TLV) are
developed.
Used in ASN.1 Packed Encoding Rules (PER)
Allows very general ECN extensibility support, such as “tail-end additions”, and
“end-of-container” optionals.

D120

France Télécom R&D

And another 300 Million seconds
later, the Capulets develop XML

Focus still on what is correct syntax, not content
(This is still bad. What is syntax variation and what is a
difference in the message? Covert channels.)
Came out of SGML and HTML
The “X” does not mean eXtensibility”
Essentially a TLV style of encoding, but with
human readable “<Start>….</End>” wrappers
Rapidly gained popularity! Idiots can understand it! Oh
dear!

D121

France Télécom R&D

And finally, after another Million
seconds

ASN.1 develops XML Encoding Rules
“Coloring” added to allow control of (for example) attributes v elements

Romeo and Juliet marry!

