
 Methodology for measurement of Quality of Service (QoS) Key Performance Indicators (KPIs) for Digital Financial Services • b

REPORT OF THE SECURITY WORKSTREAM

SECURITY, INFRASTRUCTURE AND TRUST WORKING GROUP

Security audit of various
DFS applications

 Methodology for measurement of Quality of Service (QoS) Key Performance Indicators (KPIs) for Digital Financial Services • b

REPORT OF THE SECURITY WORKSTREAM

SECURITY, INFRASTRUCTURE AND TRUST WORKING GROUP

Security audit of various
DFS applications

Security, Infrastructure and Trust Working Group

Security audit of various
DFS applications

The Financial Inclusion Global Initiative (FIGI) is a three-year program implemented in partnership by the World
Bank Group (WBG), the Committee on Payments and Market Infrastructures (CPMI), and the International Tele-
communication Union (ITU), funded by the Bill & Melinda Gates Foundation (BMGF) to facilitate the implemen-
tation of country-led reforms to attain national financial inclusion targets, and ultimately the global 'Universal
Financial Access 2020' goal. FIGI funds initiatives in three countries-China, Egypt and Mexico; supports work-
ing groups to address three distinct challenges for reaching universal financial access:

(1) The Electronic Payment Acceptance Working Group (led by the WBG),
(2) The Digital ID for Financial Services Working Group (led by the WBG), and
(3) The Security, Infrastructure and Trust Working Group (led by the ITU).

FIGI hosts three annual symposia to assemble national authorities, the private sector, and other relevant stake-
holders to share emerging insights from the Working Groups and country level implementation.

This report is a product of the FIGI Security, Infrastructure and Trust Working Group, led by the Internation-
al Telecommunication Union. The findings, interpretations, and conclusions expressed in this work do not
necessarily reflect the views of the Financial Inclusion Global Initiative partners including the Committee on
Payments and Market Infrastructures, the Bill & Melinda Gates Foundation, the International Telecommuni-
cation Union, or the World Bank (including its Board of Executive Directors or the governments they repre-
sent). The mention of specific companies, or of certain manufacturers’ products does not imply that they are
endorsed nor recommended by ITU in preference to others of a similar nature that are not mentioned. Errors
and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The FIGI
partners do not guarantee the accuracy of the data included in this work. The boundaries, colours, denomina-
tions, and other information shown on any map in this work do not imply any judgment on the part of the FIGI
partners concerning the legal status of any country, territory, city or area or of its authorities or the endorse-
ment or acceptance of such boundaries.

© ITU 2021
Some rights reserved. This work is licensed to the public through a Creative Commons Attribution-Non-Com-
mercial-Share Alike 3.0 IGO license (CC BY-NC-SA 3.0 IGO).
Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes,
provided the work is appropriately cited. In any use of this work, there should be no suggestion that ITU or
other FIGI partners endorse any specific organization, products or services. The unauthorized use of the ITU
and other FIGI partners’ names or logos is not permitted. If you adapt the work, then you must license your
work under the same or equivalent Creative Commons licence. If you create a translation of this work, you
should add the following disclaimer along with the suggested citation: “This translation was not created by the
International Telecommunication Union (ITU). ITU is not responsible for the content or accuracy of this transla-
tion. The original English edition shall be the binding and authentic edition”.
For more information, please visit https://​creativecommons​.org/​licenses/​by​-nc​-sa/​3​.0/​igo/​.

DISCLAIMER

https://creativecommons.org/licenses/by-nc-sa/3.0/igo/

Security audit of various DFS applications 3

About this report

This report was written by Sébastien Mathieu and Philippe Oechslin of Objectif Sécurité. The author would
also like to thank the FIGI Security Infrastructure and Trust working group members for their contributions
and comments.

If you would like to provide any additional information, please contact Vijay Mauree at tsbfigisit@​itu​.int

mailto:tsbfigisit@itu.int

About this report���3

Executive Summary���6

Abbreviations���7

1	 About the apps���8
1.1	 App1.. ���8
1.2	 App2... ���8
1.3	 App3... ���8

2	 Testing method���8
2.1	 M1 Improper Platform Usage���9
2.2	 M2 Insecure Data Storage��9
2.3	 M3 Insecure Communication ���9
2.4	 M4 Insecure Authentication��10
2.5	 M5 Insufficient Cryptography�� 11
2.6	 M8 Code Tampering�� 11
2.7	 M9 Reverse Engineering�� 11

3	 Results �� 11
3.1	 App1�� 11
3.2	 App2�� 12
3.3	 App3�� 14

4	 Conclusions�� 16
4.1	 Evaluating the results�� 16
4.2	 Comparing to the FIGI SIT DFS Security Assurance Framework������������������������� 16
4.3	 Summary of results�� 17

Security audit of various DFS applications 5

Contents

Security audit of various DFS applications6

Executive Summary

The main objective of this report is to present the find-
ings of the security audit of a few mobile digital financial
services (DFS) applications operating on Android mobile
operating system and elaborate a systematic methodolo-
gy for carrying out the security audit.

