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Summary 

This document defines a unified architecture for Machine Learning in Fifth Generation and future 

networks. A comprehensive set of (architectural) requirements is presented, which in turn leads to 

specific architecture constructs needed to satisfy these requirements. Based on these constructs, a 

logical ML pipeline (along with the requirements derived and its realizations in various types of 

architectures) is discussed. Finally, key architectural issues facing the integration of such an ML 

pipeline into continuously evolving future networks are listed. 
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Technical Specification ITU-T FG-ML5G-ARC5G 

Unified architecture for ML in 5G and future networks 

1 Scope 

This document defines a unified architecture for Machine Learning in Fifth Generation and future 

networks. The unified logical architecture establishes a common vocabulary and nomenclature for 

ML functions and their interfaces. By applying (or superimposing) this logical architecture to a 

specific technology, like 3GPP, MEC, EdgeX or transport networks, the corresponding technology-

specific realization is derived. Such an overlay architecture for ML allows standardization and 

achieves interoperability for ML functions in 5G and future networks. In addition, the key issues for 

integration of such an overlay on 5G and future networks are studied and presented in this document. 

2 References 

[1] 3GPP TS 23501, System Architecture for the 5G System (Release 15). 

[2] Broadband: Acronyms, Abbreviations & Industry Terms 

https://www.itu.int/osg/spu/ni/broadband/glossary.html  

[3] Edgex Wiki https://wiki.edgexfoundry.org/display/FA/Introduction+to+EdgeX+Foundry 

[4] IEC whitepaper on Edge Intelligence 

http://www.iec.ch/whitepaper/pdf/IEC_WP_Edge_Intelligence.pdf 

[5] ETSI GS NFV-IFA 014 V2.3.1 (2017-08), Network Functions Virtualisation (NFV) 

Release 2; Management and Orchestration; Network Service Templates Specification. 

[6] Intent NBI – Definition and Principles, Open Networking Foundation, ONF TR-523. 

[7] ETSI GS MEC 003 V1.1.1 (2016-03). 

[8] https://github.com/cncf  

[9] Homing and Allocation Service (HAS) https://wiki.onap.org  

[10] ETSI SOL002, Network Functions Virtualisation (NFV) Release 2; Protocols and Data 

Models; RESTful protocols specification for the Ve-Vnfm Reference Point. 

[11] ETSI GS ZSM 001 V0.4.0 (2018-11), Requirements on the zero-touch end-to-end network 

and service management. 

[12] Recommendation ITU-T Q.5001 (ex. Q.IEC-REQ), Signalling requirements and architecture 

of intelligent edge computing. 

[13] 3GPP TS 28.554, Management and orchestration of 5G networks; 5G End to end Key 

Performance Indicators (KPI) (Release 15). 

3 Definitions 

3.1 Terms defined elsewhere 

3.1.1 mobile edge computing (MEC): A mobile edge system that enables mobile edge 

applications to run efficiently and seamlessly on a mobile network. 

NOTE – Source: [7]. 

3.1.2 EdgeX Foundry: A vendor-neutral open source project hosted by the Linux Foundation, 

which builds a common open framework for IoT edge computing. 

NOTE – Source: [3]. 

https://www.itu.int/osg/spu/ni/broadband/glossary.html
https://wiki.edgexfoundry.org/display/FA/Introduction+to+EdgeX+Foundry
http://www.iec.ch/whitepaper/pdf/IEC_WP_Edge_Intelligence.pdf
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3.1.3 capability exposure: The network exposure function (NEF) supports external exposure of 

capabilities of network functions (NFs). External exposure can be categorized as monitoring 

capability, provisioning capability, and policy/charging capability. 

NOTE – For NEF details, see [1]. 

3.2 Terms defined in this document 

3.2.1 machine learning pipeline: A set of logical entities (each with specific functionalities) that 

can be combined to form an analytics function. 

Machine learning (ML) pipeline node: Each functionality in the ML pipeline is defined as a node 

(e.g., source, collector, pre-processor, model, policy, distributor and sink). 

• src (source): This node is the source of data that can be used as input for the ML function. 

Examples of an src are: user equipment (UE), session management function (SMF) [1], 

access and mobility management function (AMF) [1] or any other entity in the network, 

including an application function (AF) [1]. 

• C (collector): This node is responsible for collecting data from the src. It can use specific 

control protocols to configure the src. Example: it may use the 3rd Generation Partnership 

Project (3GPP) radio resource control (RRC) protocol [1] to configure user equipment (UE) 

acting as an src. It may use vendor specific operations, administration and maintenance 

(OAM) protocols to configure an AMF acting as an src. 

• PP (pre-processor): This node is responsible for cleaning data, aggregating data or 

performing any other pre-processing needed for the data so that are is in a suitable form for 

the ML model to consume it. 

• M (model): This is an ML model. Example could be a prediction function. 

• P (policy): This node provides a control for an operator to put a mechanism to minimize 

impacts into place on a live network, so that operation is not impacted. Specific rules can be 

put in place by an operator to safeguard the sanity of the network, e.g., major upgrades may 

be done only at night time or when traffic is low. 

• D (distributor): This node is responsible for identifying the sinks and distributing the ML 

output to the corresponding sinks. it may use 3GPP RRC protocol [1] to configure a UE 

acting as a sink. 

• Sink: This node is the target of the ML output, on which it takes action, e.g., a UE adjusting 

the measurement periodicity based on ML output. 

NOTE – The nodes are logical entities that are proposed to be managed in a standard manner (by a machine 

learning function orchestrator (MLFO), see clause 3.2.3) and hosted in a variety of network functions (NFs). 

The realization of such an ML pipeline (in, say, 3GPP release 16 (R16) or R17 networks) will result 

in a standard method of introducing and managing ML functionality in a 5G network.  

When the symbol in Figure 1 is used, it denotes a subset (including proper subset) of nodes in the 

pipeline. 

 

Figure 1 — Symbol used to denote  

the ML pipeline in general 

3.2.2 interface 8: A multi-level, multi-domain collaboration interface between nodes of an ML 

pipeline that allows the ML pipeline to be disaggregated and distributed across domains, e.g., edge 

and core cloud. 

NOTE 1 – This is a flexible, logical interface, whose realization may depend on extending some of the existing 

interfaces, say in 3GPP, mobile edge computing (MEC), EdgeX or other specific platforms. 
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NOTE 2 – See Figures 4 and 11. 

3.2.3 machine language function orchestrator (MLFO): A logical orchestrator that can monitor 

and manage the ML pipeline nodes in the system. An MLFO selects and reselects the ML model 

based on its performance. The placement of various ML pipeline nodes, based on the corresponding 

capabilities and constraints of the use case, is the responsibility of the MLFO. (See [9] for a general 

discussion on placement) 

3.2.4 chaining: The process of connecting ML functions or nodes together to form the complete 

ML pipeline. For example, an src instantiated in the distributed unit (DU) can require connection to 

a collector and PP in the centralized unit (CU) and they in turn, to a model in the core network (CN) 

to implement the mobility pattern prediction (MPP) use case. The chain itself is declared by the 

network operator (NOP) in the use case specification in the intent and its technology-specific 

implementation in the network is done by the machine learning function orchestrator (MLFO). The 

MLFO utilizes the constraints (e.g., timing constraints for prediction) defined in the intent to 

determine the placement and chaining. 

NOTE – For "intent", see clause 3.2.6. 

