Understanding Fire Danger with Explainable Artificial Intelligence

Michele Ronco, Spyros Kondylatos, Ioannis Prapas, Ioannis Papoutsis, Gustau Camps-Valls, María Piles, Miguel-Ángel Fernández-Torres, Nuno Carvalhais

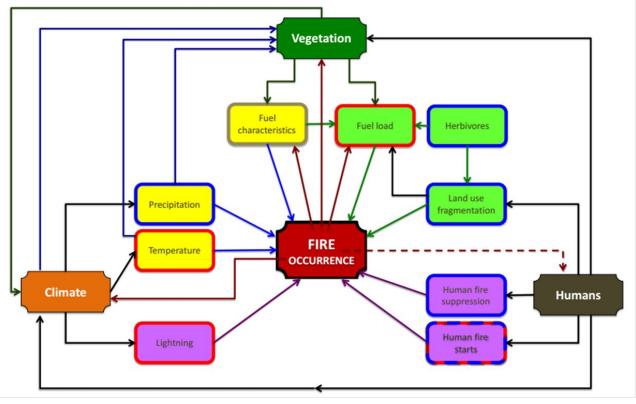
ITU Webinar on Fighting wildfires with Al-powered insights, 19 April 2023

Max Planck Institute for Biogeochemistry

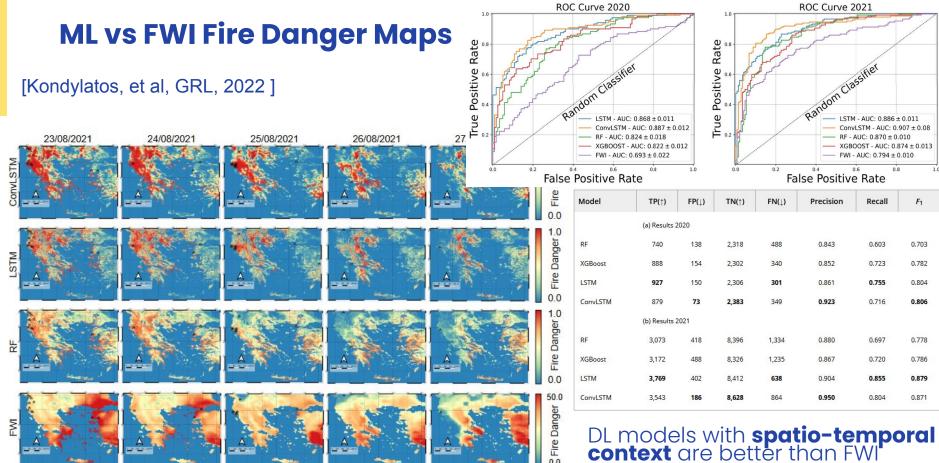
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004188

Challenges

- Fires are the result of complex interactions
- Use Machine Learning on large historical data
- Associate fire drivers with past burned areas
- Rely on **Explainable AI** to interpret fire danger

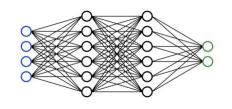


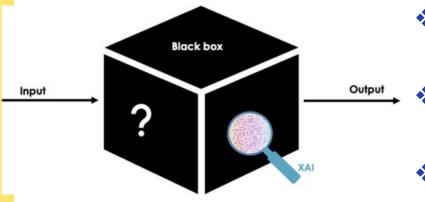
Fire Drivers. Source: Hantson et al. "The status and challenge of global fire modelling" (2016)



DL models with **spatio-temporal context** are better than FWI

Explainable Al





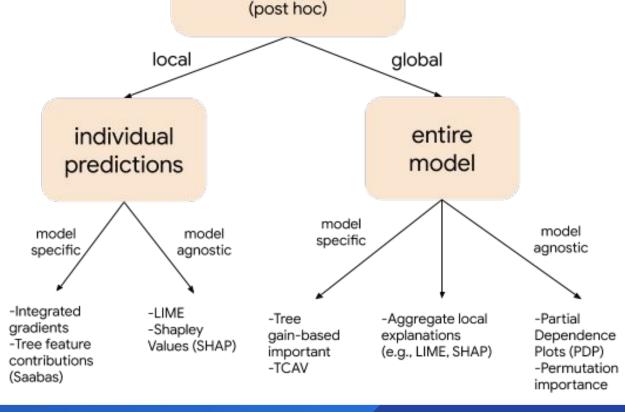
How can we **interpret** the predicted fire danger?

