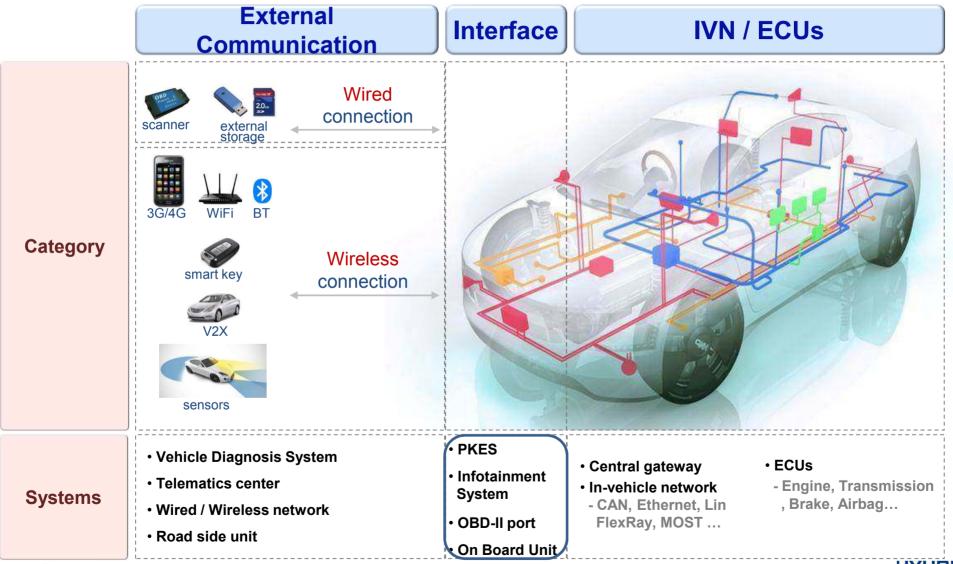
Prevention of a cybersecurity threat in a Connected & Autonomous Vehicle

Aug.26th 2019

Hyundai Motors

- I. Paradigm Shift & Cybersecurity Threat
- II. Cybersecurity Standardization
- III. Issues on Autonomous Vehicles
- IV. Cybersecurity in Autonomous Vehicles
- V. Conclusion

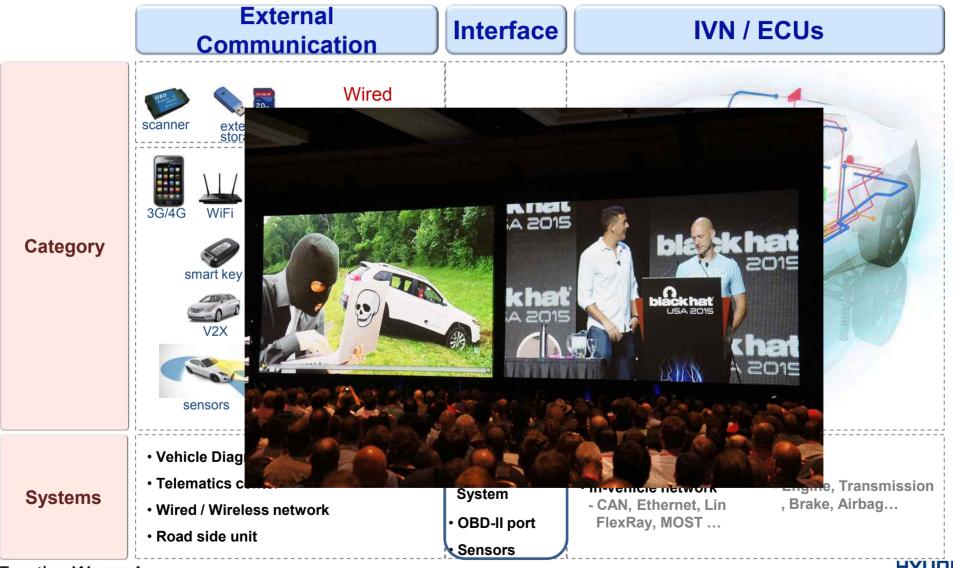
Vehicle – Paradigm Shift


A Vehicle improves a technology according to becoming an electronic system and

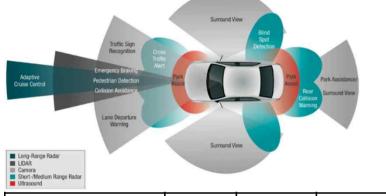
connecting with each other

	Mechanical Systems	E/E Systems	Connected Service
Car			
Specification	 Powertrain Engine Brake System Steering Wheel Chassis 	 Powertrain Control Module MDPS TPMS Vehicle Diagnosis System 	 Telematics Wired / Wireless network V2X (On Board Unit) Wi-Fi / Bluetooth
Together We can	!	··	