The security audit methodology is based on 18 tests and
are categorised according to seven of the well-known cat-

egories of the OWASP Mobile top 10 security risks1. Three
mobile DFS applications were tested: Two DFS applica-
tions from providers in Africa and one DFS application
from Europe. The results of security audit of these appli-
cations have been anonymised in the report and the three
DFS apps are referred to as App1, App2 and App3.

An overview of the results is shown in the table below:

OWASP mobile top 10 Test

 A
pp

1

 A
pp

2

 A
pp

3

M1: Improper Platform Usage T1.1 Android:allowBackup   

T1.2 Android:debuggable   
T1.3 Android:installLocation   
T1.4 Dangerous permissions   

M2: Insecure Data Storage T2.1 Android.permission.
WRITE_EXTERNAL_STORAGE   

T2.2 Disabling screenshots   
M3: Insecure Communication T3.1 Application should only use HTTPS connections   

T3.2 Application should detect Machine-in-the-Middle attacks with
untrusted certificates   

T3.3 Application should detect Machine-in-the-Middle attacks with trusted
certificates   

T3.4 App manifest should not allow cleartext traffic   
M4: Insecure Authentication T4.1 Authentication required before accessing sensitive information   

T4.2 The application should have an inactivity timeout   
T4.3 If a fingerprint is added, existing authentication with fingerprints should
be disabled   

T4.4 Sensitive requests cannot be replayed   

M5: Insufficient Cryptography T5.1 The app should not use unsafe crypto primitives   
T5.2 The HTTPS connections should be configured according to best
practices   

T5.3 The app should encrypt sensitive data that is sent over HTTPS   
M8: Code Tampering T8.1 The application should refuse to run on a rooted device   
M9: Reverse Engineering T9.1 The code of the app should be obfuscated   

The 18 security tests defined in the methodology for
the security audit in the report has also been mapped
against the security best practices of the DFS Securi-
ty Assurance Framework report, illustrating how the
security tests can verify the adherence to the best
practices by the application being tested (see Chap-
ter 4 of the report). This methodology will be used in
the DFS Security Lab for security of DFS applications
based on Android platform. The DFS Security Lab

has been set up by the ITU as part of the activities of
the Security, Infrastructure and Trust (SIT) Working
Group under the Financial Inclusion Global Initiative
(FIGI).

Security audit of various DFS applications 7

Abbreviations

CA	 Certificate Authority

DES	 Data Encryption Standard

DFS	 Digital Financial Services

ECB	 Electronic Code Book

HTTPS	 Hyper Text Transfer Protocol

MD	 Message Digest

MITM	 Man in the Middle

OWASP	 Open Web Application Security Project

PIN	 Personal Identification Number

PUK	 Personal Unlock Key

RC	 Rivest Cipher

SHA	 Secure Hash Algorithm

SSL	 Secure Sockets Layer

TLS	 Transport Layer Security

Security audit of various DFS applications8

1	 ABOUT THE APPS

The three DFS applications analysed were selected
as follows: Two DFS applications from providers in
Africa and one DFS application from Europe. The
results of security audit of these applications have
been anonymised in the report and the three DFS
apps are referred to as App1, App2 and App3.

1.1	 App1	
A European based mobile payment app, App1 links
the user’s credit card and bank account. It can be
used to send, request and receive money. The app
can also be used to make online payments by scan-
ning QR codes and can be used to make cashless
payments at stores, restaurants, pay for parking tick-
ets using QR codes or merchant beacons. A user
requires a mobile number and a credit card or bank
account details to register.

1.2	 App2	
App2 is provided by a mobile network operator that
provides digital financial services in areas in which
they operate across Africa. The innovative mobile
financial service application makes it possible for
users to send money locally and internationally, pay
for goods and services, and transact from anywhere
in the world, make transfers between the mobile
wallet and user’s bank account. To register the app
requires a mobile number with the operator. The app
users do not need to have a bank account.

