
PLANITU - Doc-43 - E

81,21�,17(51$7,21$/(�'(6�7(/(&20081,&$7,216
,17(51$7,21$/�7(/(&20081,&$7,21�81,21

81,21�,17(51$&,21$/�'(�7(/(&2081,&$&,21(6

'LPHQVLRQLQJ�	�2SWLPL]DWLRQ

RI�-XQFWLRQ�1HWZRUN

Mr. T. Fried, ITU



&RQWHQWV��

This document consists of the following sub-chapters from the documentation of the PLANITU software

2.4 Traffics

2.5 Dimensioning / Optimisation of routes
Calculation of overflow traffic

3.6 Calculation of derivative, 
∂
∂
1
0

3.7 Calculation of Wilkinson’s Equivalent Group parameters

3.8 Calculation of blocking functions, Wi

3.9 Calculation of Erlang’s formula for integer and non-integer number of circuits, and derivatives
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Before dimensioning/optimizing the circuit groups between the exchanges in the network, a WUDIILF�PDWUL[�between these
exchanges has to be set up. This chapter describes the calculation method for
the types of network considered, ie

• local networks ( rural, metropolitan )

•  long distance networks ( national, regional )

������7UDIILF�]RQHV�DQG�VXEVFULEHUV

For local networks, traffics calculations are based on subscribers/exchange, subscriber’s categories and traffic zones.

$VVXPSWLRQV��

• the area under consideration has been divided into WUDIILF�]RQHV; the subscribers belonging to such a zone are
assumed to have XQLIRUP�WUDIILF�SURSHUWLHV� such as traffic originated and terminated per subscriber, and traffic
dispersion to other zones;

• the number of subscribers of any  zone,T, are known for any given exchange,  E; they may have been defined in the
input data, or calculated in the previous boundary optimization: 168%�(�7��

• the total number of subscribers belonging to any traffic zone,T, is known; this has been calculated after reading the
input data concerning ]RQH�GHILQLWLRQ�and VXEVFULEHU�GLVWULEXWLRQ: SUBTZT

• the total traffic from any traffic zone, T, to any other traffic zone, U, is known from input data :ATU

The VSHFLILF�WUDIILF�LQWHUHVW�between one subscriber in traffic zone T and one subscriber in traffic zone U can then be
expressed as

a T U
A

SUBTZ SUBTZ
TU

T U

( , ) =
⋅

Finally, the traffic from any exchange, E, to any other exchange, F, can now be written as

Traffic E F NSUB E T NSUB F U a T U
T U

( , ) [ ( , ) ( , ) ( , )]
,

= ⋅ ⋅∑

������7UDIILF�PDWUL[

For long distance networks, or for local networks where the boundaries are nor subject to investigation by the program,
a traffic matrix is given defining the traffic interest between any pair of exchanges. For sub-exchanges, remote
subscriber units, etc, total incoming and outgoing traffic can be specified to enable dimensioning of routes to/from the
parent exchange.

The traffics given in this matrix are busy hour traffics.

In the case of QRQ�FRLQFLGHQW�EXV\�KRXUV the traffic matrix contains the total daily traffic volume in erlanghours, and
information about the relevant traffic profile has to be supplied. The traffic value for any given time, t, is then found by
multiplying the total traffic by the traffic profile value for t, ie

Traffic(E, F, t) =  A(E, F) PROF(E, F, t)⋅

There is obviously no need to define a specific traffic profile for each particular traffic case. Exchanges can be grouped
into categories, and the traffic profiles defined between categories rather than between exchanges.
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For local and national networks this grouping of exchanges would probably depend on the percentage of subscriber
categories, such as residential, business, public services, PABXes, etc; as the telephone habits for each of these
categories can be measured or estimated, the profile for a given "mix" of categories can be found.

