A Digital Transmission Network

Solution of Case Study

Mr. H. Leijon, ITU

A digital transmission network Solution of case study

30 ch. 480 ch.

A digital transmission network Solution of case study

30 ch.
1920 ch.

Equipment		2 Mb/s	2 Mb/s + 140 Mb/s		2 Mb/s + 34 Mb/s	
			Throughconnection:		Throughconnection:	
			alt. 1	alt. 2	alt. 1	alt. 2
Line	LT_1	2122	1034	1034	1034	1034
Terminals	LT ₃				64	64
	LT ₄		16	16		
Digital	\mathbf{M}_2		252	152	252	152
MUX	M_3		64	44	64	44
	\mathbf{M}_4		16	16		
	\mathbf{R}_1	1771	342	342	342	342
Repeaters	R_3				44	44
	\mathbf{R}_4		11	11		
Repeater	\mathbf{B}_1	93	21	21	21	21
Boxes	\mathbf{B}_3				11	11
	B ₄		9	9		

Throughconnection

alt. 1: 30-group throughconnection (2Mb/s)

alt 2: Throughconnection on highest possible level

General Remarks:

"B" and "C", compared to "A", has:

- much less <u>line</u> equipment;
- more <u>terminal</u> equipment, due to MUX;
- specific cables for higher order systems;
- simpler network (less equipment involved in connections).

Maintenance:

"A" has more equipment outdoors, i.e.:

- fault localization and repair takes more time;
- also more pieces of equipment.

"B" and "C" has more equipment indoors, i.e.:

- fault localization and repair takes less time;
- also fewer pieces of equipment.

Reliability:

"B" and "C":

- have fewer pieces of equipment;
- specific cables are used.

Therefore, better reliability: "A" uses existing pair cables, which also may be used as, e.g., leased lines. Possible changes in the pair cable network may then occur, being also a source of faults for the PCM-pairs in the cable.

Rerouting in case of faults:

"B" and "C" have fewer system lines, i.e.:

- rerouting can be done using fewer system lines;
- rerouting cost is lower since the cost for a system line compared to terminal equipment is low, and the <u>terminal equipment is common</u> to both the ordinary and the reserve path.

Cost (Investment):

```
For <u>30</u>-group through connection: "A" \approx "B" \approx "C" ("B" slightly cheaper)
```

For through connection on higher level: "B" and "C" much cheaper than "A".

Relative costs:

```
Terminal cost/Line cost: for "A": \approx 70/30, for "B" and "C": \approx 90/10.
```

Therefore, in alt. "B"and "C" we can afford to use a high quality cable, which may be very good for future developments (broad band services, etc.).