3.2.5 machine learning meta language (ML-ML): Language used to specify the constructs 

needed to add the ML use case and ML pipeline in a declarative fashion into the service design. 

NOTE – For "service design", see [5]. 

3.2.6 intent: A declarative mechanism ([6]) which is used by network operator (NOP) to specify 

the machine learning use case. Intent does not specify any technology implementation methods, such 

as 3rd Generation Partnership Project (3GPP), or  mobile edge computing (MEC) network functions 

(NFs) to be used in the machine learning (ML) use case. Hence the use cases are technology 

independent and provide a basis for mapping ML use cases to diverse technology-specific avatars. 

Intents can use machine learning meta language (ML-ML) to define use case constructs. 

3.2.7 sandbox domain: This is a domain internal to the network operator (NOP) in which machine 

learning (ML) models can be trained, verified and their effects on the network studied. A sandbox 

domain can host the monitor-optimize loop, also called the closed-loop, and can use a simulator to 

generate data needed for training or testing, in addition to utilizing data derived from the network. 

4 Abbreviations and acronyms 

NOTE: See [2]. 

5GC 5G Core 

AF Application Function 

AMF Access and Mobility management Function 

API Application Programmer Interface 

AR/VR Augmented Reality/Virtual Reality 

BOSS Business and Operation Support System 

C collector (ML pipeline) 

CN Core Network 

CNCF Cloud Native Computing Foundation 

CNF Cloud-native Network Function 

CSI Channel State Information 

CU Centralized Unit 

CUDA Centralized Unit Data Analytics 
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DB Database 

DNN Deep Neural Network 

DU Distributed Unit 

DUDA Distributed Unit Data Analytics 

E2E End-to-End 

EGMF Exposure Governance Management Function 

EMS Element Management System 

FMC Fixed Mobile Convergence 

GPU Graphic Processor Unit 

HAS Homing Allocation Service 

IoE Internet of Energy 

IoT Internet of Things 

KPI Key Performance Indicator 

M Model (ML pipeline) 

MANO Management and Orchestration 

MEC Mobile Edge Computing 

mIoT massive Internet of Things 

MIMO Multiple Input Multiple Output 

ML Machine Learning 

MLFO Machine Learning Function Orchestrator 

ML-ML Machine Learning Meta-Language 

MPP Mobility Pattern Prediction 

MnS Management Service 

NEF Network Exposure Function 

NF Network Function 

NFV Network Function Virtualization 

NFVI Network Function Virtualization Infrastructure 

NFVO Network Function Virtualization Orchestrator 

NWDAF Network Data Analytics Function 

NMS Network Management Subsystem 

NOP Network Operator 

NSI Network Slice Instance 

OAM Operations, Administration and Maintenance 

ONAP Open Networking Automation Platform 

OSS Operation Support System 

OTT Over The Top 

P Policy (ML pipeline) 
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P-GW Packet Gateway 

PNF Physical Network Function 

PoP Point of Presence 

PP Pre-processor (ML pipeline) 

QoS Quality of Service 

RAN Radio Access Network 

RCA Root Cause Analysis 

RDA RAN Data Analytics 

RRC Radio Resource Control 

SBA Service-Based Architecture 

SDO Standards Developing Organization 

Sim Simulator 

SMF Session Management Function 

SO Service Orchestration 

SON  Self-Optimizing Network 

src source (ML pipeline) 

SS Supporting Service 

UE User Equipment 

V2X  Vehicle-to-everything 

VIM Virtualization Infrastructure Manager 

VNF Virtual Network Function 

VNFM Virtual Network Function Manager 

VoLTE Voice over Long Term Evolution 

WIM Wireless Infrastructure Network 

ZSM Zero Touch Network and Service Management  

5 Conventions 

In this document, requirements are classified as follows: 

• The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted if conformance to this document is to be claimed. 

• The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, such requirements need not be present to claim conformance. 

• The keywords "can optionally" and "may" indicate an optional requirement which is 

permissible, without implying any sense of being recommended. These terms are not 

intended to imply that the vendor's implementation must provide the option and the feature 

can be optionally enabled by the NOP/service provider. Rather, it means the vendor may 

optionally provide the feature and still claim conformance with the specification. 



6 FG-ML5G-ARC5G (01/2019)  

6 Executive summary 

There is a variety of ways in which ML can be incorporated into 5G and future networks. Any of the 

layers or strata or network functions (NFs) could act as touch points (either as a source of data that 

could aid ML or as a target for control mechanisms that implement ML decisions) for ML.  

The analysis of various architecture variations has led to a unified, logical architecture that represents 

technology-agnostic requirements. This logical architecture could be instantiated using technology-

specific realizations: 3GPP is a technology-specific realization, others could be MEC, EdgeX, etc. 

The unified logical architecture establishes a common vocabulary and nomenclature for ML functions 

and their interfaces. By applying (or superimposing) this logical architecture to a specific technology, 

like 3GPP, MEC, EdgeX or transport networks, the corresponding technology-specific realization is 

derived. This provides a unique ability to analyse both technology-agnostic and specific issues, arrive 

at general solutions that can be standardized (in ITU) and reused elsewhere (3GPP, MEC, EdgeX). 

This document lists the requirements for a ML overlay architecture. Based on these requirements, a 

unified logical architecture is introduced.  

The high-level requirements, listed in Table 1, provide specifications for various aspects of proposed 

logical architecture. The corresponding aspect of each requirement is listed under the relevant "Req. 

applicant" row. These requirements are neither exhaustive nor mutually exclusive. Read these 

requirements as a set of specifications for the corresponding aspect of the architecture. 

An ML application can be realized by instantiating logical entities of the ML-pipeline with specific 

roles (e.g., src, collector, sink), and distributing these entities among NFs specific to the technology 

(e.g., 3GPP virtual network functions (VNFs)), based on the corresponding requirements of the 

logical entities (e.g., a traffic classifier requires to be fed with data summaries every x ms) and 

capabilities of the node (e.g., computing power at the edge). 

The flow of information in an ML-based use case can be represented by an ML-pipeline. Take MPP 

as an example which is used in Figure 3. The ML algorithms for MPP require data that are correlated 

to the location and data-usage patterns of the user. These data might be obtained from various levels 

of the network. For example, at the radio access network (RAN) level, the multiple input multiple 

output (MIMO) channel state information (CSI) measurements give the location bearing of the user 

with respect to the base station, while at the transport level, the user data-usage patterns can be 

obtained. The data collected at various collection points (source) need to be gathered (by a collector) 

and pre-processed (by a pre-processor) before feeding these data to the ML algorithm (model). The 

output of the ML algorithm is then used to apply policies (policy) that will be implemented (sink). 

Note that, although the location of source(s) and sink(s) depends on the ML-use case, location of 

other functionalities, e.g., collector, pre-processor, ML algorithm, are not specific to any use case. 

Instead these functionalities can be seen as logical entities whose placement (virtualized) depends on 

the capabilities of the network and requirements of the use case [9]. This logical representation of an 

ML-based network application is called the ML-pipeline. 

The high-level logical architecture (see Figure 2) has three main components: the management 

subsystem, the multi-level ML pipeline, and the closed loop subsystem. Together, these subsystems 

facilitate the functionality and interfaces needed for ML in future networks. These functions defined 

in the logical architecture are logical functions, these blocks could be hosted in various technology-

specific NFs and the corresponding interfaces could be realized using extensions of existing 

technology-specific interfaces. These technology-specific avatars of the logical architecture are 

depicted in Figures 3, 4, etc. 

