
ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

© International Telecommunication Union, 2018

Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.
More information regarding the license and suggested citation, additional permissions and disclaimers is available at

https://www.itu.int/en/journal/002/Pages/default.aspx

AN INTERNET OF BLOCK THINGS

Phillip H. Griffin
Griffin Information Security, United States

Abstract – This paper defines extensible, distributed blocks of hash-linked data constructed using the
cryptographic message syntax (CMS) SignedData message. The described SignedData blockchain allows
each block to reside in a different physical location on the Internet of things (IoT). Each signed, time-
stamped block content can combine data from multiple locations that are ‘detached’ from and remote to
its block header. Two types of SignedData sidechains are described, ephemeral and fixed. Ephemeral
sidechains can be added to any block at any time without affecting the integrity of the blockchain. They
can also be removed without disruption, making them ideal for use in applications that must manage
limited storage capacity or comply with right-to-be-forgotten privacy regulations. A simple blockchain
example is presented using CMS SignedData for its block content and headers. This example is then
extended to create doubly-linked blockchains and blockchain grids.

Keywords – ASN.1, blockchain, IoT, sidechain, SignedData

1. INTRODUCTION

A blockchain can be described as a distributed
series of signed, hash-linked, append only,
timestamped sets of data, grouped into blocks.
When viewed as an abstract data type, a blockchain
is a limited stack implemented as a hash-linked list
whose sole operation allows users to push blocks
onto the top. Users may not modify the data
content of any block or pop blocks off of the stack
without detection, since any changes made to the
content or its hash would compromise the integrity
of its hash-linked blocks.

The SignedData message data type defined in the
cryptographic message syntax (CMS) standard can
be used to create extensible, distributed
blockchains. CMS is a widely implemented key
management standard whose messages are
defined using Abstract Syntax Notation One (ASN.1)
[1]. ASN.1 is a schema definition language defined
in a series of international standards maintained
jointly by ISO/IEC and ITU-T [2].

CMS is a mature schema that has been in use for
over twenty-five years and employed in a broad
range of applications. CMS messages have been
standardized as "RSA Public Key Cryptography
Standard (PKCS) #7, the Secure Electronic Mail
(S/MIME) CMS standard defined by the Internet
Engineering Task Force (IETF), and the X9.73
Cryptographic Message Syntax" [3] used in the
financial services. A new international version of
CMS has been developed in ITU-T Study Group 17
(SG17) and will be published as Recommendation
X.894.

The attributes defined later in this paper and those
referenced from CMS standards rely on the ASN.1
schema specified in the ITU-T X.500-series of
Recommendations (The Directory standards). CMS
attributes are compatible with those implemented
in many authentication and identity management
systems. The SignedData blockchain schema
defined in this paper with ASN.1 can be input to
tools that generate programming language code.
This code can be used to exchange information on
a wide range of platforms without consideration of
specific programming language, hardware, or
operating system characteristics.

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
https://www.itu.int/en/journal/002/Pages/default.aspx

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

2. SIGNED DATA BLOCKS

In a SignedData blockchain, the SignedData CMS
message type serves as a container for the two
basic components that make up the blocks of a
Bitcoin blockchain as illustrated in Fig. 1.

Fig. 1. SignedData blockchain block

These components include data in the form of a
"block of items to be timestamped" and a "block
header" [4]. The block of items to be timestamped
and its associated header can be represented in a
SignedData message to create a blockchain block.

In the SignedData type, the "block of items" [4]
component is a value of type Data, an opaque
string of octets. Type Data can contain information
of any type or format. This information may
contain flat or structured content, such as a set of
transactions in a distributed ledger. However, for
the purposes of SignedData message processing,
the content is treated as unstructured and its
structural details ignored. The "block header" [4]
component of a SignedData block is a value of type
SignerInfo. A series of block header and associated
data components are illustrated in Fig. 2.