Vehicle – Attack Surface & Cybersecurity Threat


An Attack Surface is enlarging according to increasing an external communication

Vehicle – Attack Surface & Cybersecurity Threat

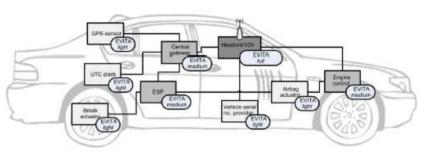

A Cybersecurity Threat is coming to ours

Vehicle – Autonomous Driving & Cybersecurity Threat

- An Autonomous Vehicle has a sensor system related to LIDAR and RADAR and Camera and Ultrasonic
- Hackers show how a sensor system can be tricked

+++			
	++	+	+
++	+	++	+
++	+++	+	+
++	+++	+++	+++
+++	+++	+++	+++
+++	+/++/ +++	++	+
	++ ++ +++	++ +++ ++ +++ +++ +++ +++ +/++/	++ +++ + ++ +++ +++ +++ +++ +++ +++ +/++/ ++

+++ : High, ++ : Medium, + : Low



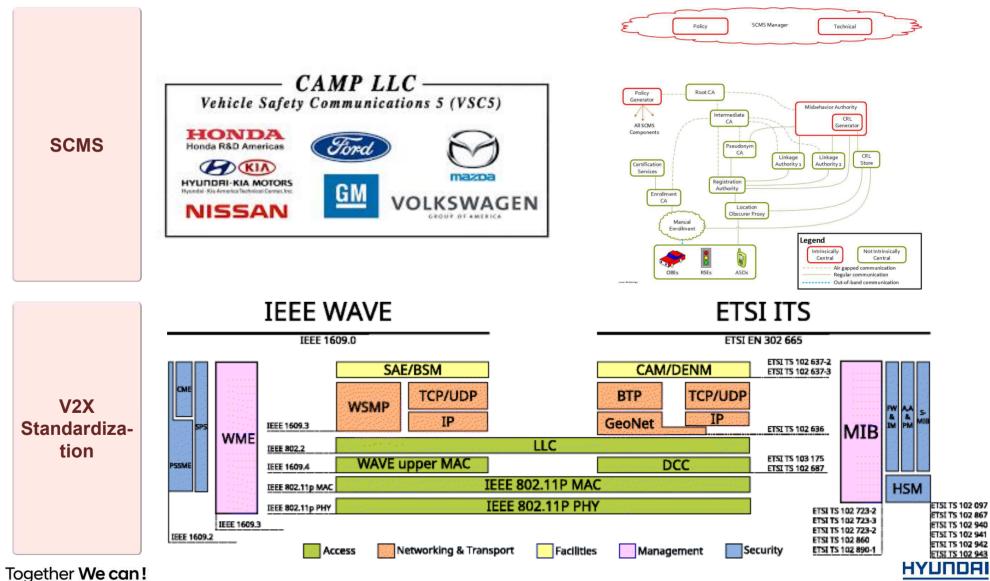
EVITA project

- EVITA project identifies a cybersecurity requirement for a vehicle on-board network
- This project proposed an E/E Architecture and HSM class for vehicle cybersecurity

	Overall			
	Project acronym: Project title: Project reference: Programme: Objective: Contective: Start date of project: Duration:	EVITA E-safety vehicle intrusion protected applications 224275 Seventh Research Framework Programme (2007-2013) of pean Community ICT-2007.6.2: ICT for cooperative systems Collaborative project 1 July 2008 From July 2008 to December 2011 (42 months) EVITA project	f the Euro-	
Description	Period covered: Dissemination level:	from 1 July 2008 to 31 December 2011 Public		
	Project coordinator: Project partners:	Fraunhofer Institute for Secure Information Technology BMW Research and Technology Continental Teves AG & Co. oHG escrypt GmbH EURECOM Fraunhofer Institute for Systems and Innovation Research Infineon Technologies AG Institut Telécom Katholieke Universiteit Leuven MIRA Ltd. Robert Bosch GmbH TRIALOG Fujitsu Semiconductor Europe GmbH Fujitsu Semiconductor Embedded Solutions Austria Gmb	(Germany) (France) (Belgium) (UK) (Germany) (France) (Germany)	
	Contact: Email: Tel.: Fax: Project website:	DrIng. Olaf Henniger, Fraunhofer SIT Rheinstraße 75, 64295 Darmstadt, Germany olaf henniger@sit.fraunhofer.de +49 6151 869 264 +49 6151 869 224 http://evita-project.org		