Several key issues related to ML in 5G and future networks are listed in clause 9. These key issues 

may give rise to new areas of research and extensions of current standards to support future networks, 

which are beyond the scope of this document. In essence, the following topics are important. 
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• Need for an ML-ML. This will provide an interoperable, declarative mechanism to specify 

the "intent" of the use case that uses ML in 5G.  

• The level of capability exposure needed to enable dynamic ML-based use cases in 5G and 

future networks. The characteristics of capability exposure mechanisms for future networks 

need to be studied, especially in the context of migrating existing networks to future ML-

based ones. 

• MLFO: A logical orchestrator that can be used to monitor and manage the ML pipeline nodes 

in the system. Operations on ML in future networks will be controlled via the MLFO (e.g., 

compression, scaling, chaining, updates, optimizations).  

In the remainder of this document, clause 7 specifies high-level requirements, which are derived from 

various use cases and architectural considerations. Clause 8 specifies both a logical architecture and 

its technology-specific realizations. Clause 9 lists key issues encountered while analysing these 

concepts. 

7 High-level requirements 

See Table 1. 

Table 1 – High-level requirements 

ML-unify-001 
Multiple sources of data are recommended to be used to take advantage of 

correlations in data. 

Req. applicant Core/general. 

Significance/description 

In future networks, sources of data may be heterogeneous, integrated with 

different NFs, and may report different formats of data. These varied 

"perspectives" can provide rich insights upon correlated analysis. 

Example: Analysis of data from UE, RAN, CN and AF is needed to predict 

potential issues related to quality of service (QoS) in end-to-end user flows. 

Thus, an architecture construct to enable the ML pipeline to collect and correlate 

data from these varied sources is needed. 

Traceability/examples 

Examples of such sources of data are self-optimizing network (SON) modules 

that monitor and listen to all network alarms and key performance indicators 

(KPIs), and then takes proper action to clear alarms or enhance network KPIs, 

or give network design recommendations without human intervention. 

 

ML-unify-002 

Multiple technologies and network layers (RAN, core, transport, 2G, 3G, future 

networks) are required to be supported, even non-3GPP external elements are 

recommended to be interfaced with, to achieve end-to-end user experience. 

Req. applicant Core/general. 

Significance/description 

Future networks will have multiple technologies coexisting side by side, e.g., 

licensed and unlicensed wireless technologies, fixed mobile convergence (FMC) 

technologies, legacy and future technologies. The emergence of network slicing 

[1] is one example in which vertical technologies [e.g., vehicle-to-everything 

(V2X)] and their integration into future networks are important. 

Thus, it is important for that architecture to be capable of overlay with multiple 

underlying technologies (e.g., 3G, 4G, 5G) and even support application 

functions like in-car entertainment or streaming data from drones or augmented 

reality/virtual reality (AR/VR) headsets. 

The 5G end to end KPIs are defined in technology-specific standards (e.g., see 

[13]). 



8 FG-ML5G-ARC5G (01/2019)  

Traceability/example 

In some use cases, the data from network elements beside some other external 

elements, e.g., sensors, power circuits and different Internet of things (IoT) 

modules, are utilized to control and monitor these elements. These data are then 

used in various types of network parameter optimizations to achieve gains in 

coverage, capacity and quality. 

 

ML-unify-003 

The network architecture is required to support multi-level and distributed 

instantiation of the ML pipeline. 

Data from different levels may be able to enrich multiple ML pipelines 

(algorithms) as needed. 

ML pipelines are required to be multi-level or multi-domain, connected via 

logical interface 8. 

An ML pipeline may be instantiated in multiple levels (e.g., core, edge, MEC). 

Req. applicant Core/general 

Significance/description 

Cloudification, service-based architecture (SBA), flexible homing allocation 

service (HAS) imply that various network functionalities can be placed 

dynamically in multiple levels, domains and clouds. Thus, the ML pipeline 

should also be able to span these levels and interface accordingly. The 

functionality of the ML pipeline would also span these levels, domains and 

clouds based on the homing allocation criteria. 

Traceability/example 

In some use cases, feature extraction (src) may be placed in a packet gateway (P-

GW) and feature data are sent (over interface 8) to MEC where the deep learning 

model is hosted. 

Analytics (ML pipeline) may be hosted in the network at multiple levels (e.g., 

RAN, AMF), utilizing locally available data as input while performing MPPs or 

slice configurations. 

 

ML-unify-004 

When realizing an ML application using the ML pipeline, it is recommended 

that the number of logical entities impacted is kept to a minimum. In the ideal 

case, it is required to impact only the src and sink of the ML pipeline.  

Req. applicant Core/general 

Significance/description 

The use case definition for ML in future networks will be done based on existing 

(or new) services or functions in the network. The use case definition for ML 

has to be loosely coupled with the network service definition in future networks. 

Note: Based on the use case definition (see the intent), homing and other characteristics 

of the ML pipeline (e.g., chaining) are decided. The src and the sink are points of tight 

integration (e.g., application programmer interfaces (APIs)) with the technology-specific 

NFs (e.g., 3GPP RAN). The other nodes in the ML pipeline may be generic and do not 

have tight integration with technology-specific NFs. Clear interface points between the 

ML pipeline and the underlying technology are proposed (at the source or sink or 

MLFO).  

Traceability/example 

In some use cases, feature extraction (src) and traffic classification (sink) may 

be placed in the user plane of the P-GW. These are points where user plane data 

are handled by the ML pipeline nodes. The other nodes in the ML pipeline (e.g., 

the deep neural network (DNN) model) do not have such interface dependencies 

on the 3GPP NFs. 
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ML-unify-005 

Logical entities of the ML pipeline are required to be capable of splitting their 

functionalities or be hosted on separate technology-specific nodes. Similarly, 

multiple logical entities are required to be capable of being implemented on 

single node. 

Req. applicant Core/general 

Significance/description 

In future networks, HAS for NFs will optimize the location and the performance 

accordingly. The network function virtualization orchestrator (NFVO) plays an 

important role in this. 

To carry forward such benefits to the ML use case, similar optimizations should 

also be applied to ML pipeline nodes. Moreover, the constraints applicable to an 

ML pipeline [e.g., training may need a graphic processor unit (GPU) and may 

need to be done in a sandbox domain] may be unique. 

Traceability/example 

Figure 3 gives scenarios in which, depending on the latency budget, data 

availability and other considerations for MPP, the ML pipeline could have the 

src and model hosted in the core, edge or MEC. 

 

ML-unify-006 
An interface between ML pipelines of multiple levels may transfer trained 

models. (This may be one functionality of interface 8) 

Req. applicant Interface-8 

Significance/description 

Training models has certain specific needs, e.g., availability of certain kinds of 

processors, availability of data. Once the training is done, it has to be sent to the 

NF that is hosting the model. This could be UE, RAN or CN as examples from 

3GPP. Training can be done separately from the live network. Thus, sending 

trained models across multiple levels (e.g., core, edge) is an important 

requirement. 

Traceability/example 

Figure 10 describes the scenario where distributed unit data analytics (DUDA) 

host real-time RAN data collection and pre-processing, prediction, parameter 

optimization and training tasks with low computational complexity in the DU. 

DUDA need to offer the data features requested for training prediction/decision 

models to the centralized unit data analytics (CUDA) after pre-processing, while 

CUDA can assist DUDA to conduct some computationally intensive model 

training tasks. The trained model can be sent to the DUDA for deployment. 