Fig. 2. SignedData block series

The SignerInfo header is a structured data type
whose fields include a signing key identifier, a set
of attributes to be signed, and the signature of the
message signer over the signed attributes. Both the
signature algorithm and digest algorithm identifier
information are also included in type SignerInfo to

provide algorithm independence and promote
system resilience in coping with cryptographic
change. The data content of a block is signed
indirectly, by including a hash of the data in a
messageDigest attribute. This required CMS
attribute is signed to link the data component of a
SignedData block to its SignerInfo header, as
indicated by the up arrows in Fig. 2.

3. SIGNED ATTRIBUTES

3.1 Hash pointers

The SignerInfo block header illustrated in Fig. 1
contains a precedingBlock attribute. This attribute
is signed to link a SignedData block to the previous
block in the blockchain, as indicated by the left
arrows in Fig. 2. Adjacent blocks in the blockchain
are 'hash-linked' using a precedingBlock attribute
value. This value contains a hash (message digest)
of the SignerInfo header of the previous block in
the blockchain.

A precedingBlock attribute is defined as a hash and
a location indicator using ASN.1 as follows:

precedingBlock ATTRIBUTE ::= {

 WITH SYNTAX HashPointer

 ID id-PrecedingBlock

}

HashPointer ::= SEQUENCE {

 hash DigestedData OPTIONAL,

 pointers Pointers OPTIONAL

} (ALL EXCEPT ({ -- None present -- }))

Pointers ::=

 SEQUENCE SIZE(1..MAX) OF pointer Pointer

Pointer ::= CHOICE {

 uri URI,

 rfid RFID,

 gps GPS,

 address Address,

 dbRecord DBRecord,

 ... -- Expect other pointer types --

}

The precedingBlock attribute contains a value of
type HashPointer that implements a Hash Pointer
abstract data type. Type HashPointer can be used
to specify the location of the previous block in a
SignedData blockchain and to verify the integrity of
the data content at that location. A value of this
type contains "a pointer to the place where some
information is stored" that is paired with a
"cryptographic hash of the information" [5]. The

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

hash component of type HashPointer contains a
value of the CMS message type DigestedData.

This CMS type specifies the message digest
algorithm used to calculate the hash on the pointed
to object. Type DigestedData also indicates the
type of object being hashed is a SignedData block
header, a value of CMS type SignerInfo. In a
precedingBlock attribute the type of object is
indicated by an ASN.1 information object identifier
named id-signerInfo. Other types of objects can
also be identified in the DigestedData message.

In a precedingBlock attribute, the optional value of
type Pointers in type HashPointer may be omitted
when adjacent block locations are known. This
may be the case when adjacent blocks are not
distributed and reside in a common file system or
database. More than one type of Pointer value may
be used in series to fully qualify the location of a
distributed block. The defined set of pointer types
is extensible to allow additional types of pointers
to be added as needed by an application.

3.2 Detached content

The data content of a SignedData block is optional
to include and need not be present in a given
message. In a secure electronic mail (email)
application that provides signed email messages
using the SignedData type, the detached message
content and the signature are located in separate
parts of the same email message. This allows the
content to be displayed for the email recipient
even when an email agent cannot process signed
email, or when verification of the digital signature
on the detached content fails.

In other application contexts, such as the cloud and
Internet of things (IoT) environments, the location
of detached SignedData content must be identified
and made available for verification of the signature
on the message content. When the location of
detached data content is not known to blockchain
participants, a SignedData message signer can
include a content location attribute in the signed
attributes of the block header. This attribute can be
used to locate detached data content distributed in
one or more locations. A content location attribute
can be defined as a series of one or more uniform
resource identifier (URI) [6] values in ASN.1 as
follows:

contentLocations ATTRIBUTE ::= {

 WITH SYNTAX URIs

 ID id-ContentLocations

}

URIs ::= SEQUENCE SIZE(1..MAX) OF uri URI

URI ::= UTF8String (SIZE(1..MAX))

A collection of items are signed by first calculating
a message digest over type ContentToBeSigned
defined as follows:

ContentToBeSigned ::= SEQUENCE

 SIZE(1..MAX)OF content LocatedValue

LocatedValue ::= OCTET STRING

Each value in type ContentToBeSigned is the data
located by one URI value in the contentLocations
attribute. Each URI contains a generalized form of a
uniform resource locator (URL).