For international networks, the profiles would rather depend on the time difference between the countries involved, and
on any special relations between the countries.
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This chapter deals with the task of providing circuits between the various exchanges in the network in such a way that
the overall cost of the network is minimised, taking into account

• the grade of service desired;

• the properties of traffic offered;

• the technical properties of the switching equipment;

• the costs of the switching and transmission equipment.

This chapter describes the mathematical solution of dimensioning and optimization, while the remaining
numerical problems will be dealt with in chapter 3.5.

The following notations will be used throughout this chapter:

N = number of circuits on a route
k = availability, or number of outlets to a route per group selector unit
A = mean = variance of a Poisson-type traffic
M = mean of traffic offered to an alternative route
V = variance of ditto
m = mean of overflow traffic from a route
v = variance of ditto
B = m/M = congestion on a route.

������&RQJHVWLRQ�7KHRU\�)XOO�$YDLODELOLW\

3ULPDU\�URXWHV

Assuming Poisson-type offered traffic, the mean and variance of overflow traffic from a direct route are given by
the Wilkinson formulae:

m A E AN= ⋅ ( )

v m m
A

N A m
= ⋅ − +

+ − +
( )1

1

where E AN ( ) denotes the Erlang loss formula

E A

A

N
A

i

N

N

i

i

N( ) !

!

=

=
∑

0

The following figure illustrates the Wilkinson model for primary routes :

m, vA N
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$OWHUQDWLYH�URXWHV

The offered traffic of mean M and variance V is substituted by the traffic of equal mean and variance 
overflowing from a fictive, fully available group offered Poisson-type traffic :

The parameters N*and A* of this "equivalent group" can be determined from the equation system

M A E A
N

= ⋅* *
* ( )

V M M
A

N A M
= ⋅ − +

+ − +
( )

*

* *
1

1

See chapter 3.7 for method of determining N*and A* .

The mean and variance of the overflow traffic from the alternative route are then estimated as

m A E A
N N

= ⋅
+

* *
* ( )

v m m
A

N N A m
= ⋅ − +

+ + − +
( )

*

* *
1

1

����� &RQJHVWLRQ�7KHRU\�5HVWULFWHG�$YDLODELOLW\

The problem of congestion on routes with restricted availability are solved by introducing the�ORVV�IXQFWLRQ, Wi ,

denoting the conditional probability of a call overflowing from the route, given that precisely L�circuits are occupied
when the call arrives. Thus Wi , is to describe the main properties of the actual grading and/or link system. The moments

of the overflow traffic are derived from equations of state for an DUELWUDU\ probability function Wi ,. An example of such

a function is shown in Chapter 3.8.

3ULPDU\�URXWHV

The calculation scheme for primary routes is illustrated in the following figure; the "box" in front of the route
indicates restricted availability.

The overflow traffic mean and variance can be written as

m A W P ii
i

N

= ⋅ ⋅
=
∑

0

( )

v m m A W Q ii
i

N

= − + ⋅ ⋅
=
∑2

0

( )

where P(i) can be determined from the relations

M, VA* N* N m, v

W(i)

A N m, v
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P i A W P i ii( ) ( ) ( ) ( )⋅ ⋅ − = + ⋅ +1 1 1 for i = 0,1,2,....,N-1

P i
i

N

( ) =
=
∑ 1

0

and Q(i) can be determined from the relations

Q N A W Q N N P N A WN N( ) ( ) ( ) ( ) ( )− ⋅ ⋅ − = ⋅ + − ⋅ ⋅−1 1 11

Q i A W Q i i A Wi i( ) ( ) ( ) [ ( )]⋅ ⋅ − = + ⋅ + + ⋅ − −+1 1 2 1 1

− + ⋅ + − + ⋅ ⋅ +Q i i P i A Wi( ) ( ) ( )2 2 1 1 for i = N-2,N-3,....,0

Q i m
i

N

( ) =
=
∑

0

See chapter 3.5 for numerical considerations of these calculations.