- Why is the danger high on a given day or location?
- Which are the **main drivers** leading to wildfires?
- What is the **main mechanism** behind fire occurrence and spread?
- *
- When can we **trust** model's predictions?

Bird's-eye view of xAl

- Global VS
- Model-specific VS model-agnostic
- Gradient-based VS perturbation-based

Combine methods to get complementary information



How to explain

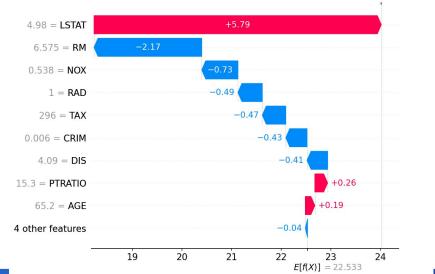
an ML model

Shapley values

[Lundberg, Leee, A Unified Approach to Interpreting Model Predictions, NIPS 2017] [Shapley, A value for n-person games, 1953]

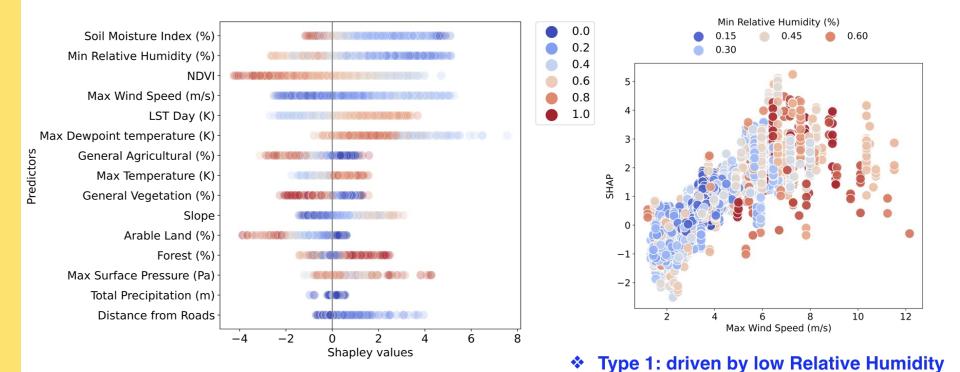
$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} [f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S)]$$

$$f(\overline{x}) = g(\overline{x}) = \phi_0 + \sum_{i=1}^{D} \phi_i \overline{x}_i$$



f(x) = 24.019

Main drivers with SHAP



Type 2: driven by high Wind Speed

Partial Dependency Plots

[Molnar, Interpretable Machine Learning]
[Zhao & Hastie, Causal Interpretation of Black Box models, 2021]

$$f: X \longrightarrow y$$

$$f(x_S) = E_{X_C}[f(x_S, X_C)] = \int f(x_S, x_C) dP(x_C)$$

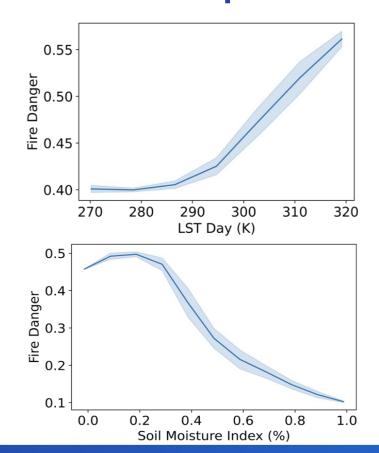
Marginalization procedure

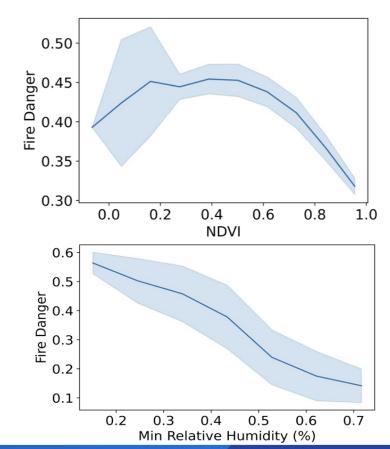
$$f(x_S, x_C) = h(x_S)g(x_C) \longrightarrow f(x_S) = h(x_S) \int g(x_C)dP(x_C) = const \times h(x_S)$$