3.3 SignedData required attributes

CMS requires at least two attributes to be present
if any signed attributes are included in a
SignedData message. These attributes are defined
in CMS and named contentInfo and messageDigest.
When SignedData is used as a blockchain block, the
contentInfo attribute value is set to indicate the
type of content in the block is ordinary data, rather
than one of the other cryptographic message types
defined in CMS.

The required messageDigest attribute contains the
hash of the content. The content is bound to the
other signed attributes cryptographically under
the digital signature of the signer. There may be
any number of additional attributes included in
this binding at the signers choice, and these may be
of any type or format.

3.4 Blockchain required attributes

In a SignedData blockchain, both the timeStamp
attribute and precedingBlock attributes shown in
Fig. 1 must be included in the SignerInfo block
header. The value of a timeStamp attribute in a
given block header may contain a choice of either a
locally sourced synchronized time, or a trusted
timestamp token. A trusted timestamp is based on
a coordinated time source, such as one of those
specified in the X9.95 standard [7]. The type of
time value used may vary by block, but should
meet the requirements agreed to by the blockchain
participants. For blocks associated with tagged,

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

physical objects on the Internet of things (IoT) or
other resource constrained enviroments, a local
time value may be the only possibility.

A timestamp attribute can be defined as an
extensible pair of choice alternatives in ASN.1 as
follows:

timeStamped ATTRIBUTE ::= {

 WITH SYNTAX TimeStamped ID id-TimeStamped

}

TimeStamped ::= SEQUENCE {

 timeStampValue TimeStamp,

 timeStampService URI OPTIONAL

}

TimeStamp ::= CHOICE {

 timeStampToken TimeStampToken,

 localTimeStamp GeneralizedTime,

 ... -- Expect additional time types --

}

A value of type TimeStamped contains two
components, a required timeStampValue and an
optional timeStampService. The timeStampValue
component is a value of type TimeStamp, a choice
between an X9.95 [7] trusted timestamp token,
and a value from a local time source. Trusted
timestamps can provide greater assurance of the
validity of the ordering of block content.

The optional timeStampService component of type
TimeStamped is a value of type URI. This value
indicates the location of a timestamp authority
(TSA) that can issue and verify the timestamp
token. This component should be omitted when a
local time source is used, or when the location of a
timestamp service is required but known as a
system default.

A TSA ensures that "an independent third party
can audit and validate the controls over the use of
a time stamp process [7]. Unlike locally sourced
time that must be continuously synchronized by
blockchain participants, a TSA relies on time
sourced from a national measurement institute
(NMI) or other "Master Clocks upstream from a
TSA that provides time calibration services" [7].
The time source for an NMI is the "Bureau
International des Poids et Mesures (BIPM) near
Paris, France" which calibrates the NMI clocks used
to calibrate a TSA [7].

4. DISTRIBUTED BLOCKS

Blockchain has been described as a promising
technique "to create a decentralized, peer-to-peer
trust network" [8]. Due to the success of Bitcoin, a
blockchain-based cryptocurrency, blockchain has
emerged as a distributed platform capable of
providing a ledger for payments and other types of
transaction data. It is widely believed that
blockchain will play an important role in securing
cyber physical systems, and that blockchain will be
applied to Internet of things (IoT) applications
from cloud computing to "home gateway" and
"edge computing" envionments [8].

Part of the appeal of blockchain lies in its promise
to provide a secure design for supporting a
"distributed computing system with high
Byzantine fault tolerance", an efficient distributed
system that can be operated "without depending
on a central authority" [8]. One property used to
quantify the scalability of a blockchain architecture
is the "decentralization of block production (DBP)"
[9]. This term has been defined as " the number of
block producers" [9].

A set of SignedData blockchain blocks can be
distributed in whole, just as Bitcoin blockchains
can be distributed. Additionally, in a SignedData
blockchain, each of the blocks can be separately
distributed. Each block can be signed by a different
signer using a different signing key. The signer of
each block can use a different message digest and
signature algorithm, perhaps to meet specific
industry or regulatory requirements.