Proposed Architecture

Secure on-board unit


HSM	EVITA Full	EVITA Medium	EVITA Light
Internal NVM	Yes	Yes	Optional
Internal CPU	Programma ble	Programm able	None
HW Crypto algo.	Asymmetric Crypto	Symmetric Crypto	Symmetric Crypto
RNG	TRNG	TRNG	PRNG
Counter	16X64bit	16X64bit	None

Hardware Security Module

NOTOR GROUP

V2X security – Security Credential Management System

■ V2X security defines a specification for a secure communication

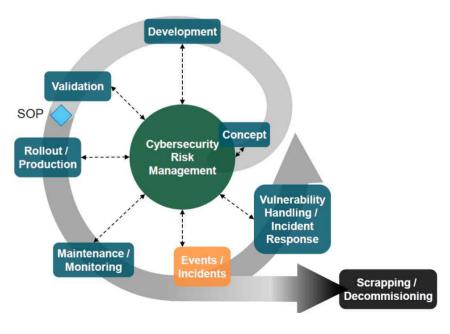
MOTOR GROUP

ITU-T SG17 Q13 Standardization

■ ITU-T SG 17 Q13 standardization is developing a vehicle cybersecurity solution

Standards Number	Keyword	Description	Schedule (due to)	
X.1373	Secure OTA	Secure software update capability for intelligent transportation system communication devices	September 2020	
X.itssec4	Intrusion Detection System	Methodologies for intrusion detection system on in-vehicle systems	??	
X.itssec2	V2X Security	Security guidelines for V2X communication systems	??	
X.itssec3	External Devices Security	Security requirements for vehicle accessible external devices	??	
X.stcv	Security Threats	security threats in connected vehicles	March 2019	
X.mdcv	Misbehavior Detection (Security-related)	security-related misbehavior detection mechanism based on big data analysis for connected vehicles	December 2020	

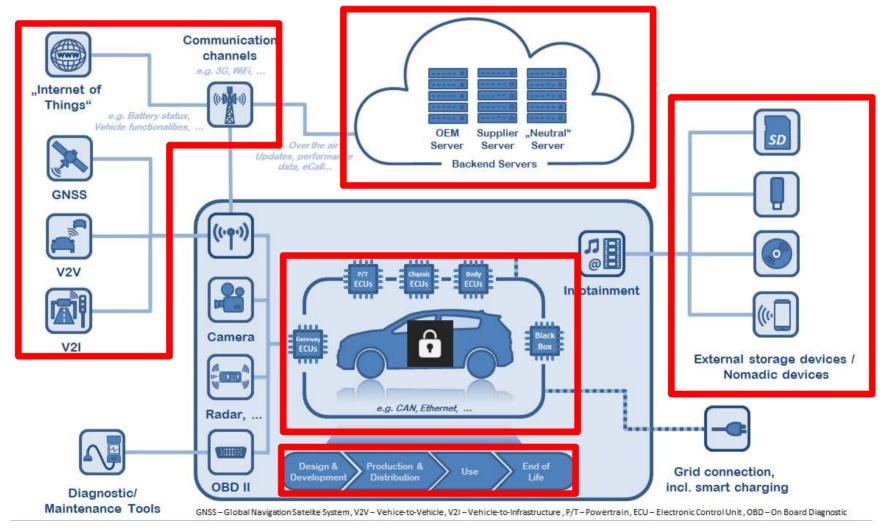
ISO/SAE 21434 : Road Vehicles Cybersecurity Engineering


■ ISO/SAE 21434 helps to keep a secure vehicle by removing a cybersecurity vulnerability