$OWHUQDWLYH�URXWHV

An "equivalent group",( , )* *N A , corresponding to the given mean and variance of traffic offered is determined
as shown in the case of full availability. Thus the substitute scheme in the following figure is obtained:

The "exact" solution given by Wallström is, unfortunately, too complicated for practical employment in network
planning programs.

To calculate the required moments of overflow traffic we make use of DSSUR[LPDWH solutions, which have been
compared with both the "exact" solution, and extensive simulations, and found to be sufficiently good. Two
approximations are described below.

$SSUR[LPDWLRQ�, : The required moments are constructed from the corresponding moments of the simpler cases
described above. Thus,we can write

m m m m= + −2 3 1

v

m

v

m

v

m

v

m
= + −2

2

3

3

1

1

where the subscripts indicate the simpler cases, that is

1 : Full availability, primary routes
2 : Full availability, alternative routes
3 : Restricted availability, primary routes

For dimensioning of routes for a given grade of service, the corresponding approximation would be :

N N N N= + −2 3 1

The approximation for N is acceptable only for small values of B, (B < 0.05), while the approximation for m and
v is best for higher values of B (B > 0.15).

W(i)

M, VA* N* N m, v
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$SSUR[LPDWLRQ�,, : Here the calculation scheme shown above is changed slightly to the following figure :

where Wi
* = 0 for i =  0,1,2,...., N -1*

W Wi i N

*
*=

−
for i =  N , N +1,...., N + N* * *

and Wi  is calculated in the usual way.

NowP i( )  , Q i( ), m and v can be calculated as previously described, using ( N N* + ) and A*instead of
A and N.

����� 'LPHQVLRQLQJ

Routes between exchanges can now be dimensioned based on the formulae or methods given above.

As the congestion B(N) steadily� GHFUHDVHV for� LQFUHDVLQJ N, starting with B(N) = 1 for N = 0, and B N( ) → 0for
N → ∞ , the method that suggests itself is to start with a suitable value for N, and then increasing N in suitable steps
until the resulting B(N) becomes smaller than, or equal to, a predescribed value, B. For details of calculation,
considering the numerical problems that may occur for large values of N, see chapter 3.5.

����� 2SWLPLVDWLRQ�RI�FLUFXLWV�RQ�KLJK�XVDJH�URXWHV

It is practically impossible to optimise all the routes in an alternative routing network simultaneously, so we have to
resort to sub-optimisation, ie treating only one particular route, assuming the rest of the network already optimised and
dimensioned. Starting from some approximate solution, we will then iteratively arrive at the cost optimum by treating
every route individually, making use of previous results for the other routes in the network.

Consider the simple configuration of three exchanges shown below :

T

i j

There are 2 exchanges, i and j, on the lowest level of an assumed hierarchical network structure, and another exchange,
T, called the transit or tandem exchange, on a higher level.

Considering the traffic case from i j→  , there are 3 possibilities of routing the traffic, ie

• all traffic is carried on the route from i to j; we denote this case as '�for Direct routing
 
• all traffic is carried through the tandem exchange, T ; we denote this case as 7
 

W*(i)

A* M, VN* N m, v
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• part of the traffic is carried on the route i -> j , and the rest of the traffic overflows to the routes
i T j→ → . We denote this case as +�for High-usage route.

It is the third case that interests us here, in particular the question what proportion of the traffic should be carried
on the direct and overflow routes, resp. As we are interested in RSWLPL]DWLRQ, the question then will be "what proportion
will result in the least cost of satisfying the traffic demand i to j for given costs and grade of service?".

For the simple triangular routing pattern shown above the following data can then be assumed to be known :

M,V mean and variance of offered traffic to route i j→
M V10 10, mean and variance of traffic offered to route i T→ , not including the overflow traffic from

route i j→

M V20 20, ditto for route  T j→
c c c, ,1 2 cost of one additional circuit on route i j→ ,i T→ , and T j→ , resp.