1.3	 App3	
App3 is also provided a mobile operator and in sever-
al countries across Africa and Asia. The app makes it
possible for users to send money to contacts, pay for
goods and services, the app also transfers between
the mobile wallet and bank account. To register the
app requires a mobile number with the operator. The
app users do not need to have a bank account.

2	 TESTING METHOD

The goal of these tests is to give a standardised score
of the security level of smart phone apps for Digi-
tal Financial Services. This is achieved by installing
the app on a test phone and analysing its security
features with a set of testing tools. The tests have
been chosen such that they can be carried out with
open-source tools and with reasonable effort.
The tests are organised according to the OWASP
mobile top 10 list. The Open Web Application Secu-
rity Project1 (OWASP) is a non-profit foundation that
works to improve the security of software. One of
their projects is the OWASP mobile top 102 which list
the following risks as most important:

a)	 M1 Improper Platform Usage
b)	 M2 Insecure Data Storage
c)	 M3 Insecure Communication
d)	 M4 Insecure Authentication
e)	 M5 Insufficient Cryptography

Security audit of Android DFS applications

f)	 M6 Insecure Authorization
g)	 M7 Client Code Quality
h)	 M8 Code Tampering
i)	 M9 Reverse Engineering
j)	 M10 Extraneous Functionality

Categories M6, M7 and M10 are out of the scope of
our tests as they would require access to the source
code of the application or reverse engineering the
logic of the application.
The following set of 18 tests has been selected based
on their pertinence and of the feasibility of the test:

2.1	 M1 Improper Platform Usage
These tests are done by analysing the manifest of the
application. The following issues are verified:

a)	 T1.1 Android:​allowBackup3:
	 This setting should be set to false, which is not

the default value.
	 If this attribute is set to false, no backup or

restore of the application will ever be performed,
even by a full-system backup that would other-
wise cause all application data to be saved

b)	 T1.2 Android:​debuggable4:
	 This setting should be set to false, which is the

default value.
	 If an application is flagged as debuggable, intrud-

ers can inject their own code to execute it in the
context of the vulnerable application process.

c)	 T1.3 Android:​installLocation5:
	 This should be set to internalOnly or unset, which

is the default value.
	 If this parameter is set to auto or preferExternal,

the application may be installed on a removable
memory card.

	 By gaining access to the memory card, an attack-
er could be able to tamper with the application
or to extract sensitive information.

	 Note that even if the application fails this test, it
does not necessarily mean that the application
will be installed on the removable card.

d)	 T1.4 Dangerous permissions:
	 The application should not require dangerous

permissions without a valid reason.
	 Android apps must explicitly ask for permissions

for many types of operations. Some of these per-
missions are labelled ''dangerous'' by Android.
The app must explicitly ask the user to grant
dangerous permissions with a dialog (e.g., Allow
App to make phone calls?). There may be valid
reasons for requesting dangerous permissions.
For example, a DFS application that needs to

scan QR codes for making payments will need
the permission to use the camera.

	 Note that permissions regarding storage of data
are considered in the next section.

	 An app that requires dangerous permissions
could abuse the permissions to attack the user.
For example, it could dial premium rated phone
numbers if dialling permission were granted.

2.2	 M2 Insecure Data Storage
These tests are also done by analysing the manifest
of the application and by running app on a phone.
Following issues are verified:

a)	 T2.1 Android.permission. WRITE_EXTERNAL_
STORAGE:

	 The app should not require this permission with-
out a valid reason.

	 This permission allows the app to read and write
data on a memory card inserted in the phone.
If the application needs to store substantial
amounts of non-sensitive information, this would
justify writing to external storage.

	 By gaining access to the memory card, an attack-
er could be able to tamper with the application
or to extract sensitive information.

	 Note that even if the application fails this test, it
does not necessarily mean that the application
will write sensitive data to external storage.

b)	 T2.2 Disabling screenshots:
	 The app should disable screenshots while it is

running and only show a blank image when in the
task switcher.

	 This is a standard behaviour for secure applica-
tions and can be achieved with an application
parameter called FLAG_SECURE6. This can be
tested by running the application and a) trying to
make a screenshot, b) switching between apps
and observer the thumbnail of the application.

	 Without this setting, a malicious application
could potentially steal sensitive information from
the screen of an application.

2.3	 M3 Insecure Communication

a)	 T3.1 Application should only use HTTPS con-
nections:

	 When running the traffic of the app through an
audit machine and observing the packets, only
HTTPS traffic should be observed for the appli-
cation.

