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Early detection of ignitions is critical to the
prevention of large bushfires
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Lightning ignhitions

Identified as a key cause of major bushfires.

Occur across the landscape, often in remote,
inaccessible bushland late in the day

Individual thunderstorms may contain thousands of
lightning strikes

Checking and validating all possible ignitions after a
dry lightning storm is a critical, time consuming and
dangerous task.

Crew fire-spotting aircraft may not be available until
the next morning (resourcing/safety
issues/restrictions on night flying)

Fires can smoulder inside a tree or its root system,
producing little if any smoke, for hours, days or even
months




Layers of situational awareness for ighition detection
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Six lightning detectors installed in the ACT
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Rapid identification of High Risk Lightning (HRL)

7N\ 2\
Low Frequencies Extra Low
) )))) LF ELF (LF) Frequencies ELF)
¢z ¥ +
Strike Point =y R&D
P FNN Lightning ELF Emissions from
Ji 5 Detector Long Continuing current (LCC)
=k 2 v
Environmental Data } 3D ¥ R&D
$ Lightning Mapping Sky and Groundwave
(40 m accuracy) An Ell)'SiS
& J
@ ot
Artifical Intelligence €= LCCLightning €= Reconstruction of LCC
Parameters
HRL
Detection

)



Live Fuel Moisture Content increases the likelihood
of a lightning-caused wildfire

* p<0.05
** p<0.01
***p < 0.001

Risk ratio
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Landscape flammability

I Australian Flammability Monitoring System
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Landscape flammability forecast
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Landscape flammability
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Fire Tower camera based Smoke detection

* |dentify the pixels that are smoke in an image using a novel Convolutional Neural
Network

« Allows finding the source (rather than just there is smoke, or rough location) 24/7

* Overperforms other existing algorithms in the literature

 Need to generate a publicly available dataset of smoke-detecting camera imagery
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2. 8 Yan, J Zhang, N Barnes, 2022. Transmission-Guided Bayesian Generative Model for Smoke Segmentation, AAAI



Long range uncrewed vehicles \\

Carbonix partnership on development of
Remotely Piloted Aircraft System (RPAS)

technology. \;EQJ
Working with multiple RPAS platforms

* Volanti (electric, 2-hour)
*  Domani (petrol, 6-8 hours)

« Thermal camera (NextVision
NightHawk2-UZ)

Carbonix Volanti RPAS in flight over the ANU field

robotics site at Spring Valley

* Silvus mesh radio
— Beyond Visual Line Of Sight (BVLOS) flight
— Enable us to stream thermal Imagery directly to

ACT RFS f

CARBONIX =



Evaluation of detection techniques:

What are we testing?

Detection techniques

1. 000

2. Fire lookout observers
3. Ground sensors

4. Cameras

* Fire observer operator looking at
the screen in a control centre

* Automatic Al algorithm
3. Drone detection

4. Existing satellite capability

Performance metrics

1.
2.

Fire detection rate

Time to report (only possible with
experimental or prescribed fires)

Location accuracy

Fire size and shape at the time
of registering (from drone footage)

Indicator of fire intensity (radiative
power or colour of the smoke)




Evaluation of Hotspot detection from existing
satellites
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Most satellites can detect the biggest fires * Most satellites able to detect ignitions within
but the smaller fires are mainly detected by <1 day since ignition

those satellites with better ground.
« AHl is the only satellite that provides sub

Most small fires are missed. daily images but has the worst spatial
resolution what explain the low detection rate

The are 108 fires in the database



Take home message

Current ignition detection approaches are not always effective, especially during
extreme weather and in remote, unpopulated locations.

Novel technologies, some powered by Al may offer more efficient detection of
ignitions.

Access to more data can enhance the accuracy of algorithms. We should work
together to create publicly available datasets!
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OpenWildFire
2191 images
| bounding box

annotations
(Wei et al. 2020)
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