PDP

Causal effect of Xs on Y

Univariate dependencies with PDP



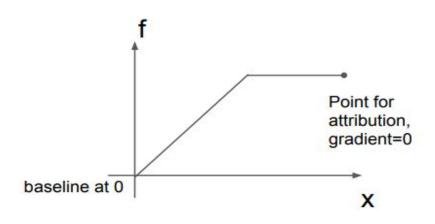


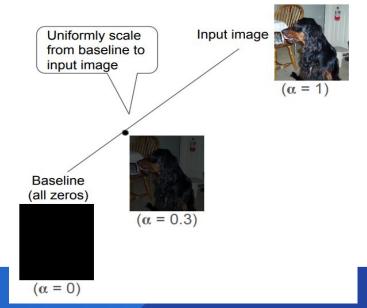
Integrated Gradients

[Sundararajan, et al., Axiomatic Attribution for Deep Networks, ICML 2017]

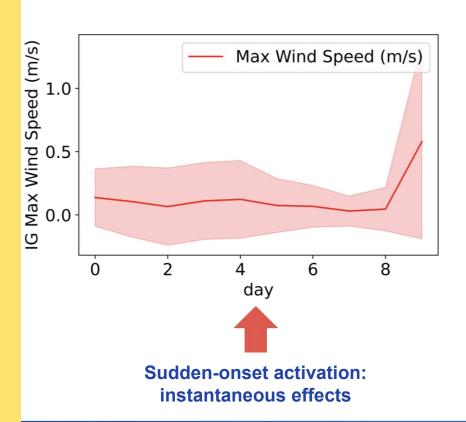
$$(x_i - z_i) \times \int_0^1 \frac{\partial f_c(z + \alpha \times (x - z))}{\partial x_i} d\alpha$$

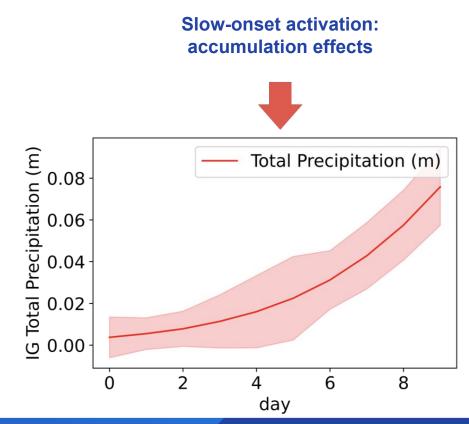
- Implementation invariance
- Completeness





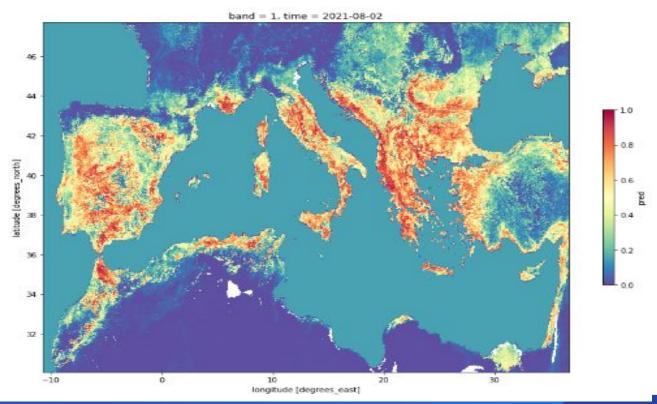
Explainability: short-term temporal behaviour from IntGrad





Scaling to the whole Mediterranean basin..

[Prapas, et al, in-preparation, 2023]



Next steps

- Scale to the whole Mediterranean

 - Bigger datacube Models with more data Study regional variability
- **Couple with terrestrial ecosystem** modelling (TEM) for carbon cycle, and add more info on vegetation (e.g. plant traits)
- **Extend validation** and compare against other solutions and models
- **Improve transparency** by evaluating xAI results with experts (e.g. fire risk managers), comparing explanations for different regions and time/space scales, combining multiple xAI methods
- **Hybrid modelling** to take into account physical propagation mechanisms
- Estimate uncertainty with Bayesian networks

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004188