Security audit of various DFS applications 9

	 HTTPS traffic is encrypted. While they are oth-
er ways to encrypt traffic, HTTPS is the stan-
dard way for communication between apps and
servers. If data is transferred over HTTP or other
non-encrypted protocols, then it could easily be
intercepted or even modified by an attacker.

b)	 T3.2 Application should detect Machine-in-the-
Middle attacks with untrusted Certificates:

	 When running the traffic through a machine-in-
the-middle (MITM) proxy that does not own a
trusted certificate for the server of the app, the
app should refuse the connection.

	 MITM proxies can be used to intercept HTTPS
traffic, decrypt it for inspection and modification
and the re-encrypt it before sending it off to the
intended server. A typical attacker does not own
valid certificates for the destination server; thus
the app should detect that the certificate of the
proxy is not signed by a trusted authority. If the
app does not check the validity of the certificate,
an attacker can intercept and modify the traffic.

c)	 T3.3 Application should detect Machine-in-the-
Middle attacks with trusted certificates:

	 When running the traffic through a machine-
in-the-middle (MITM) proxy that uses a certifi-
cate signed by a CA that is trusted by the smart
phone, the app should refuse the connection.	

	 Different situation can arise where the operator
of the proxy is able to generate certificates that
are trusted by the phone. The operator can be
a CA operator (e.g., a government), the opera-
tor may be a company that has installed its root
certificate on the phones of the company, or the
root certificate may have been installed by hand
by the user or an attacker. The application can
protect itself against this type of attack by doing
a root pinning. This means that the app knows
which CA is expected to sign the server certifi-
cate and it will refuse certificates signed by other
CAs, even if these CAs are trusted. Executing this
test usually requires rooting of the phone to be
able to install a root certificate.

	 If the application does not apply certificate pin-
ning, then traffic could be intercepted by govern-
ments or by attackers having succeeded in hack-
ing one of the many trusted root CAs.

d)	 T3.4 App manifest should not allow clear text
traffic:

	 Using clear text traffic is disabled by default on
Android 8.1 or higher. The app manifest should
not contain settings that override this default.
These can be the android:​usesCleartextTraffic

setting for the application or clear textTrafficPer-
mitted in the network security configuration.	

	 When clear text traffic is disabled, the appli-
cation and other components it uses (e.g., the
media player) will refuse to use clear text traffic.

	 Clear text traffic can easily be eavesdropped and
manipulated by attackers.

	 Note that even if the application fails this test, it
does not necessarily mean that the application
will send or receive clear text traffic.

2.4	 M4 Insecure Authentication
The following tests are made by running the applica-
tion on a phone and observing its behaviour.

a)	 T4.1 Authentication required before accessing
sensitive information:

	 The app should request a password, a PIN code,
or a fingerprint before giving access to sensitive
information or functionality (e.g., balances and
payments).

	 This can be tested by using the application on
the phone.

	 The impact of not authenticating the user every
time is that if the phone is stolen or lent while
unlocked, an attacker could access sensitive data
or functionality.

b)	 T4.2 The application should have an inactivity
timeout:

	 This can be tested by leaving the application
open for a while and observing whether it locks
itself automatically.

	 If there is no timeout, or if it is too long, the risk is
that if the phone is stolen or lent while unlocked,
an attacker could access sensitive data or func-
tionality.

b)	 T4.3 If a fingerprint is added, authentication
with fingerprints should be disabled:

	 When a new fingerprint is registered on the
phone, the app should disable authenticate by
fingerprint until the user has provide the PIN or
password for the application.

	 The risk is that an attacker could succeed in reg-
istering his own fingerprint on the phone and the
access the apps that are protected by finger-
prints.

c)	 T4.4 It should not be possible to replay inter-
cepted requests:

	 Replaying a request (e.g., a money transfer) that
was captured by a man-in-the-middle proxy
should not result in the same request being exe-
cuted twice.

Security audit of various DFS applications10

	 The risk is that an attacker intercepting a request
for a money transfer could replay it to steal mon-
ey from the victim.

2.5	 M5 Insufficient Cryptography

a)	 T5.1 The app should not use unsafe crypto
primitives:

	 Algorithms like MD5, SHA-1, RC4, DES, 3DES,
Blowfish, ECB mode for block ciphers, non-cryp-
tographic random generators are known to be
weak and should not be used by the application7.

	 This can be tested by analysing the binary of the
application to see if it makes calls to these unsafe
algorithms.

	 If sensitive information were handled or depen-
dent on these algorithms, the there is a risk that
an attacker could eavesdrop or manipulate that
information. The fact that these algorithms are
used does not necessarily mean that they are
used for sensitive operations. Still, it is a best
practice to not use these algorithms to create
any doubt.