Each block signer can include any number or type
of signed attributes along with those required.
Each distributed block can serve as an independent
block producer. A SignedData blockchain can be
extended with additional blocks, and each block
can spawn a series of sidechains, blockchains
associated with a parent block. This capability
allows SignedData blockchain users to create and
manage flexible blockchain grids.

5. SIDECHAINS

5.1 Defintions

Many definitions of the term 'sidechain' come from
descriptions of blockchain architectures used to
transfer cryptographic currencies, such as Bitcoin
[4]. In their strong federation paper, Dilley,

https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

Poelstra, Wilkins, Piekarska, Gorlick, and
Friedenbach describe a sidechain as an
interoperable blockchain solution that can be used
to decentralize risk and enhance security [10]. In
their proposed blockchain-based system,
sidechains provide a mechanism for moving
"assets to and from other blockchains" [10]. Once
an asset is moved to a sidechain, the sidechain
participants can manage their own operational
environment without affecting any parent blocks.

This splitting of operations "between entities"
serves to "limit the damage an attacker can cause"
to the overall system [10]. This mechanism also
provides additional system agility benefits. Though
the "chains are still attached" the sidechain can be
used to test new system features and to isolate a
set of logical activities "without harming the main
network should vulnerabilities arise" [11]. The
blocksigners "who sign blocks of transactions on
the sidechain" and define "its consensus history"
can use a different consensus mechanism and
different cryptographic algorithms than those used
on the parent blockchain [10].

5.2 Fixed sidechains

One or more fixed sidechains can be added to a
new top block of a parent SignedData blockchain as
the block is created. Pointers to these fixed
sidechains can be included in the parent block
header using the signed attribute, sidechains. The
sidechains attribute is cryptographically bound to
the new top block of the parent blockchain under a
digital signature to link sidechains to the parent.

Fixed sidechain pointers cannot be modified or
removed from the signed attributes of the parent
block header without detection. Each parent block
header is a value of type SignerInfo, which includes
a precedingBlock attribute and a timestamp. This
signed attribute hash-links the parent blocks of the
blockchain together, and cannot be altered without
loss of blockchain integrity. Each sidechain pointer
can locate a new sidechain root block, or point to
any block that already exists. Pointers to existing
blocks may locate blocks within the parent
blockchain, perhaps to associate related
information contained in preceding blocks. A
sidechain pointer can also point to a distributed
block, a block whose physical location differs from
that of the parent block.

A sidechains attribute is defined using ASN.1 as
follows:

sidechains ATTRIBUTE ::= {

 WITH SYNTAX Sidechains

 ID id-Sidechains

}

Sidechains ::=

 SEQUENCE SIZE(0..MAX) OF linked Sidechain

Sidechain ::= HashPointer

The syntax of a sidechains attribute is a series of
values of type Sidechain. A value of type Sidechain
links a parent block to a sidechain. This linkage
relies on type HashPointer defined in section 3.1.
Type Sidechain contains two optional components,
named hash and pointers. In a value of type
Sidechain, the pointers component must be
present. When the message digest of the sidechain
block header can be calculated, the hash
component of type Sidechain can also be included.

When a new sidechain root block is created, it may
be doubly linked to point back to the parent block
as shown in Fig. 3.

Fig. 3. Fixed SignedData sidechain

To link the sidechain back to the parent block, a
parentBlock attribute must be included in the root
block of the new sidechain. The parentBlock
attribute is similar to the precedingBlock attribute
defined in section 3.1. The parentBlock and
precedingBlock attributes have different identifier
names so that applications can readily distinguish
between these two types of links.

Subsequent blocks added to a sidechain root block
must include a precedingBlock attribute. This
attribute should not be included in the root block

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

of the sidechain. The absence of a precedingBlock
attribute or the presence of a parentBlock attribute
indicate that a sidechain root block has been
located when traversing the chain of blocks.

