

Prediction of Psychiatric Multimorbidity in a Large Pediatric Sample

Prof. Nicolas Langer University of Zurich

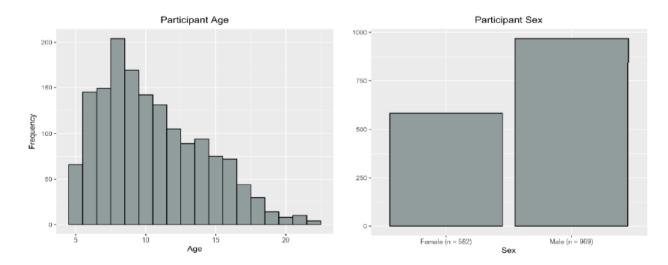
Department of Psychology Methods of Plasticity Researcch

Dr. Stefan Haufe Charité

Universitätsmedizin Berlin Berlin Center for Advanced Neuroimaging (BCAN)

4rd meeting of FG-Al4H Shanghai World Expo Center China, April 3rd 2019

Update: continuation of data collection (currently ~1800 subjects)


Data availability: Sample Healthy Brain Network (HBN) sample

Training Data:

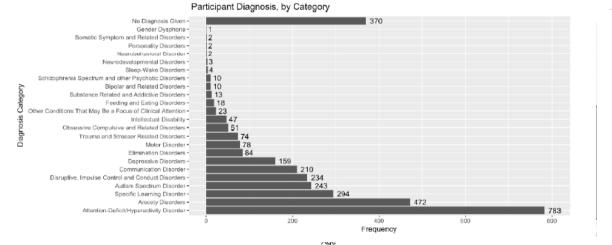
- current release: 1602 subjects
- Age 5-21 years
- Population: typical developing children and children with psychiatric developmental disorders (~70/ multimorbidities)

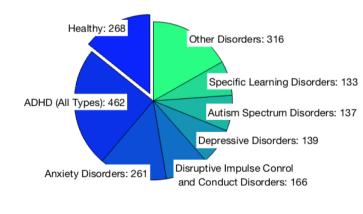
Test Data:

- Subsample of training data
- Future release: approx. 500 subjects / year

Data availability: Sample Healthy Brain Network (HBN) sample

Training Data:


- current release: 1602 subjects
- Age 5-21 years
- Population: typical developing children and children with psychiatric developmental disorders (~70% multimorbidities)


Test Data:

• Subsample of training data

Sex

• Future release: approx. 500 subjects / year

Data availability: Data

- Demographics
 - Age, gender
- Cognitive Data
 - e.g. WISC
- Behavioral Data
 - Questionnaires (SWAN)
- resting EEG
 - Raw data
 - Preprocessed data
 - EEG features
 - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
 - Source reconstruction
 - Cortical thickness

- Prediction of Diagnosis
 - DSM-V consensus diagnosis
- Annotation Quality:
 - based on the decision of a clinical team
 - all interviews and materials conducted as basis for the DSM-5 consensus diagnosis
 - conducted by licensed clinicians

Data availability: Data

- Demographics
 - Age, gender
- Cognitive Data
 - e.g. WISC
- Behavioral Data
 - Questionnaires (SWAN)
- resting EEG
 - Raw data
 - Preprocessed data
 - EEG features
 - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
 - Source reconstruction
 - Cortical thickness

Cognitive & Behavioral Data:

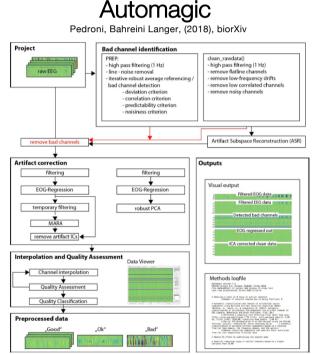
- Demographics
- Cognition / Intelligence (e.g. WIAT, WISC-V, NIH-Toolbox)
- Medical history (e.g. addiction family history)
- Family structure, stress and trauma (negative life events, parenting)
- Personality traits (Big 5, self-esteem)
- Coping Strategies (communication skills, interpersonal factors)
- Physical measures (e.g. bio-electric impedance analysis, BMI, Metabolic rate, heart rate, blood pressure, height, weight, handedness,...)
- Social status (SES, parents education, family structure)
- Nr. of features: ~270 (self-/ parent-/ teacher-report)

