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I Fact: Future networks need automation

7"\
® O

-
7-fold increase in number of 5G 5G needs to co-exist with New services with very different
connections by 2025 [CCS Insights] 4G/3G/etc. > operation requirements: low latency (AR/VR),
challenges ultra reliability (automotive loT)
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* Hard to find optimal point of operation
in a timely manner

PRI - Multiple goals to be fulfilled at the

Problems with Vultiple &

tra d ITIoNa | * Even hard to know what an optimum

" : . looks like
optimisation .
, * Network environment changes
approaches Ly continuously
Fo... -~ » Too many ‘knobs’ to tweak
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Surely seen this before, right?

Example: Optimising throughput of
virtualised Wi-Fi using control theory

e Optimal operation characterised by an
invariant signal — empty slot probability

_ /Z_Te
Py ~e 7o
* Proportional-integrator controllers

adjusting contention windows for each
virtual access point (VAP)

e Settings propagated with every beacon
(100ms)

A. Banchs, P. Serrano, P. Patras, M. Natkaniec, "Providing Throughput and Fairness Guarantees
in Virtualized WLANs through Control Theory", ACM/Springer MONET, 2012
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Complexity of multi-service mobile networks

Problem: Maximise the utility of

O sliced backhaul networks

* Allocate rates r;;to flows f;

SlicelF1R
Video  am~ * to meet service requirements and
f;ife@ * to maximise resource utilitsation
ohysica F F arg max ), U; (1,
Infrastructure where U, is polynomial/sigmoid/etc.

R. Li, C. Zhang, P. Cao, P. Patras, J. S. Thompson, "DELMU: A Deep Learning Approach to Maximising the
Utility of Virtualised Millimetre-Wave Backhauls", MLN 2018
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I Complexity of multi-service mobile networks
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* High-dimensional problem, highly non-convex
* Global search is time consuming
* Heuristic methods can solve but sub-optimal
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he power of deep learning

1.2 Deep Learning
Lo * |Inference >2,300x faster than Global
. Search, 42x faster than Greedy heuristic
S;f 0.8 * Within 5% if the global optimum
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* High-dimensional problem, highly non-convex 0 — — — —
* Global search is time consuming Topology 1 Topology 2 Topology 3 Topology 4
e Heuristic methods can solve but sub-optimal mGS/Delmu ™ Greedy/Delmu
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Deploying Al in mobile networks

Follow ITU-T Y.3172 (Architectural framework for machine learning in

future networks including IMT-2020)
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with Al-driven analytics
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C. Fiandrino, C. Zhang, P. Patras, A. Banchs, and J. Widmer, "A Machine Learning-based Framework
for Optimizing the Operation of Future Networks," IEEE Com. Mag., 2020.
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I Example: Proactive routing based on load forecasts

\
\
\ Load forecasts fed
back to routing logic Core
/ ®
\

Traffic Traffic
reports predictions

City-scale Mobile Network Deployment

@7 oy
/- \\ \—/ Deep Neural
/ Router Network
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Example: Proactive routing based on forecasts

back to routing logic Core
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I Full autonomy with deep reinforcement learning

* DRL agent learns from complex
context (link qualities, user/app
profiles, traffic load, mobility
patterns, etc.) and

* interacts with changing
environment via a control policy,

* aiming to maximise some reward
(reduced latency, throughput
gains, etc.)

Example: mobile connectivity
management/content caching

Network-side
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I Many challenges

* Huge action/state spaces — neural network
models take a lot of time to converge

 Difficult to model the environment (model free
learning) — sample complexity

* New circumstances call for retraining

e Often missing the ‘bigger picture’

“Al Camera Ruins Soccer Game For Fans After
Mistaking Referee's Bald Head For Ball”
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Wise to keep the human in the loop (shared autonomy)

* Already considered for robotic control

Rfeedback
ﬁ .
[
 Combine agent observations of the environment with user input
* Still need to pre-train agent in simulation to avoid user overload

S. Reddy, A. Dragan, S. Levine, “Shared Autonomy via Deep Reinforcement Learning”, arXiv, 2018.
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owards autonomous networks

* No ‘one size fits all’ solution

* Take into account specifics of
individual use cases

* Hierarchical approach to control (?),
i.e. ask operator for assistance when
confidence about decisions low

* How to do this in real-time
(anticipate future state?)

 What about computation costs?
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