	 Note that even if the application fails this test, it
does not necessarily mean that the application
uses unsafe crypto primitives for sensitive data.

b)	 T5.2 The HTTPS connections should be config-
ured according to best practices:

	 By observing the network traffic of the app, the
servers to which it talks can be identified. The
HTTPS configuration of these servers can be
tested using a tool like Qualys SSL Labs8. The
overall rating should be B or more.

	 If HTTPS is not correctly configured, then some
eavesdropping or manipulation attacks are pos-
sible.

c)	 T5.3 The app should encrypt sensitive data that
is sent over HTTPS:

	 This can be tested by intercepting the traffic
with an MITM proxy (see tests in M3). Note that
if the app uses certificate pinning, it is necessary
to disable this protection to intercept the traffic.
This is not always possible.

	 If data is not encrypted by the application itself,
then a MITM can eavesdrop or modify the data.

2.6	 M8 Code Tampering

	 T8.1 The application should refuse to run on a
rooted device:

	 When installed on a rooted android phone, the
application should refuse to run.

	 Several security mechanisms can be disabled on
rooted phone. This would allow an attacker to
tamper the code or the data of the application to
commit fraud.

	 If the application accepts to run on a rooted
device, then it should at least apply the following
three security controls: Obfuscation of the code
(T9.1), apply certificate pinning to prevent inter-
ception of communication with trusted certifi-
cates (T3.3) and sensitive information should be
encrypted by the application, even is transmitted
over HTTPS (T5.3).

2.7	 M9 Reverse Engineering

	 T9.1 The code of the app should be obfuscated:
	 Several tools can be used to analyse the bina-

ry of the app and detect if it has been obfus-
cated. Alternatively, the code can tentatively be
decompiled with a decompiler. If it succeeds, the
decompiled code can be analysed to see if it is
intelligible.

	 Obfuscating the code makes it much more diffi-
cult to understand and analyse its logic and algo-
rithms.

3	 RESULTS

3.1	 App1
App1 can be used to send money between users or
to pay without cash in stores or at vending machines.
Users are identified by their phone number. Know-
ing another user's phone number is all that is needed
to send money. Accounts are typically backed by a
bank account. It is also possible to have a prepaid
account that is independent of a bank account.

3.1.1	 M1: Improper Platform Usage

√	 T1.1 Android:​allowBackup is set to false in the
manifest.

√	 T1.2 Android:​debuggable is not defined in the
manifest.

Security audit of various DFS applications 11

√	 T1.3 Android:​installLocation is not defined in the
manifest.

√	 T1.4 We did not find inappropriate Android per-
missions in the manifest.

3.1.2	 M2: Insecure Data Storage

x	 T2.1 The application requires the "android.per-
mission.WRITE_EXTERNAL_STORAGE" permis-
sion. Note that this does not imply that the app
writes data on external storage and, if it did, that
this data is sensible.

√	 T2.2 While the app is running, screenshots are
disabled.

3.1.3	 M3: Insecure Communication

√	 T3.1 Only HTTPS connections are used.
√	 T3.2 The app refused to establish an HTTPS con-

nection to a proxy with an untrusted certificate.
√	 T3.3The app refused to establish HTTPS con-

nection to a proxy with a trusted certificate. This
shows that certificate pinning is in use.

√	 T3.4 The application defines a custom network
security configuration in its manifest. This config-
uration disables clear text traffic:

	 <network-security-config>
	 <base-config clear textTrafficPermitted="-

false">
	 ...
	 </base-config>
	 </network-security-config>

3.1.4	 M4: Insecure Authentication

√	 T4.1 Every time the app is started, the app
requires a PIN or a fingerprint to authenticate.

√	 T4.2 The application implements an inactivity
timeout. After a period of inactivity, the applica-
tion logs out.

√	 T4.3 If a fingerprint is added, the application dis-
ables authentication with fingerprints.

√	 T4.4 Money send requests cannot be success-
fully replayed. The server responds with a "409
Conflict" error message and does not process
the money send request.

3.1.5	 M5: Insufficient Cryptography

x	 T5.1 The application uses the weak MD5 and
SHA-1 hashing algorithms as well as the weak
ECB mode of encryption.