In some use cases, deep learning may be done at the MEC and trained model 

(classifier) updated at the P-GW. 

 

ML-unify-007 
Interface between ML pipelines of multiple levels may transfer data for training 

or testing models. (This may be one functionality of interface 8) 

Req. applicant Interface-8 

Significance/description 

Certain domains in which the data are available may not have the training 

capabilities (e.g., resource-constrained edge networks [4]). In such cases, there 

may be a need to send data for training or testing across to domains where the 

capacity for such operations is available (e.g., a central data centre).  

Traceability/example 

See Figure 10, Figure 13. 

Feature extraction from the user plane may be done at the P-GW and the feature 

data is then sent to the model at the MEC for training. 
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ML-unify-008 

Potential to place/host the ML pipeline in a variety of NFs (e.g., CN, MEC, 

network management subsystem (NMS)) in a flexible fashion is required. 

Decoupling of the location of the logical ML pipeline nodes from their 

functionality, except in the case of performance constraints, is recommended. 

Req. applicant MLFO, placement 

Significance/description 

An orchestrator function that understands the needs and constraints of ML 

functions is needed to place or host the ML pipeline nodes at appropriate NFs. 

Constraints could include availability of data that is specific to the use case, data 

transformation capabilities, performance constraints, training capabilities and 

model characteristics (e.g., if the model is a neural network, then a GPU-based 

system is desirable). Capability exposure is needed for placement and MLFO 

exploits this to achieve placement. 

Traceability/example 

Figure 3 describes the case in which, based on the requirements of the use case, 

short-term or long-term predictions, the ML pipeline nodes may be hosted closer 

to the edge or in the CN. The placement may also be influenced by data 

availability considerations. 

 

ML-unify-009 

Certain interfaces (e.g., interface 8) may be realized or extended using existing 

protocols (e.g., RRC, GS MEC 011, management service (MnS) [7]. 

Src and Sink may need specific interfaces or APIs to extract data or configure 

parameters. For example, an src running in the UE may use specific APIs to 

extract data from a voice over long term evolution (VoLTE) client. 

The ML pipeline may use interfaces provided by an underlying platform (e.g., 

EdgeX services) as a source of data or sink of configurations. In that sense, these 

platform specific APIs may act as realizations of an interface to the src and sink. 

Traditional 3GPP interfaces like Ng and Xn may need extensions so that they 

can realize the needs of the ML pipeline. 

Inter domain interfaces between edge and core, and edge and edge, may be 

abstracted using interface 8, but realized using p2p platform specific interfaces 

(e.g., EdgeX interfaces). 

Req. applicant Realization, extension (e.g., to 3GPP, MEC, EdgeX) 

Significance/description 

There may be cases where a tight coupling at integration stage between the ML 

pipeline src and sink, and the NF may not be avoidable; e.g., consider the case 

where the src runs in the RAN but needs measurements from the UE. In this 

case, the RAN needs to configure the UE for this measurement using RRC. In 

certain cases, an extension of such interfaces may be needed to achieve the ML 

function in the use case. 

Traceability/example 

Figure 3 describes how the Ng interface needs to be extended to support the UE 

level- or flow level-related information interaction between the RAN 

(RDA/CUDA) and CN. 

See also Figures 5 and 9 

Figures 6, 7 and 8 describes an EdgeX-based use case where an edge/core 

interface is needed for deep-learning done in the cloud and ML-based prediction 

in the edge cloud. 

 

ML-unify-010 

It is required that a standard method exist to translate the use-case specifications 

(e.g., Intention) into an analytic ML pipeline (defined as Intent in rest of the 

document) 

Use of a machine-readable format is recommended to instruct use-case 

specifications to MLFO in order to instantiate the ML pipeline. 

Req. applicant Design-time: Intent, ML-ML 
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Significance/description 

Automation using intent specification and corresponding translation into 

configurations is a characteristic of future networks. Extending this technique to 

ML, intent specification of ML use case and correspondingly translate that into 

pipeline configurations should be supported.  

Note – Intent specification of the ML use case allows overlaying of ML on top of an 

existing declarative specification of network services, e.g., those defined in [5]. 

Traceability/example 

Interpretation of the intent specification is a kind of solution for intelligent 

configuration. The interpretation function can translate the intent into the 

configuration that can be implemented by network devices. 

 

ML-unify-011 

Intention is required to specify the sources of data, repositories of models, 

targets/sinks for policy output from models, constraints on resources and use 

case. 

Req. applicant Design-time: Intent. ML-ML 

Significance/description 

The separation between technology agnostic part of the use case and technology-

specific deployment (e.g., 3GPP) is captured in the design time of future network 

services. Intent specification for the ML use cases achieves this separation for 

the ML overlay. See clauses 3.2.5 and 3.2.6 for definitions. 

Traceability/example 

Figure 14 shows intent as a template that captures the requirement of the operator 

for a ML-related use case. The intention interpretation function may translate it 

into the configuration that can be implemented by network devices. 

 

ML-unify-012 
Any split of the ML pipeline is required to be flexible based on the use cases and 

constraints defined in the intent. 

Req. applicant Design-time: Intent, ML-ML 

Significance/description 

Platform capabilities can change (hardware can be added or removed), network 

capabilities can change (capacity can increase or decrease), NF's may be 

scheduled or (re)configured dynamically by the NFVO. These dynamic changes 

may necessitate a change in the split and placement of the ML pipeline (e.g., a 

decision may be taken to colocate the source and collector, based on changes in 

the link capacity, or a decision may be taken to instantiate a new source based 

on scale out of a VNF). 

Traceability/example See Figure 5 

 

ML-unify-013 
(NOP external) third party service providers are required to be able to describe 

the requirements and capabilities for an ML pipeline using intent. 

Req. applicant Design-time: Intent, ML-ML 

Significance/description 

Third party service providers may offer innovative services on top of future 

networks. For ML, it means new algorithms. A collaboration between third party 

providers and operators may bring new sources of data or aggregation 

mechanisms (e.g., a new smartphone application that interfaces with sensors on 

the UE). Intention as a declarative mechanism should extend the capabilities to 

include such third parties, and they should be able to include these nodes in the 

specification so that end users can enjoy such innovative services offered by 

third party service providers. 

Example of such a use case: a third party (e.g., Skype) wants to optimize call 

quality over the network by running an ML application that configures network 

parameters. The third party can set up this ML use-case using an interface to the 

ML pipeline. 
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Traceability/example 
See Figure 5. 

In some use cases, deep learning may be provided as an MEC application. 

 

ML-unify-014 Time constraints of use cases are required to be captured in the intent. 

Req. applicant Design-time: Intent 

Significance/description 

Different ML use cases have varied time constraints. At the tightest scale, RAN 

use cases like beamforming, scheduling, link adaptation would have 50 µs–

100 µs latency criteria. These are followed by transport and 5GC use cases that 

need from 10 ms to a few seconds latency criteria. The least demanding in terms 

of latency are management level use cases, e.g., anomaly detection, coverage 

hole detection, that can afford minutes, hours or days of latency. These criteria 

form an important input to the MLFO while determining the placement, 

chaining and monitoring of an ML pipeline. 

Traceability/example See Figure 10. 

