Economic Period of Provisioning

Planning of Fiber Optics Cable

Case Study

by Mr. Moumoulidis, OTE, Athens

UNION INTERNATIONALE DES TELECOMMUNICATIONS INTERNATIONAL TELECOMMUNICATION UNION UNION INTERNACIONAL DE TELECOMUNICACIONES

The problem

Between two large towns which are considered as "transit exchanges", there is a demand for trunk circuits. The demand is generated by two groups of towns which are served by their transit exchanges. The layout of towns is shown in Figure 1. For the next three years, the demand growth is shown in Table 1. By assuming the linear demand growth between the long distance exchanges, we wish to determine the optimum size of the fiber optics cable which should be placed between the transit exchanges. The fiber optics cable was found to be the most economical transmission media.

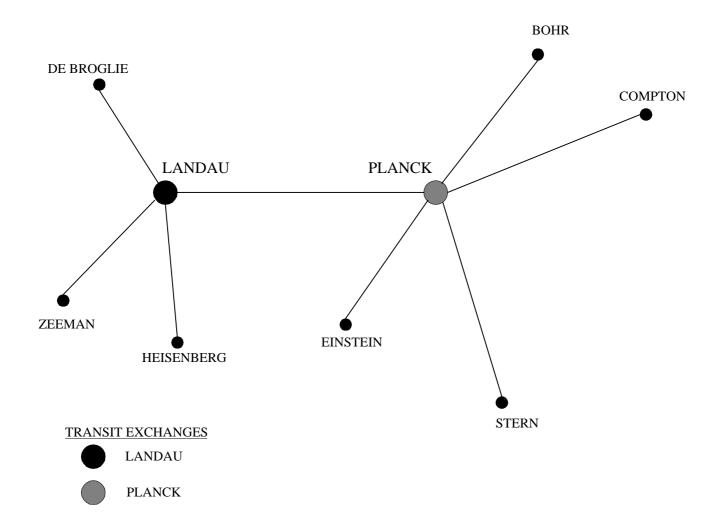
We also wish to determine:

- the present worth of expenditures at optimal size cable;
- the present worth of expenditures at double size;
- the percentage variation of present worth between double and optimal size cable;
- he annual charges.

The following data are provided:

The PCM systems, which are going to be superimposed on the fiber optics cable, are of fourth order. One fully equipped system provides 1920 ch.

Cost of fiber optics cable


•	Basic cost	600 MU / km
•	Incremental cost	720 MU / km / pair
•	Taxes on purchasing cost	20 %
•	Digging cost	750 MU / km
•	Placement of cable	80 MU / km
•	Splicing and testing	15 MU/ km/ pair
•	Operating plus maintenance cost	3.5 %
•	Service life	18 years
•	Interest rate	10 %
•	Distance between transit exchanges	170 km

For references, see the relevant document.

	DE BROGLIE	ZEEMAN	HEISENBERG	LANDAU	BLANCK	BOHR	COMPTON	STERN	EINSTEIN
DE BROGLIE					50	20	25	26	25
ZEEMAN					50	75	26	25	35
HEISENBERG					72	25	25	36	25
LANDAU					95	27	75	60	80
BLANCK	45	25	75	92					
BOHR	25	25	46	25					
COMPTON	25	25	60	100					
STERN	30	25	35	50					
EINSTEIN	28	30	32	90					

Table 1: Trunks needed for the next three year	ſS
--	----

LAYOUT OF CITIES