	 MD5 in file com/appdynamics/eumagent/run-
time/p000private/ae.java:

	 MessageDigest instance = MessageDigest.getIn-
stance("MD5");

	 SHA-1 in file com/App1/android/Security/Sec-
Core/b/a.java:

	 MessageDigest instance = MessageDigest.getIn-
stance("SHA-1");

	 ECB in file com/App1/android/Security/Sec-
Core/b/a.java:

	 Cipher instance = Cipher.getInstance("AES/ECB/
NoPadding");

√	 T5.2 By intercepting the applications HTTPS
requests with Burp Proxy, the server to which the
client connects to could be identified. The TLS
configuration of the server was assessed using
Qualys SSL Labs9. It had an overall rating is A+.

x	 T5.3 By intercepting the applications HTTPS
requests with Burp Proxy, the client requests are
signed. However, the amount of money trans-
ferred and the first name, last name and phone
number of the users participating in the transfer
are in clear text.

3.1.6	 M8: Code Tampering

√	 T8.1 We were able to install and run the app on a
rooted device.

3.1.7	 M9: Reverse Engineering

√	 T9.1 The app code has been obfuscated as shown
in Figure 1.

3.2	 App2
App2 is used for mobile money transfer, payment,
and micro-financing service. App2 is not backed by
a bank account. Money can be deposited and with-
drawn from accounts through different agents like
airtime resellers or retail outlets.

3.2.1	 M1: Improper Platform Usage

√	 T1.1 Android:​allowBackup is set to false in the
manifest.

√	 T1.2 Android:​debuggable is not defined in the
manifest.

√	 T1.3 Android:​installLocation is not defined in the
manifest.

√	 T1.4 We did not find inappropriate Android per-
missions in the manifest.

Security audit of various DFS applications12

3.2.2	 M2: Insecure Data Storage

√	 T2.1 The applications require the "android.per-
mission.WRITE_EXTERNAL_STORAGE" permis-
sion. Note that this does not imply that the app
actually writes data on external storage and, if it
did, that this data is sensible.

√	 T2.2 While the app is running, screenshots are
disabled.

3.2.3	 M3: Insecure Communication

√	 T3.1 Only HTTPS connections are used.

√	 T3.2 The app refused to establish an HTTPS con-
nection to a proxy with an untrusted certificate

√	 T3.3The app refused to establish HTTPS con-
nection to a proxy with a trusted certificate. This
shows that certificate pinning is in use.

x	 T3.4 Android:​usesClear textTraffic is set to true
in the manifest.

3.2.4	 M4: Insecure Authentication

x	 T4.1 The application does not require a PIN or fin-
gerprint every time it is started. Thus, an intruder
stealing an unlocked device can run the applica-

Security audit of various DFS applications 13

Figure 1 – Names of files, classes and variables have been replaced, making the code more difficult to under-
stand

tion. This allows an attacker to see the PUK of the
phone and the balance of the account. The PIN is
however required to make money transactions.

√	 T4.2 The PIN is required for each money transfer.
This is even safer than a timeout.

√	 T4.3 If a fingerprint is added, the application dis-
ables authentication with fingerprints.

x	 T4.4 Sensitive requests like money transfers can
be replayed by an MITM proxy.

3.2.5	 M5: Insufficient Cryptography

x	 T5.1 The application uses the weak SHA-1 hash-
ing algorithm as well as the weak default random
number generator.	

	 SHA-1 in file o/C1668.java:
	 MessageDigest instance = MessageDigest.getIn-

stance("SHA-1");
x	 Random generator in file o/C1783.java:
	 this(juVar, d, new Random());
√	 T5.2 By intercepting the applications HTTPS

requests with Burp Proxy, the server to which the
application connects was identified.

	 The TLS configuration of the server was tested
using Qualys SSL Labs10. Its overall rating is A+.

3.2.6	 M8: Code Tampering

√	 T8.1 The app does not run on a rooted Android
device.

3.2.7	 M9: Reverse Engineering

√	 T9.1 The app code has been obfuscated. The
app code has been obfuscated by DexGuard11 as
shown in Figure 2.

3.3	 App3
App3 is a payment app that can be used to pay utili-
ties, to transfer money or to shop online. It can either
be linked to a bank account or to a digital wallet
registered to a home number.

3.3.1	 M1: Improper Platform Usage

√	 T1.1 Android:​allowBackup is set to false in the
manifest.

√	 T1.2 Android:​debuggable is not defined in the
manifest.

√	 T1.3 Android:​installLocation is not defined in the
manifest.

Security audit of various DFS applications14

Figure 2 – App2 is protected with DexGuard

√	 T1.4 We did not find inappropriate Android per-
missions in the manifest.