 

ML-unify-015 

Placing and split of ML pipeline nodes is required to consider various 

constraints (e.g., resource constraints of the NF, latency constraints specific to 

the use case) 

The model is required to have the capacity to be placed in a flexible manner in 

an NF that is most optimal for the performance of the use case (e.g., as per [13]) 

and constraints defined in the intention. 

The split of the ML pipeline is required to be flexible based on the use cases and 

constraints defined in the intention. 

Placement and hosting of the ML pipeline are required to be flexible based on 

constraints mentioned in the intent; e.g., placement could be in the core, RAN, 

or management and orchestration (MANO). 

It is recommended that the constraints for online training and prediction for real-

time applications (e.g., 1 ms~10 ms) are captured in the intent. This may be 

input to placing these nodes in NFs that can provide optimal performance for 

the use case (e.g., as per [13]). 

Req. applicant MLFO, intent, constraints 

Significance/description 

The positioning and placement of ML pipeline nodes on to VNFs forms a major 

part of the realization of the ML use case with a specific technology (e.g., 

3GPP). 

Thus, it forms the link between two domains: technology-agnostic ML pipeline 

(overlay) and tech specific network underlay (e.g., 3GPP). 

The needs, constraints and status of each domain need to be taken into 

consideration while making this mapping or linkage. 

Thus, these requirements form an important part of MLFO that achieves this 

mapping of overlay to underlay and provides a smooth migration path to the 

operator. 

Traceability/example 

See Figures 3, 5 and 9. 

In certain use cases, user plane data classification may be done using DNNs. 

Since this is a latency-sensitive application, the model may be hosted at the 

P-GW, whereas the training could be done at MEC. 

 

ML-unify-016 
Model selection is required to be done at the setup time of the ML pipeline, 

using data from the src.  

Req. applicant MLFO: setup 



  FG-ML5G-ARC5G (01/2019) 13 

Significance/description 

Advances in ML algorithmics suggest that in future networks there would be 

models with varied characteristics (e.g., a using variety of optimization 

techniques and weights) that are appropriate for different problem spaces and 

data characteristics. 

A ZSM [11] requirement brings in discovery and onboarding of sources of data 

dynamically. To extend the ML use case to such devices and sources of data, 

model selection has to be done dynamically, based on the data provided by the 

source. 

Traceability/example 
Figure 5 shows the requirement for model selection based on the requirement of 

the operator specified in the intent. 

 

ML-unify-017 

Model training is required to be done in the sandbox using training data. 

A sandbox domain is recommended to optimize the ML pipeline. Simulator 

functions hosted in the sandbox domain may be used to derive data for 

optimizations. 

Req. applicant Non-functional (sandbox) 

Significance/description 

Model training is a complicated function, it has several considerations: use of 

specific hardware for speed, availability of data (e.g., data lakes), parameter 

optimizations, avoiding bias, distribution of training (e.g., multi-agent 

reinforcement learning), the choice of loss function for training. The training 

approach used exploration of hyper parameters, for example. 

Moreover, in future networks, operators will want to avoid service disruptions 

while model training and updates are performed. 

These considerations point to the use of a simulator for producing the data for 

training the models, as well as its use in a sandbox domain. 

Traceability See Figure 5 

 

ML-unify-018 
The capabilities to enable a closed loop monitoring and update, based on the 

effects of the ML policies on the network, are required. 

Req. applicant Non-functional (closed loop) 

Significance/description 

Closed loop is needed to monitor the effect of ML on network operations. 

Various KPIs are measured constantly and the impact of the ML algorithm on 

them as well as on the ML pipeline itself (due to operations of the MLFO) are 

monitored and corrected constantly. These form inputs to the simulator that 

generate data. These data can cover new or modified scenarios accordingly in 

future (e.g., a new type of anomaly is detected in the network, the simulator is 

modified to include such data. which can also train the model to detect that data 

type). 

Traceability 

See Figure 5. 

In addition, Figure 12 describes the case in which continuous improvement of 

the automated fault recovery process workflows is important. Hence, not only is 

the root cause analysis (RCA) provided to the autonomous functions for 

configuring the NFVO, but also the effect produced by ML in autonomous 

functions are evaluated and used in a closed loop to optimize the autonomous 

function itself. 

 

ML-unify-019 

A logical orchestrator (MLFO: ML function orchestrator) is required to be used 

for monitoring and managing the ML pipeline nodes in the system. 

MLFO monitors the model performance, and model reselection is recommended 

when the performance falls below a predefined threshold. 



14 FG-ML5G-ARC5G (01/2019)  

Req. applicant MLFO (monitoring) 

Significance/description 

The varied levels and sources of data (core, edge), including the simulator and 

the sandbox domain, imply that there could be various training techniques 

including distributed training. Complex models that are chained (or derived) 

may in fact be trained using varied data. The performance of such models can be 

determined and compared in the sandbox domain using a simulator. 

Based on such comparisons, operators can then select the model (based on 

internal policies) for specific use cases. This can be used in conjunction with the 

MLFO to reselect the model. 

Note: evaluation may involve network performance evaluation along with model 

performance. 

Traceability See Figure 5 

 

ML-unify-020 

Flexible chaining of ML functions is required to be done based on the hosting 

and positioning on different NFs and domains. This is to realize the hybrid or 

distributed ML functions (see the traceability row for details). 

ML pipeline deployment may be split and multi-level. Chaining of ML pipeline 

nodes across these levels may be needed to achieve the use case (e.g., the split 

of ML functions based on gNodeB-CU/gNodeB-DU architecture, see Figure 9). 

Chaining of logical functions may be used to build a complex analytic ML 

pipeline. 

Req. applicant MLFO (chaining) 

Significance/description 

The network function virtualization (NFV) architecture, along with SBA and the 

emergence of service orchestration mechanisms like the open networking 

automation platform (ONAP), will enable operators, in the near future, to rapidly 

design, develop and deploy network services. An MLFO needs mechanisms 

including flexible chaining to keep up with innovation in the underlay space. As 

underlying network services evolve and deploy rapidly, so does the ML pipeline 

on top of them, using these MLFO techniques. This requirement aims to give the 

ML pipeline overlay, the ability to adapt to dynamic service creation and 

orchestration. 

Traceability See Figures 5, 10 and 11 

 

ML-unify-021 
Support for plugging in and out new data sources or sinks to a running ML 

pipeline is a requirement  

Req. applicant MLFO (unstructured data) 

Significance/description 

Certain advanced network services to be defined in future networks, e.g., 

massive Internet of things (mIoT), require handling of unstructured data from a 

huge number of sources that may be under ZSM [11]. One such use case is the 

analysis of logged data for anomaly detection in networks. An MLFO needs 

mechanisms to perform operations like selecting models based on metadata 

derived from unstructured data and scaling ML pipeline nodes based on 

incoming data. 

Traceability See Figures 6, 7 and 8 

 

ML-unify-022 

A sharing mechanism for data and inputs between various nodes in the pipeline 

is recommended to be in the form of distributed, shared, highly performant data 

storage. 

Req. applicant General: core: database (DB) 
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Significance/description 

Cross-layer, cross-domain sharing of data across various levels, domains and 

clouds is needed to take correlated ML decisions in future networks. Concepts 

like data lakes are emerging in future clouds and can also be exploited in operator 

clouds. Governance mechanisms for data are mandated by regulations in certain 

areas. 

Traceability See Figures 7 and 8. 

8 Unified architecture 

Unified architecture stands for a common high-level logical architecture for ML in future networks. 

