Use of Subscriber Single Channel Carrier

to Defer Feeder Relief Project

Case Study

Mr. G. Moumoulidis, OTE

UNION INTERNATIONALE DES TELECOMMUNICATIONS INTERNATIONAL TELECOMMUNICATION UNION UNION INTERNACIONAL DE TELECOMUNICACIONES

1. <u>The problem</u>

The demand growth of a small village is $\lambda = 15$ subs/year. The village is 4 km from the exchange. The existing cables are completely used up.

Alternatives available to add facilities are either to place a buried cable of sufficient capacity or to install a single channel carrier.

The problem is to determine the optimal policy to cater for the future demand.

2. <u>Input data</u>

2.1 Cables

2.2

•	Basic purchasing cost	100 MU / km
•	Incremental purchasing cost	6.5 MU / pair / km
•	Digging and placement cost	650 MU / km
•	Service life	35 years
•	Operating and maintenance cost	2.5 %
•	Scrap value 0	
Single channel carrier		
•	Purchasing cost	<i>30 MU/ piece</i>
•	Installation cost	10 MU / piece
•	Service life	15 years
•	Maintenance and operating cost	5 %
•	Scrap value	0
•	Interest rate	10 %