3.3.2	 M2: Insecure Data Storage

√	 T2.1 The application does not require the "android.
permission.WRITE_EXTERNAL_ STORAGE" per-
mission.

x	 T2.2 While the app is running, screenshot is not
disabled. Moreover, the background screenshots
from the recent-tasks history are not blurred.

3.3.3	 M3: Insecure Communication

√	 T3.1 Only HTTPS connections are used.
√	 T3.2 The app refused to establish an HTTPS con-

nection to a proxy with an untrusted certificate.
x	 T3.3 The app accepts to establish an HTTPS con-

nection to a proxy with a trusted certificate. This
shows that certificate pinning is not in use.

x	 T3.4 Android:​usesClear textTraffic is set to true
in the manifest.

3.3.4	 M4: Insecure Authentication

x	 T4.1 The application does not require a PIN or fin-
gerprint every time it is started. Thus, an intruder
stealing an unlocked device can run the applica-
tion. This allows an attacker to see the balance
of the account. The PIN is however required to
make money transactions.

√	 T4.2 The PIN is required for each money transfer.
This is even safer than a timeout.

√	 T4.3 If a fingerprint is added, the application dis-
ables authentication with fingerprints.

x	 T4.4 Sensitive requests like money transfers can
be replayed by an MITM proxy.

3.3.5	 M5: Insufficient Cryptography

x	 T5.1 The application uses the weak MD5 and SHA-
1 hashing algorithms as well as the weak default
random number generator.

	 MD5 in file com/appsflyer/internal/ai.java:
	 MessageDigest instance = MessageDigest.getIn-

stance("MD5");
	 SHA-1 in file u/b/a/a/o/b/j.java:
	 MessageDigest instance = MessageDigest.getIn-

stance("SHA-1");
	 Random generator in file c/g/a/c/s.java:
	 Random random = new Random();
√	 T5.2 By intercepting the applications HTTPS

requests with Burp Proxy, the server to which the
application connects to was identified.

	 The TLS configuration of the identified server
was tested using Qualys SSL Labs12. Its overall
rating is A+.

√	 T5.3 By intercepting the application’s HTTPS
requests with Burp Proxy, it was observed that
the body of some sensitive requests is encrypt-
ed.

	 However, some responses with sensitive data like
the current balance are neither encrypted nor

Security audit of various DFS applications 15

Figure 3 – SSL configuration assessment of app3’s server

authenticated, Thus they can be modified to car-
ry out malicious attacks.

	 The server response was tampered during test-
ing and user’s current balance showing on the
app was modified.

3.3.6	 M8: Code Tampering

√	 T8.1 The app does not run on a rooted Android
device.

3.3.7	 M9: Reverse Engineering

√	 T9.1 The app code has been obfuscated.

4	 CONCLUSIONS

The method excludes analysis the logic of the appli-
cations, as this would require reverse engineering of
the application code. All three tested applications
make use of code obfuscation, which would make
reverse engineering particularly challenging.

4.1	 Evaluating the results
Since we do not analyse the logic of the applica-
tions, it is difficult to estimate the impact of a failed

test. For example, the detection of insecure cryp-
tographic operations does not necessarily imply that
sensitive information will not be encrypted in a safe
manner. Another example is the fact that App1 does
not encrypt the details of transactions (names and
amounts) that are transmitted through HTTPS. Since
the application uses certificate pinning, there is a
limited chance that the information can be intercept-
ed by an adversary.
Still, all the tests are related to best practices which
should be followed by financial applications. The
results should thus be read as a standardized evalu-
ation of whether the applications are built according
to best practices. Whether an application is vulnera-
ble to a specific attack cannot be deduced from the
test results without additional investigation.

4.2	 Comparing to the FIGI SIT DFS Security Assur-
ance Framework
The Security, Infrastructure and Trust working group
of the Financial Inclusion Global Initiative (FIGI) has
established a DFS security assurance framework13.
In its chapter 9 of the DFS security assurance frame-
work report, a template of five categories of securi-
ty best practices are provided. The following table
maps the 18 tests of the proposed method to the five
categories of best practices:

Best practice from DFS Assur-
ance Framework Corresponding tests

9.1 Device integrity T1.2 Android:​debuggable

T1.4 Dangerous permissions

T8.1 The application should refuse to run on a rooted device

9.2 Communication Security and Certifi-
cate Handling

T3.1 Application should only use HTTPS connections

T3.2 Application should detect Machine-in-the-Middle attacks with untrusted certificates

T3.3 Application should detect Machine-in-the-Middle attacks with trusted certificates