However, to understand the deployment options in various technology domains, this architecture has 

to be considered along with its technology-specific realizations. These are described in clauses 8.1 

and 8.2. 

8.1 Unified logical architecture 

The unified logical architecture is derived from the high-level requirements specified in Table 1. 

Reuse of existing standards wherever possible is a guiding principle applied while arriving at this 

architecture. This exercise allows us to study the gaps of existing standards. The level of abstraction 

used while deriving this logical architecture is such that, while all the basic requirements can be 

captured using these building blocks, extensions and technology-specific customizations are possible 

in each standard domain (e.g., 3GPP). 

The three main building blocks of the unified logical architecture (Figure 2) are: 

• Management subsystem: This includes orchestration, various existing management entities 

(e.g., virtual network function manager (VNFM), element management system (EMS)), 

management of platform [e.g., virtualization infrastructure manager (VIM)]. In addition, a 

new logical entity MLFO is also defined (see clause 3.2.3). Monitoring and management of 

these functions is achieved using a service-based architecture (SBA) defined in [1]. The intent 

(see clause 3.2.6) allows the operator to specify and deploy ML services on top of existing 

ones without tight coupling with the underlying technology used for realization. 

• Multi-level ML pipeline: The ML pipeline (see clause 3.2.1) is a logical pipeline that can be 

overlaid on existing NFs (e.g., VNFs as defined by ETSI or a cloud-native network function 

(CNF) as defined by CNCF [8]). It uses the services of an MLFO for instantiation and setup. 

For lifecycle management, it uses the services of the NFVO. The deployment of an ML 

pipeline may span different levels and domains or clouds. The MLFO coordinates this 

deployment. In this context, interface-8 (see clause 3.2.2) is important to achieve the chaining 

of such a multi-level deployment. Specific integration aspects of such an overlay of an ML 

pipeline on a specific technology (e.g., how to integrate an ML pipeline across various NFs 

in 3GPP CN and RAN) may require extension of existing interfaces or definition of specific 

APIs. 

NOTE 1 – Figure 2 shows three domains: CN, transport and RAN. These are treated as administrative domains. 

These may be owned, operated and administered by different entities (e.g., in roaming cases). These should be 

treated as examples while other domains are possible in the network. 

NOTE 2 – Figure 2 shows an instance of the MLP (ML pipeline) overlay on these domains. However, based 

on specific use cases, other ways of distributing the MLP nodes are possible. These are shown in clause 8.2. 

• Closed-loop subsystem: future wireless networks present a dynamic environment. Various 

conditions can change in the network (e.g., air interface conditions, UE position, platform 

capabilities and platform capacity). A closed loop subsystem allows the ML pipeline to adapt 

to this dynamic environment. It is driven by a simulator and monitored by the MLFO using 

the parameters defined in the intent. Such a "sandbox" environment allows operators to study 

the effect of ML optimizations before deploying them on a live system. As mentioned in 
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clause 3.2.6, updates from the network are fed back into the closed loop so that the ML 

pipeline can adapt to dynamically changing environment in the network. 

 

Figure 2 – Unified logical architecture 

8.2 Realization(s) of the logical architecture 

Figure 3 gives an instance of realization of the logical architecture on a 3GPP system along with MEC 

and management systems. The realization is achieved in the following manner. 

• Use the ML pipeline (see clause 3.2.1) to show the positions in this realization wherever the 

nodes in the ML pipeline can be hosted. e.g., CN, RAN, MEC, NMS. 

– Consider arrows: 1→2→4→ML pipeline1: This pipeline uses inputs from the UE to 

make predictions at CN (e.g., MPP-based use cases). 

– Consider arrows: 9→2→4→ML pipeline1: This pipeline uses inputs from the RAN and 

possibly a combination of UE and RAN, to make predictions at CN (e.g., MPP-based use 

cases). 

– Consider arrows: 10→7→ML pipeline2→8: This pipeline uses inputs from the MEC 

platform to make predictions at the edge and to apply them to the MEC. It can also use 

side information from the UE and RAN (e.g., caching decisions made at the MEC, local 

routing decisions at the MEC). 

– Consider arrows: 3→4→ML pipeline1→5: This pipeline uses inputs from CN and 

possibly a combination of UE and RAN inputs to make predictions at CN and applies it 

to NMS parameters that can in turn affect configurations in different domains (e.g., SON 

decisions made at the CN). 
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– Consider arrows: ML pipeline3→6: local predictions at the NMS that can in turn affect 

configurations in different domains (e.g., parameter optimizations based on data 

analytics). 

• Call out extensions in 3GPP interfaces or MEC interfaces where applicable. 

– Consider arrow 1 in Figure 3: this can be realized as an extension of RRC. 

– Consider arrow 2 in Figure 3: this can be realized as an extension of N2 interface [1] 

– Consider arrow 5 in Figure 3: can be realized via a reuse of ETSI SOL002 [10] 

– Consider arrow 10 in Figure 3: this can be realized via a reuse or extension of GS MEC 

011 [7] 

• Give instances of constraints applicable for placement of the ML pipeline in 3GPP. 

– UE is a resource-constrained device, hence only a source is instantiated in the UE. 

– As mentioned in ML-unify-014, RAN and MEC might have latency constraints on their 

use cases. Hence those models are hosted in the RAN itself as ML pipeline 2. Those data 

from the RAN and UE that are not used in such latency-bounded use cases are sent to the 

CN via arrow 2 in Figure 3. 

 

Figure 3 – Hosting of multi-level ML pipeline in 3GPP, MEC 

Figure 4 (see also [1]) gives the interface points for the logical ML pipeline with various technology 

services. The interface points are achieved in the following manner. 

• The ML pipeline is loosely coupled with 3GPP and other technologies. The ML pipeline has 

clear interface points at whih it interacts with 3GPP Network services. This allows the ML 

pipeline to evolve separately from underlying technologies, while allowing all forms of 3GPP 

and non-3GPP networks, even simulated ones, to benefit from ML services. 

• In Figure 4, MnSx stands for producer of analytics services (and consumer of data) whereas 

MnSx' stands for consumer of analytics service (and producer of data). 

NOTE – Data may be shared as described in ML-unify-022. 

• This also provides an interface point for third party service providers who may provide 

innovative services on top of future networks. These may be ML based, e.g., new ML 

algorithms or optimization mechanisms, or an over the top (OTT) service (e.g., VoLTE). A 

plug-in mechanism for these third party providers is needed to handle the ML needs of such 

services. Intention as a declarative mechanism should extend the capabilities to include such 
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third parties and they should be able to include these nodes in the specification, so that end 

users can enjoy such innovative services. Please see ML-unify-13 for an example of such a 

service. 

• The NOP may introduce services (e.g., SON based on analysis of data from the network) 

which takes advantage of the ML pipeline. These too, interface with the ML pipeline 

instances via MnS interface points. 

 

Figure 4 – MnS-based interface points for ML pipeline 

Figure 5 gives another instance of a realization of the ML pipeline in a 3GPP network. Here the focus 

is on the following. 

• Standard mechanisms for configuration of the ML pipeline using MLFO. MLFO in turn may 

use intent as an input. 

• The MLFO interface (see arrow 1 in Figure 5) includes monitoring and management of the 

ML pipeline using MLFO (including model selection and reselection, see also ML-unify-

019). 

• Distributed and multi-level placement of src, sink and ML pipeline in general, using MLFO. 