Data availability: Data

- Demographics
 - Age, gender
- Cognitive Data
 - e.g. WISC
- Behavioral Data
 - Questionnaires (SWAN)
- resting EEG
 - Raw data
 - Preprocessed data
 - EEG features
 - e.g. theta-beta ratio, alpha asymmetry
- Possibly T1-weighted MRI images
 - Source reconstruction
 - Cortical thickness

Raw EEG:

- 5 min.
- Eyes closed (40 s) & eye open (20 s)
- 128 electrodes (Geodesic EGI system)
- sampling rate 500 Hz
- Nr. of features: ~ 150'000


Update:

- new release of stable Automagic version (2.3.5), submitted paper revision
- Currently preprocessing all data

Prerequisite for Biomarker Research: Reliability of measures

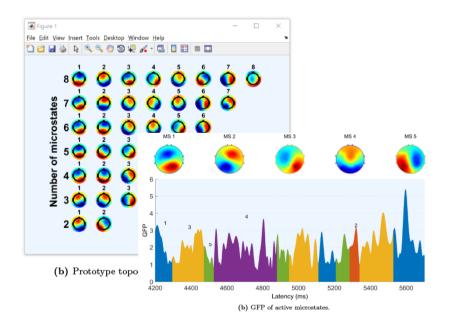
Prerequisite for Reliability: Standardized Preprocessing

- Demographics
 - Age, gender
- Cognitive Data
 - e.g. WISC
- Behavioral Data
 - Questionnaires (SWAN)
- resting EEG
 - Raw data
 - Preprocessed data
 - EEG features
 - e.g. theta-beta ratio, alpha asymmetry

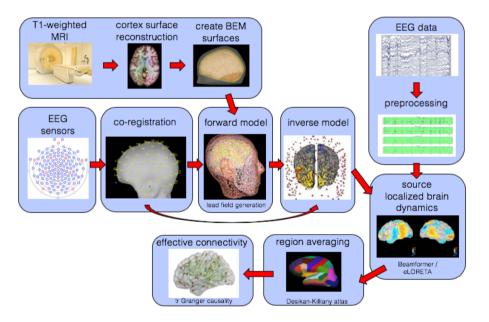
https://github.com/methlabUZH/automagic

Preprocessed EEG:

• Number of features: ~ 150'000



Update:


- Working on pipeline for functional connectivity features

Developing Methods for EEG analysis

EEG Microstates Toolbox

EEG Connectivity Analysis

Haufe & Langer in prep.

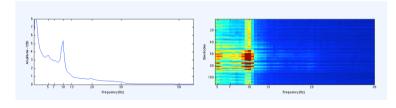
Poulsen, Pedroni, Langer, Hansen (2018)

Update:

- Extracting frequency and time domain features

EEG features

Frequency Domain:

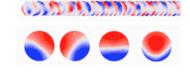

Frequency Power analysis

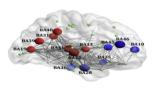
(e.g. theta/beta ratio; alpha assymetry; 1/f noise, alpha peak)

Number of features: ~ 122

- Age, gender
- Cognitive Data
 - e.g. WISC
- Behavioral Data
 - Questionnaires (SWAN)
- resting EEG
 - Raw data
 - Preprocessed data
 - EEG features
 - e.g. theta-beta ratio, alpha asymmetry

Time Domain:


Microstates:


"MS are stable spatial configurations of the electric field. These spatially stationary microstates might be the basic building blocks of information processing." (Lehmann, 1978)

Number of features: ~ 40

Functional Connectivity:

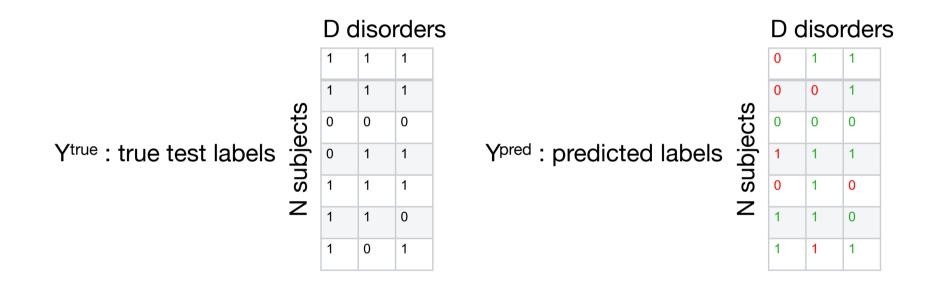
- Imaginary part of coherency
- Time-reversed Granger causality
- Number of features: ~ 9216