The parentBlock attribute is defined using ASN.1 as
follows:

parentBlock ATTRIBUTE ::= {

 WITH SYNTAX ParentBlock

 ID id-ParentBlock

}

ParentBlock ::= HashPointer

The syntax of a parentBlock attribute is a value of
type ParentBlock. Type ParentBlock relies on type
HashPointer defined in section 3.1. Type
ParentBlock contains two optional components,
named hash and pointers. In a value of type
ParentBlock, the pointers component must be
present. When the message digest of the parent
block header can be calculated, the hash
component of type ParentBlock can also be
included.

5.3 Ephemeral sidechains

The CMS SignedData message schema can support
multiple content signers through a series of
SignerInfo values. There is one SignerInfo value for
each co-signer of the message content or signed
attributes. Each SignerInfo value in the series is
independent of all of the others. Each co-signer can
choose their own signature and hash algorithms,
use their choice of signing key, and include any
number of attributes of any type of format that
they wish. The CMS standard only requires that the
contentType and messageDigest attributes also be
included, as described in section 3.4.

The SignedData message serves as a container for
the blockchain block header and data components.
In a SignedData block only the first SignerInfo
value is used as a block header that hash-links the
block into the blockchain. The signature on the
attributes in the block header serves to
cryptographically bind "the contents of the block, a
timestamp, and the previous block header" to form
a chain of data that can provide "a well-defined
ordering for transactions" [12]. The SignedData
block header and the other SignerInfo values in the
series are illustrated in Fig. 4.

Fig. 4. SignedData SignerInfo series

The e-block header SignerInfo values in the series
depicted in Fig. 4 can be used for other purposes.
Their use is specified by a SignedData blockchain
application. Their use has no affect on the first
SignerInfo value, the block header used to create
the hash-linked blockchain. The e-block header
values can be used to manage a series of
ephemeral sidechains.

An e-block header value can be added to any
SignedData container at any time, even after the
block header hash-links have been signed. They
can be removed without loss of blockchain
integrity. Though they are part of a SignedData
container, they are not connected operationally to
the blockchain block header.

E-block headers can be used by an application in a
number of ways. They can be used to form a
completely new and independent root block of an
ephemeral sidechain, a block not connected in any
way to the SignedData blockchain block header.
This could be accomplished by not including any
hash pointer back to the parent SignedData block
header in the sidechain e-block header. As an
alternative, the parentBlock attribute described in
section 5.2 could be included in the e-block header.

SignedData ephemeral sidechains may be retained
for as long as needed, but they can be considered
as being temporary objects. Ephemeral sidechains
can be deleted from a blockchain once they are no
longer needed by the application. This feature can
help SignedData blockchain applications to comply
with some aspects of privacy laws and regulations,
such as the right-to-be-forgotten requirements of
the European Union (EU) General Data Protection
Regulation (GDPR).

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

Article 17 of the GDPR regulation, "Data Erasure",
entitles data subjects to the "right to be forgotten"
[13]. This privacy right "entitles the data subject to
have the data controller erase his/her personal
data" [13]. Careful data architecture design, where
the privacy sensitive data of an individual is stored
in one or more ephemeral sidechains, would make
it possible for a SignedData blockchain application
to comply with a data erasure request. Compliance
would simply require deleting any sidechains
containing data subject information.

6. CONCLUSION

In this paper blockchain blocks constructed using the
cryptographic message syntax SignedData type were
described. These blocks were specified using the
ASN.1 schema definition language, a standard for the
generation of programming language tools from
ASN.1 syntax. ASN.1 provides applications with
platform-independent information exchange that can
enhace the chances of interworking systems.

Signed attributes required by the CMS standard or
needed to implement a Bitcoin style blockchain
were described in this paper using ASN.1. Two
types of sidechains and their schema were also
described, fixed and ephemeral. The paper
discussed how fixed sidechain attributes could be
cryptographically bound to a parent blockchain
block under a digital signature.

Ephemeral sidechains loosely coupled to a parent
block using an e-block header SignerInfo value
were shown to be operationally disjoint from the
block header used to hash-link a parent block to its
blockchain. The paper described how ephemeral
sidechains could be added to or deleted from a
parent block at any time without affecting the data
integrity of the parent blockchain. This feature
could be used to design blockchain systems that
could comply with the requirements of privacy
regulations.