ISO/SAE 21434 considers not only a cybersecurity but also a safety

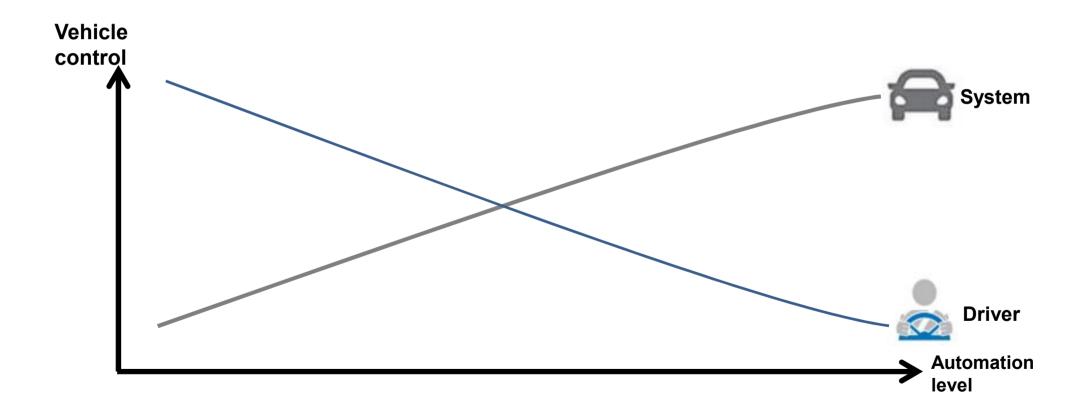
		4. General c	onsiderations			
	-107	5. Management	of cybersecurity			
5.1 Overall cybersecurity management				ersecurity management during n, operations and maintenance		
6.1 Bisk		6. Risk assess	ment methods			
assessments 6.2 Asset identification	(c) [10] [20] [20] [20] [20] [20] [20] [20] [2	5.4 Impact 6.5 Vuln ssessment anal		6.7 Feasibility Assessment	6.8 Risk assessment	6.9 Risk treatment
7. Concept phase 7.1 Cybersecurity	9	8. Product development 8.1 System development phase			9. Production, operations and maintenance 9.1 Production	
relevance 7.2 Item definition						
7,3 Initiation of product development at the	8.2 Hardware d	ware development phase 8.3 Software development phase		9.2 Cybersecurity monitorin		
concept phase 7.4 Cybersecurity goals	8.4 Verification and validation			9.3 Vulnerability handling an incident response		
7.5 Cybersecurity Concept		8.5 Release for post-development			9.4 Updates	
	2 Management systems		ing processes	10.4 Tool M	anagement	

ISO/SAE 21434 overview



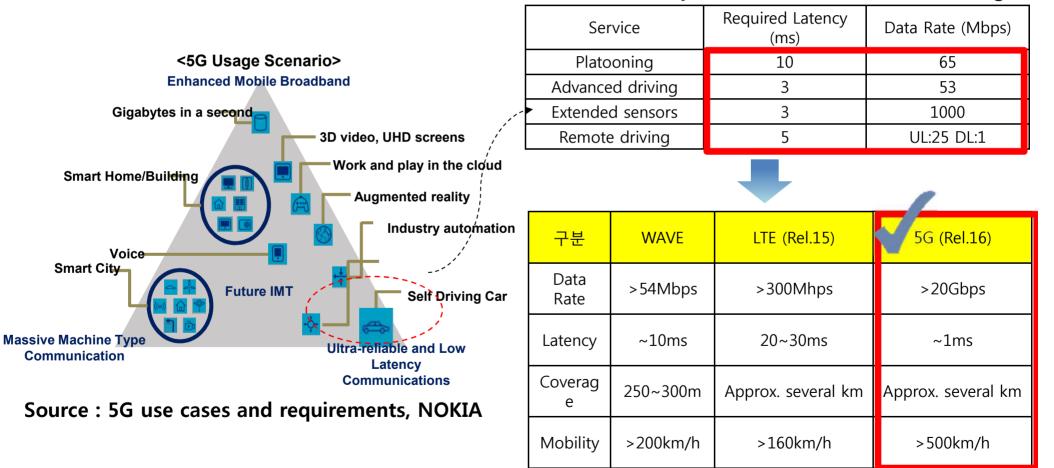
Cybersecurity lifecycle

Vehicle Cybersecurity Solution


- A Standardization researches IDS, HSM, Secure OTA and V2X Security
- Vehicle Cybersecurity Solutions apply form a server to ECU for a security and safety