Benchmarking

Task:prediction of multiple disorders from demographic, phenotypical
(cognitive and behavioral) and EEG data

Training: on public HBN data

Benchmarking: on future releases of HBN data sets (approx. 500 subjects / year)


Implementation: participants submit executable code

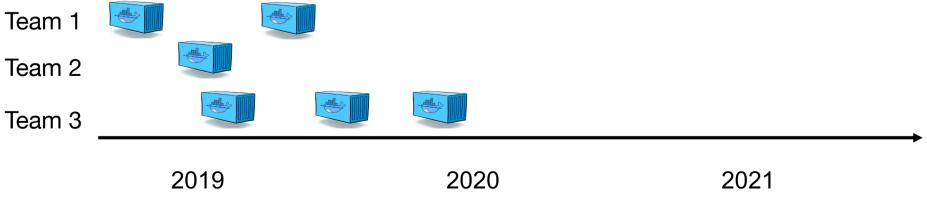
- Standardized input (data folder) and output (binary classification matrix)
- Container architecture (docker/kubernetes)
 - Free choice of development tools for participants
 - Safe for organizers
- Cloud computing: GCP/AWS or similar
- Challenge platform: crowdai.org/Kaggle etc.

Performance metrics

Main metric (used for ranking): multi-task accuracy

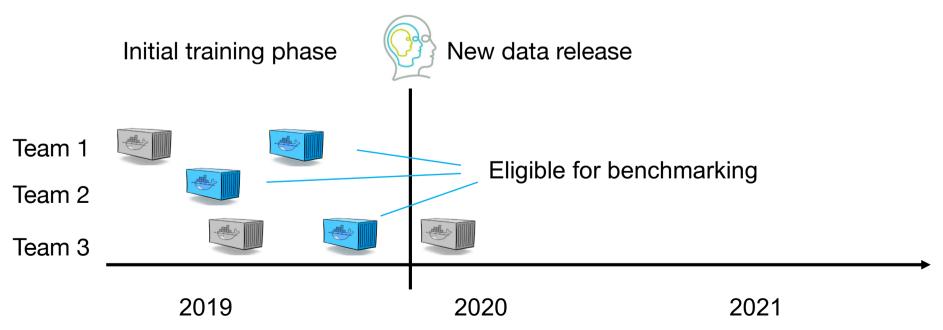
ACC =
$$1 - \frac{1}{ND} \sum_{n=1}^{N} \sum_{d=1}^{D} |Y_{n,d}^{\text{true}} - Y_{n,d}^{\text{pred}}|$$

Secondary metrics: F1-score, sensitivity, specificity, precision, recall


Multi-task metrics for continuous labels (severity scores) available.

Idea: continuous prediction challenge

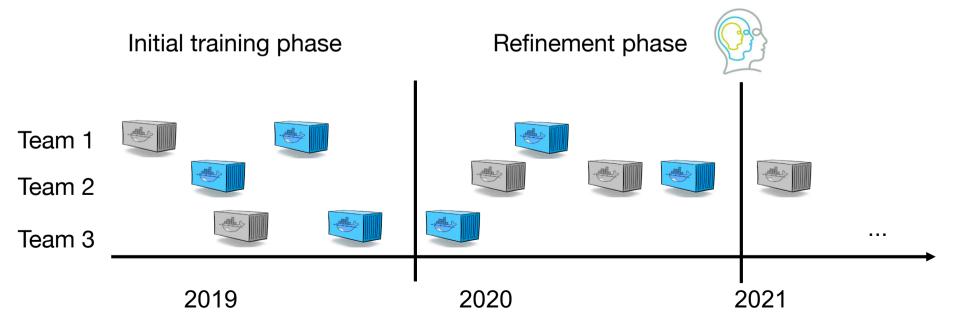
- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available


Initial training phase

Idea: continuous prediction challenge


- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available

Idea: continuous prediction challenge


- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available

Idea: continuous prediction challenge

- Participant teams can refine and upload containers any time
- Benchmarking of most recent containers each time new data are released
- Time stamp system allows public release of test set without delay
- Tracking progress over time as new releases become available

Miscellaneous:

- Call for group participation (advertising on social media: Twitter)
- Work on C-105 document
- Infrastructure for data handling & management
- Feedback from psychiatry experts? (Noami Lee)
- Quantifying uncertainty

THANK YOU FOR YOUR ATTENTION