If we denote the mean and variance of the overflow traffic from route i j→  as m(N) and v(N), where N denotes
the number of circuits on route i j→ ,we get the total traffic offered to the overflow routes as

M M m N1 10= + ( ) 0 0 P 12 20= + ( )

V V v N1 10= + ( ) V V v N2 20= + ( )

We wish to determine N so that the resulting cost is minimised, ie we have to minimise the cost function

C N c N c N c N( ) = ⋅ + ⋅ + ⋅1 1 2 2

with regard to N. N1 and N2 are the circuits on the overflow routes.

As the grade of service for the overflow routes is assumed to be known, N1 and N2 are functions of N. To find the
minimum of the cost function, we should equate its derivative, with respect to N, to zero.

We get

c c
N

N
c

N

N
+ ⋅ + ⋅ =1

1
2

2 0
∂
∂

∂
∂

From this relation the optimal value of N can then be found as follows:

For the first overflow route we know that, for a given grade of service,

N N M V1 1 1 1= ( , )

or, alternatively, for Θ1
1

1

= V

M
,

N N M1 1 1 1= ( , )Θ

We can then write

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

N

N

N

M

M

N

N

N
1 1

1

1 1

1

1= ⋅ + ⋅
Θ

Θ

From
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M M m1 10= + and Θ1
10

10

= +
+

V v

M m

we find

∂
∂

∂
∂

M

N

m

N
1 = and

∂
∂

∂
∂

∂
∂Θ Θ

1
1

1N

v
N

m
N

M
=

− ⋅

As the second expression is usually quite small, we then get approximately

∂
∂

∂
∂

∂
∂

N

N

N

M

m

N
1 1

1

≈ ⋅ and
∂
∂

∂
∂

∂
∂

N

N

N

M

m

N
2 2

2

≈ ⋅

Finally, by inserting these derivatives in the derivative of the cost function, we obtain

− =
⋅ + ⋅

∂
∂ ∂

∂
∂
∂

m

N

c

c
N
M

c
N
M1

1

1
2

2

2

The derivatives 
∂
∂

N

M
1

1

 and 
∂
∂

N

M
2

2

 can be calculated a shown in Chapter 3.6, and are FRQVWDQWV�during the sub-

optimisation of the route under consideration; so are c, c1  and c2 . The optimisation problem is thus reduced to finding a
value for N so that

− =∂
∂
m

N
constant

Although this expression easily yields the optimal N for routes with full availability, for routes with restricted
availability ( eg graded routes ) derivatives cannot be found easily. We will therefore ....

The divisor in the right-hand part of the optimisation equation,

c
N

M
c

N

M1
1

1
2

2

2

⋅ + ⋅∂
∂

∂
∂

is obviously the cost per erlang overflowing to the tandem routes, which we will denote as CT . The original cost
equation can thus be re-written as

C N c N m N CT( ) ( )= ⋅ + ⋅

The following figure illustrates the cost expression for various values of N, for a specific offered traffic and CT  :
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2SWLPXP

1�&LUFXLWV

&�1�

1
237 1

'

The points marked •  correspond to the above optimisation equation, valid for N = 0,1,2,...,ND, and the point 
marked correponds to the cost for providing a direct route without overflow.

So, the obvious procedure to follow is to calculate the value of the above expression for successive values of N, starting
with N=0 until reaching either ND, or the lowest value of &(N).

Should the overflow path have more than the two routes assumed in the above triangular configuration, then there will
be the corresponding number of additional CT -terms.

For any route in the overflow path, it should be observed that

• if the route is final, ie without overflow possibilities, the derivative 
∂
∂

N

M
should be calculated for a FRQVWDQW

FRQJHVWLRQ�YDOXH;

• if the route does have overflow possibilities, the derivative 
∂
∂

N

M
 should be calculated for a FRQVWDQW�RYHUIORZ

WUDIILF�PHDQ.

For further details please see Chapter 3.6.