Issues on Autonomous Vehicles

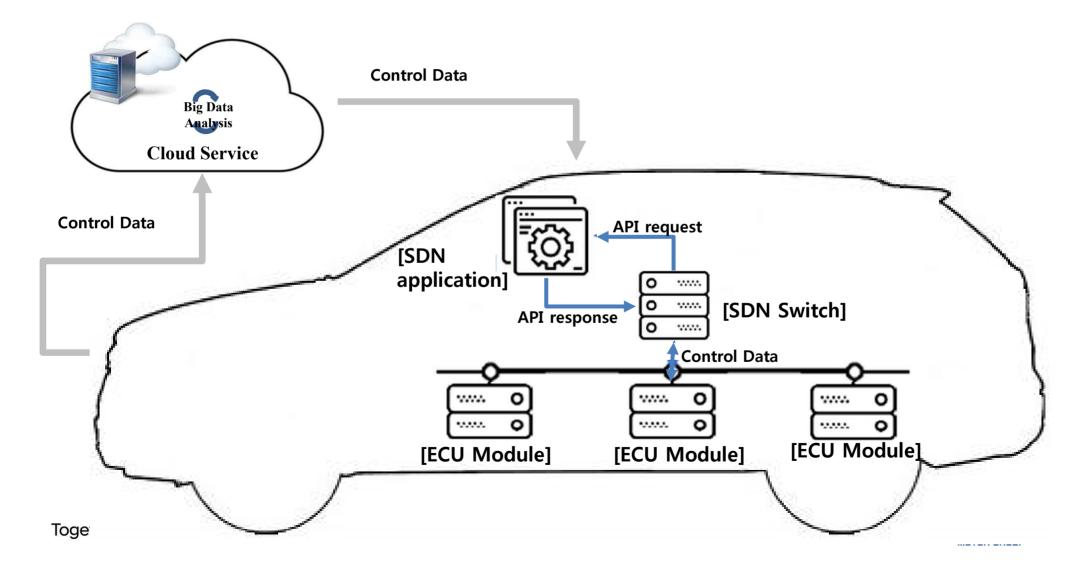
- Due to inherit danger of road vehicle, we need low latency connection with control system
- High & Full Automation Vehicle controls the vehicle dominant over human driver


Issues on Autonomous Vehicles

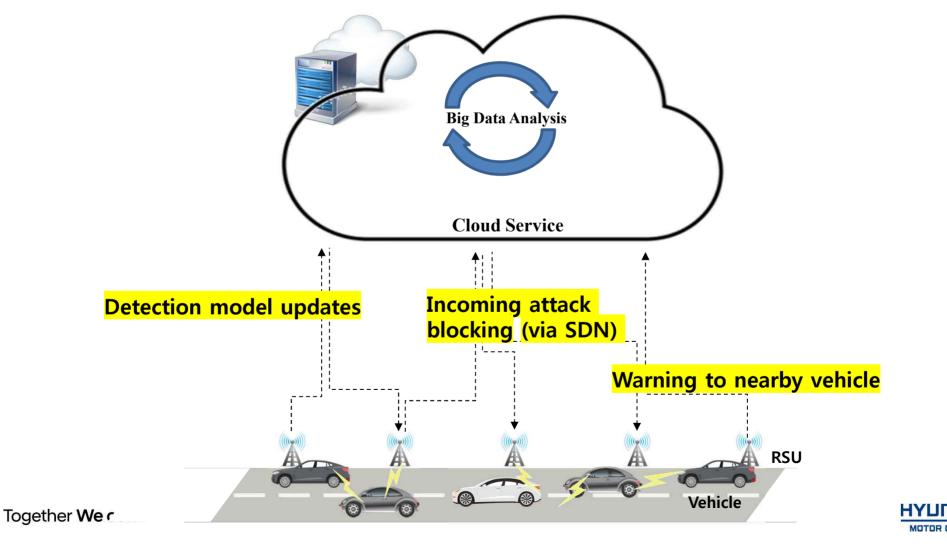
■ 영상

Cybersecurity in Autonomous Vehicle – 5G network

An Autonomous Vehicle's requirement meets data latency within 1 ms
 High & Full Automation Vehicle requires ultra-reliable and low latency communications



TS 22.186 Requirement for autonomous driving


Cybersecurity in Autonomous Vehicle – SDN in-vehicle network

An Autonomous Vehicle needs to take a reliable and real-time control by system
 A Software Defined Network provides a flexibility, reliability and low-latency

Intrusion Response System for autonomous vehicle

- '5G and SDN' based IRS is optimal solution to block cyber attacks in autonomous vehicles
 - allowing real-time intrusion response from inside and outside attacks
 - quick propagation of warning message in a wide area through 5G Network.

- Paradigm Shift in the Automotive Industry
- ✓ Increased Cybersecurity Threats
- ✓ Standardization for cybersecurity
- ✓ Cybersecurity Issues in an Autonomous Vehicle
- ✓ A Cybersecurity Solution in an Autonomous Vehicle