• Slice creation based on user data, integration with application logic are examples of use cases 

that can be achieved by placement of src and sink as shown in Figure 5. Such placement of 

src and sink may require specific interfaces that integrate the data collection (see arrows 2, 

3, 5) and network configuration (see arrow 4), respectively. 
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Figure 5 – Management of multi-level ML pipeline 

In Figure 6, the realization of the ML pipeline in the EdgeX [3], which is a vendor-neutral open source 

software platform, is demonstrated. This enables interaction with devices, sensors, actuators, and 

other IoT objects. It provides a common framework for Industrial IoT edge computing. The 

supporting service (SS) layer of the EdgeX layer provides edge analytics and intelligence. 

Realization of the ML pipeline is demonstrated as follows. 

• ML pipelines are instantiated in the core cloud and edge clouds. For example, in Figure 6, 

three ML pipeline instances are shown. They coordinate using interface 8 (see clause 3.2.2). 

• Arrow 4 shows a local analytics service (ML pipeline 2) based on platform inputs. 

• In the core cloud, an ML pipeline will have the core NFs as src. This may be used in 

correlation with data from the edge. 

• Arrow 5 shows a local analytics service (ML pipeline 3) based on local inputs at the core 

cloud and forwarded inputs from edge cloud 1 via arrow 2. 

• In the edge cloud, an ML pipeline will have the EdgeX platform service and its other services 

as src. These may be used in correlation with data from another edge (e.g., in the 3GPP V2X 

use case or mobility case mentioned in [12]). 

• Arrow 1 shows a "store and forward" of data collected at edge cloud 2 to edge cloud 1. These 

data are then analysed by ML pipeline 1. 

• Collaborative interfaces Figure 6 will be realized using interface 8 (see clause 3.2.2). This 

helps in enriching the data available at any pipeline with side info from other instances. 

• Arrow 3 shows a local analytics service (ML pipeline 1) based on local inputs and forwarded 

inputs from edge cloud 2. 

 

Figure 6 – EdgeX-based instance of ML pipeline 
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Figures 7 and 8 shows specific instances of Figure 6. 

 

Figure 7 – ML-based edge computing workflow for prediction 

Figure 7 shows Edge-platform-based ML prediction. It may include the following. 

• Intelligent network traffic control technology edge computing technology based on EdgeX 

(Open source edge platform).  

• Intelligent traffic analysis and ML-based prediction (e.g., deep learning, reinforcement 

learning). 

• Hybrid intelligent network control approach combined by optimizing prediction and control. 

• Figure 7 shows: (arrow 1) collecting data from a sensor/device; (arrow 2) stored data in 

EdgeX core service; (arrow 3) data pre-processing by EdgeX expert service; (arrow 4) 

transforming data-set to cloud for ML training in sandbox domain; (arrow 5) model serving 

with the trained model from ML prediction in EdgeX; (arrows 6,7) ML decision in EdgeX 

platform. 

Figure 8 shows a real-time monitoring and control service based on edge computing. It may include 

the following. 

• Intelligent edge-based monitoring and control system for analysing and processing real-time 

sensor optimization. 

• ML-based intelligent IoE service and optimal control system using edge computing. 

• Intelligent real-time edge computing solution. 

• Figure 8 shows: (1) real-time sensor/device data collection by EdgeX device service via 

broker, followed by data collection and processing by an ML-based module; (2) data 

collection and saving in a DB (e.g., MongoDB) via the EdgeX core service; (3) real-time 

monitoring of the stored sensor/device data by the EdgeX-based monitoring client via the 

EdgeX expert service; (4) optimizing real-time control on the IoT sensor/device via the 

EdgeX core service. 
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Figure 8 – Real-time monitoring and control system using EdgeX 

Figure 9 shows an instance with the following characteristics. 

• In an SBA, the ML pipeline is hosted in the network data analytics function (NWDAF) [1]. 

– ML pipeline 1 may have AMF as src (arrow 4) and PCF as sink (arrow 5) to realize a 

particular use case (e.g., mobility-based policy decisions). 

• A resource-constrained DU hosts part of the ML pipeline, but not the training. The training 

is done at the CU and the trained model is distributed to the DU, where it is hosted. 

– DU hosts M2 which is updated from the CU via arrow 3. 

– Data for training the model in the CU is provided via arrow 1. 

• Collapsing of the interface between ML pipelines is an option as shown in the RAN data 

analytics (RDA) option. This brings out the need for flexibility in deployment. See ML-unify-

012, ML-unify-015 and ML-unify-020. 

– M1 and M2 are hosted in CUDA and DUDA (in ML pipeline 2 and 3, respectively) in 

the 3GPP split deployment, whereas they are collapsed (merged) in the other 3GPP 

alternative deployment options [1]. 

• The extension of 3GPP interfaces for carrying information specific to ML pipeline execution 

and training is a requirement here. 

– For example: RDA is primarily used to support optimization in the RAN. It also needs 

to provide data subscription services for NWDAF and business and operation support 

system (BOSS), operation support system (OSS) or MANO; and  

– upload pre-processed subscription data to NWDAF and BOSS or OSS (arrow 8) for 

further big data operations and services; 

– RDA can also subscribe to the NWDAF data analysis results for the RAN-side service 

optimization (arrow 6). 
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Figure 9 – Hierarchical distributed instance 

In Figure 10, the mechanism of incorporating timing constraints of various 3GPP use cases into their 

realization using ML pipeline is shown. The timing constraints are captured in intents, which are in 

turn processed by MLFO to determine instantiation choices, like positioning of various ML pipeline 

nodes. In Figure 11, RAN use cases have the strictest latency constraints (50 µs–10 ms). Therefore, 

the MLFO may choose to position the entire ML pipeline 2 in the RAN. In contrast, use cases related 

to 5GC have 10 ms to a few seconds latency budgets. Hence, the MLFO may choose to enrich the 

data in ML pipeline 1 with side information from the RAN. The same is applicable to ML pipeline 3. 
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Figure 10 – Timing constraints and intents 

Figure 11 shows a unique realization in which NWDAF functions are hierarchical across three 

domains: CN, AMF and RAN. This split allows certain specific data to be used for local decisions at 

these NFs. From an ML pipeline perspective, this would mean that the pipelines are chained, so that 

the output of one could feed into the input of another. 

• Arrow 1, arrow 2, show control by the NS manager using the ML pipeline in NWDAF. This 

enables use cases like dynamic slice configuration using ML. 

• Arrows 3,4, and 5,6 are local NWDAF functions in AMF and RAN respectively (e.g., AMF 

can customize connection management, registration management, mobility restriction 

management for UEs based on the long-term UE MPP). 

• Arrow 7 shows chaining, so that the output of a remote NWDAF can feed into the local 

NWDAF as input (e.g., while performing short term MPP). 

 

Figure 11 – Hierarchical instances 
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Figure 12 shows the proposed architecture to achieve closed loop automation in operation and 

management on 5G networks. 

• The management system should be automated to the extent possible to promptly react to 

failures in the NFV. The operator wants to promptly discover such failures, which result in 

increasingly unstable behaviour before the process escalates into critical failure. RCA is also 

important to properly convey relationship information between failure type and location to 

automation function.  

– Line 1 in Figure 12 shows the src/collector interface. Line 2 shows the collector/ML 

pipeline interface. Line 3 conveys the result of the ML pipeline (RCA or predictive 

detection) to the policy function in the automation function. 

– NFVO is configured based on policy or workflows (line 4). 