ACKNOWLEDGEMENT

This paper could not have been produced without
the guidance and influence of Bancroft Scott, who
led me to a new world of intellectual opportunities,
and John Larmouth, who encouraged me to dream
of new things and taught me how to make them
real. Special thanks to OSS Nokalva for use of the
ASN.1 tools used to perfect the schema available at
http://phillipgriffin.com/SignedDataBlocks.asn.

REFERENCES

[1] J.L. Larmouth, “ASN.1 Complete,” San
Francisco: Morgan Kaufmann Publishers,
2000. Retrieved March 17, 2018, from
http://www.oss.com/asn1/resources/books
-whitepapers-pubs/larmouth-asn1-book.pdf

[2] ITU-T X.680, "Information Technology –
Abstract Syntax Notation One (ASN.1)
Specification of basic notation," 2017.

[3] P.H. Griffin, "Telebiometric Security and
Safety Management," Proceedings of ITU
Kaleidoscope 2013 Conference – Building
Sustainable Communities, Kyoto, Japan, 2013.

[4] S. Nakamoto, "Bitcoin: A Peer-To-Peer
Electronic Cash System," 2008.

[5] A. Narayanan, J. Bonneau, E. Felten, A. Miller,
& S. Goldfeder, "Bitcoin and Cryptocurrency
Technologies: A Comprehensive Intro-
duction", Princeton University Press, 2016.

[6] ITU-T X.672, "Information technology – Open
systems interconnection – Object identifier
resolution system (ORS)".

[7] Accredited Standards Committee (ASC) X9
Financal Services, "American National
Standard (ANS) X9.95 Trusted Time Stamp
Management and Security", 2016.

[8] Opportunities and Use Cases for Distributed
Ledger Technologies in IoT. GSMA (2018).
Retrieved September 22, 2018, from
https://www.gsma.com/iot/opportunities-
and-use-cases-for-distributed-ledger-techno-
logies-in-iot/

[9] K. Samani, "Models for Scaling Trustless
Computation," MultiCoin Capital , 2018.

[10] J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska,
B. Gorlick, & M. Friedenbach, "Strong
Federations: An Interoperable Blockchain
Solution to Centralized Third Party Risks,"
arXiv preprint arXiv:1612.05491, 2016.
Cornell University Library Cryptography and
Security archive.

http://phillipgriffin.com/SignedDataBlocks.asn
http://www.oss.com/asn1/resources/books-whitepapers-pubs/larmouth-asn1-book.pdf
http://www.oss.com/asn1/resources/books-whitepapers-pubs/larmouth-asn1-book.pdf
https://www.gsma.com/iot/opportunities-and-use-cases-for-distributed-ledger-techno-logies-in-iot/
https://www.gsma.com/iot/opportunities-and-use-cases-for-distributed-ledger-techno-logies-in-iot/
https://www.gsma.com/iot/opportunities-and-use-cases-for-distributed-ledger-techno-logies-in-iot/

ITU Journal: ICT Discoveries, Special Issue No. 2, 9 Nov. 2018

[11] A. Hertig, "The Sidechains Breakthrough
Almost Everyone in Bitcoin Missed,"
CoinDesk, 2018.

[12] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, ... & P. Wuille, "Enabling
blockchain innovations with pegged
sidechains," 2014.

[13] EU-GDPR, ”European Union (EU) General
Data Protection Regulation (GDPR) Portal,
http://www.eugdpr.org, 2018.

http://www.eugdpr.org/

	AN INTERNET OF BLOCK THINGS
	1. INTRODUCTION
	2. Signed Data BLOCKs
	3. Signed AttributeS
	3.1 Hash pointers
	3.2 Detached content
	3.3 SignedData required attributes
	3.4 Blockchain required attributes

	4. Distributed BlockS
	5. Sidechains
	5.1 Defintions
	5.2 Fixed sidechains
	5.3 Ephemeral sidechains

	6. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