T3.4 App manifest should not allow clear text traffic

T5.1 The app should not use unsafe crypto primitives

T5.2 The HTTPS connections should be configured according to best practices

T5.3 The app should encrypt sensitive data that is sent over HTTPS

9.3 User authentication T4.1 Authentication required before accessing sensitive information

T4.2 The application should have an inactivity timeout

T4.3 If a fingerprint is added, authentication with fingerprints should be disabled

9.4 Secure Data Handling T1.1 Android:​allowBackup

T1.3 Android:​installLocation

T2.1 Android.permission.WRITE_EXTERNAL_STORAGE

T2.2 Disabling screenshots

9.5 Secure Application Development T9.1 The code of the app should be obfuscated

Security audit of various DFS applications16

4.3	 Summary of results
We conclude this report by summarizing the results
of the tests in Figure 4. No critical vulnerability was
detected during the tests. Nevertheless, two findings
were found.

a)	 No PIN is required to access a Personal Unlock
Key (PUK) in App2

b)	 App3 does not apply an extra encryption of the
data exchanged over HTTPS.

Testing of additional applications would yield a larg-
er base to compare with and would also allow to
fine-tune the tests.

Security audit of various DFS applications 17

Figure 4 – Radar graph of the test results (the radial axis indicates the percentage of tested best practices that
were found to be implemented)

Security audit of various DFS applications18

1	 https://​owasp​.org

2	 https://​owasp​.org/​www​-project​-mobile​-top​-10/​

3	 https://​developer​.android​.com/​guide/​topics/​manifest/​application​-element​#allowbackup

4	 https://​developer​.android​.com/​guide/​topics/​manifest/​application​-element​#debug

5	 https://​developer​.android​.com/​guide/​topics/​manifest/​manifest​-element​#install

6	 https://​developer​.android​.com/​reference/​android/​view/​WindowManager​.LayoutParams​#FLAG​_SECURE

7	 MD5 and SHA-1 are used to protect integrity of data, RC4, DES, 3DES, Blowfish and ECB protect confidentiality while
random generators are used to generate keys for protecting integrity, confidentiality or other properties.

8	 https://​www​.ssllabs​.com/​ssltest/​

9	 https://​www​.ssllabs​.com/​ssltest/​

10	 https://​www​.ssllabs​.com/​ssltest/​

11	 https://​www​.guardsquare​.com/​en/​products/​dexguard

12	 https://​www​.ssllabs​.com/​ssltest/​

13	 https://​www​.itu​.int/​en/​ITU​-T/​extcoop/​figisymposium/​Documents/​ITU​_SIT​_WG​_Technical​%20report​%20on​%20Digital​
%20Financial​%20Services​%20Security​%20Assurance​%20Framework​_f​.pdf

Endnotes

https://owasp.org
https://owasp.org/www-project-mobile-top-10/
https://developer.android.com/guide/topics/manifest/application-element%23allowbackup
https://developer.android.com/guide/topics/manifest/application-element%23debug
https://developer.android.com/guide/topics/manifest/manifest-element%23install
https://developer.android.com/reference/android/view/WindowManager.LayoutParams%23FLAG_SECURE
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.guardsquare.com/en/products/dexguard
https://www.ssllabs.com/ssltest/
https://www.itu.int/en/ITU-T/extcoop/figisymposium/Documents/ITU_SIT_WG_Technical%20report%20on%20Digital%20Financial%20Services%20Security%20Assurance%20Framework_f.pdf
https://www.itu.int/en/ITU-T/extcoop/figisymposium/Documents/ITU_SIT_WG_Technical%20report%20on%20Digital%20Financial%20Services%20Security%20Assurance%20Framework_f.pdf

International Telecommunication Union
Place des Nations
CH-1211 Geneva 20
Switzerland

International Telecommunication Union
Place des Nations
CH-1211 Geneva 20
Switzerland

	Security audit of various DFS applications
	About this report
	Executive Summary
	Abbreviations
	1 About the apps
	1.1 App1
	1.2 App2
	1.3 App3

	2 Testing method
	2.1 M1 Improper Platform Usage
	2.2 M2 Insecure Data Storage
	2.3 M3 Insecure Communication
	2.4 M4 Insecure Authentication
	2.5 M5 Insufficient Cryptography
	2.6 M8 Code Tampering
	2.7 M9 Reverse Engineering

	3 Results
	3.1 App1
	3.2 App2
	3.3 App3

	4 Conclusions
	4.1 Evaluating the results
	4.2 Comparing to the FIGI SIT DFS Security Assurance Framework
	4.3 Summary of results