• Continuous improvement of the automated fault recovery process workflows is important. 

– Line 6 provides the output corresponding to this improvement to the sink hosted in the 

automation function. 

• As mentioned in ML-unify-019, the ML pipeline is configured and monitored by MLFO via 

Line 5. 

 

Figure 12 – ML in closed loop automation 

Figure 13 shows the ML model being executed both on the cloud and the edge servers. In general, 

the knowledge acquisition (training) part is executed on the cloud server, as there is no severe timing 

requirement, but sufficient processing power is required. However, the knowledge application part, 

which requires severe timing conditions, is expected to be executed on the edge using the acquired 

knowledge, which is an output of ML executed on the cloud server. There may be transfer of learning 

or output between the models in the two domains. 
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Figure 13 – Transfer of learning between domains 

9 Informative Appendix: Key architectural issues for further study  

9.1 Standardize a machine learning meta language  

Description/significance: 

• An ML-ML should be specified as a technology-agnostic, declarative specification language, 

that can be used to specify how an ML pipeline can be "composed" for a use case.  

 For example, an NOP could specify using ML-ML that a new ML-based use case needs to 

be introduced –alarm analysis, RCA and network problem area prediction – by deploying a 

new src in the NMS subsystem, using a newly available model in a public repository, and 

directing the output to a fault recovery module via a policy function. Such a specification 

(intent) could be agnostic of its underlying implementation in specific technology (e.g., 

3GPP) by various vendors. 

• ML-ML is used to make declarative specification, from which flows the interpretation and 

realization of such a ML pipeline in, say 4G, 5G or any future networks, including simulated 

networks in a standard, predictable, interoperable manner, with no surprises. 

• Service orchestration (SO) mechanisms, implemented by different vendors, need to 

understand the requirements specified in this format and control the steps in SO according to 

this input. 

• It is important to differentiate the language (ML-ML) from the specifications (intent) written 

in that language. 

• Prepare the mapping between ITU requirements and 3GPP, and other realizations of the use 

case (because of clear demarcation of use case specific nodes and ML pipeline nodes in 

generic architecture). 
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Figure 14 – The role of Intent and ML-ML 

NOTE – A possible realization of ML-ML might use basic constructs in existing meta-languages and MLFO 

may be realized as a function as part of NFVO. Such implementation details are beyond the scope of the current 

study. 

Current work and identified gaps: 

• ETSI defines service orchestration. Network service catalogues for end-to-end (E2E) service 

description with VNF and physical network function (PNF) descriptors and service graphs 

are specified.  

• Container-based orchestration platforms (e.g., Kubernetes) have their own mechanisms for 

service orchestration. 

• Efforts are on to integrate these two, in ONAP. 

• Current efforts are focused on providing E2E service. The impact of introducing an ML 

pipeline on to such service orchestration mechanisms should be studied. Reuse of existing 

mechanisms should be maximized, but at the same time, gaps in integrating ML in a 

descriptive fashion while orchestrating VNF, PNF and CNF should be studied. 

9.2 Study the level of capability exposure needed to enable dynamic ML-based use cases in 

5G and future networks 

Description/significance: 

• Capability exposure and creation of ML-based services in future networks are closely related 

to each other. 

• ML use cases depend heavily on availability of data to analyse. 

• Measurement data and context data related to the use case needs to be identified. 

• Some of these data are standardized while others are not. 

• Introduction of SBA into 3GPP implies that a means of obtaining these data is via services 

from MnS producers which expose such data. These data can be consumed by MnS 

consumers which use them for analytics. 

• This may in turn be governed by an exposure governance management function (EGMF) as 

defined in 3GPP. 

• Dynamic and rapid service creation can be achieved in future networks only by mapping the 

capability exposure with service creation, discovery and chaining. 

Current work and identified gaps:  

• 3GPP specifies [1] southbound interfaces between the NEF and 5GC NFs e.g., N29 interface 

between NEF and SMF or N30 interface between NEF and PCF. 

• 3GPP NFs expose capabilities and events to other NFs via NEF. 

• e.g., The AMF provides the UE mobility-related event reporting to NF that has been 

authorized to subscribe to the UE mobility event reporting service via NEF. 



  FG-ML5G-ARC5G (01/2019) 27 

• However, these are neither dynamic, nor granular. Furthermore, cloud-native events [8] need 

to be supported along with discovery and chaining. 

• In combination with dynamic creation and deployment of an MnS dynamically (third party 

or NOP internal), discovery, chaining and integration with NEF also have to happen 

dynamically. Requirements and mechanisms for these need further study. 

9.3 Study the requirements for "division of ML labour" between clouds. Study the 

implementation of multi-level ML interface and its relation with the NFVO-NFVO 

interface 

Description/significance: 

• Multi-level interfaces are used in almost all use cases. 

• Different orchestration abilities may be present in different clouds, e.g., edge clouds may not 

have all orchestrator functions. 

• When designing, developing, testing, deploying and managing ML workloads across such 

multiple clouds, interface between them will be subject to specific needs, e.g., design time 

specification and runtime deployment of ML pipeline nodes across domains, monitoring ML 

pipeline nodes, decision of where analytics are done (based on the capability of the cloud, 

e.g., a resource-constrained edge node may not host training function, but it may host the 

runtime model predictor). 

• Requirements of ML functions on such a cloud/cloud interface have to be studied to enable 

smooth deployment of ML functions across clouds. 

Current work and identified gaps: 

• Many open source forums are studying the implementation of generic cloud, e.g., ONAP, 

Akraino and openstack edge. 

• In ETSI-NFV, IFA022 studies connectivity service instantiations between different network 

function virtualization infrastructure (NFVI) points of presence (PoPs) for network service 

life cycle management. A network service is instantiated by the interactions among BOSS, 

NFVO, WIM/VIM and network controllers. The current IFA022 analyses the interactions 

among BOSS, NFVO, wireless infrastructure network (WIM)/VIM with reference to the 

current ETSI-NFV standards specifications. 

• draft-bernardos-nfvrg-multidomain-05 analyses the problem of multi-provider multi-domain 

orchestration, by first scoping the problem, then looking into potential architectural 

approaches, and finally describing the solutions being developed by the European 5GEx and 

5G-TRANSFORMER projects. 

• None of these addresses the needs of MLFO. 

9.4 Study the relationship between ML pipeline nodes and 3GPP NFs. Understand the 

management of ML pipeline nodes 

Description/significance: 

• ML pipeline nodes are an overlay on top of 3GPP. They could be hosted on any 3GPP NF 

by orchestration methods. They are managed by MLFO which in turn is managed by NFVO. 

MLFO may use interfaces and coordination with 3GPP and non-3GPP to manage the 

pipeline. 

• Further, an ML pipeline acts as a non-3GPP service and interacts with 3GPP NF using 3GPP-

defined MnS. Requirements for nodes in an ML pipeline will be defined by ITU (and not by 

3GPP). 
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• ML pipeline exposes only type A components towards 3GPP, because operation or 

notification has to be produced or consumed towards 3GPP NF MnS. Types B and C, even 

if exposed, may be emulated (not real 3GPP NF). 

• Interaction with legacy 3GPP NFs needs to be studied using wrapper services. These wrapper 

services expose interfaces towards the ML pipeline using standard interfaces, but implement 

legacy or vendor-specific interfaces towards the NF. This aspect to provide a smooth 

migration path to operators needs further study. 

 

__________________ 

 