,QLWLDO�YDOXHV

The iteration process outlined in Chapter 2.1 makes use of the traffic flows and circuit calculations of the previous
iteration when optimising any particular route. In the first iteration, such information is not yet available, and some
assumption about the HIILFLHQF\ of the routes on the overflow path has to be made. This can be accomplished by setting

the value of the derivative to an empirically found constant before starting the first iteration, ie 
∂
∂

N

M
 = 1.2

����� +LHUDUFKLFDO�QHWZRUNV�FRQVLGHUDWLRQV

2UGHU�RI�FDOFXODWLRQV

As a route can be optimised/dimensioned only when all other routes with traffic overflowing to that route have been
calculated, it is important that the order in which routes are treated is strictly conforming to the hierarchical network
structure, and the specified routing rules.
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6HUYLFH�FULWHULD

The required grade of service in the network can be determined prior to starting the calculations in one of two ways, ie

• specified grade of service for ILQDO�URXWHV;
• specified grade of service for WUDIILF�FDVHV�

In the second case the required GOS for any final route will then have to be set in such a way that the overall congestion
experienced by any traffic using that route will not be larger than the specified value. To ensure this, the GOS values
have to be carefully constructed depending on the results of the circuits provided on the lower levels of the network, and
the ensuing congestion values and overflow traffics. As a final route may carry partial traffics overflowing from many
lower level routes, the "worst" case should determine the GOS to be applied to the final route.

Before discussing how to set the GOS-values for higher-level routes, let us first consider how the overall grade of
service for a given traffic case is calculated.

The total congestion for any traffic case can be calculated approximately when all overflow traffics and circuits on the
overflow paths concerned have been calculated.

On a route where

M = offerered traffic mean
V = offered traffic variance
B = congestion

an individual traffic stream, i, with

mi  = offered traffic mean

vi  = offered traffic variance

will experience a congestion,Bi  , that can be approximately expressed as

B B

v

m
V

M

i

i

i≈ ⋅

Thus, to calculate the�WRWDO�FRQJHVWLRQ for any traffic case, the sequence of overflow routes has to be carefully examined,
and the corresponding terms for congestion and overflowing traffics added and/or multiplied accordingly. The example
below illustrates the method.

Assume a 3-level hierarchical network, the relevant routes of which are shown in this figure :

        

4

21

3

5

high-usage routes

final routes

We are interested to find the total grade of service for the traffic case 1 2→ . A call offered to this route has 4 possible
alternatives, ie

1 2→ 1 3 2→ → 1 3 4 2→ → → 1 3 5 4 2→ → → →

For any of the routes involved, the traffic offered (M,V), the congestion (B), and the overflow traffic (m,v) are assumed
to be known. The overall grade of service, T12 , can then be found in this way :
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T B
v

m

B

V M

T

V M12 12
12

12

13

13 13

32

32 32

= ⋅ ⋅ +(
/ /

)

T B
v

m

T

V M

B

V M32 32
32

32

34

34 34

42

42 42

= ⋅ ⋅ +(
/ /

)

T B
v

m

B

V M

B

V M34 34
34

34

35

35 35

54

54 54

= ⋅ ⋅ +(
/ /

)

Assume traffics, circuits, congestion and overflow traffics as shown in the following table :

Route M V V/M N B m v    v/m

1 - 2  30.   30. 1. 30 0.132 3.97 12.15    3.06
1 - 3 100. 150. 1.5 0.01 - - -
3 - 2 100. 160. 1.6 100 0.094 9.39 60.1    6.4
3 - 4 200. 300. 1.5 210 0.039 7.7 69.6    9.04
3 - 5 200. 400. 2. 0.01 - - -
5 - 4 300. 500. 1.67 0.01 - - -
4 - 2 100. 200. 2. 0.01 - - -

The overall grade of service for traffic case 1 - 2 can then be calculated :

T = 0.039 9.04 ( 0.01 / 2.  + 0.01 / 1.67  ) = 0.003934 ⋅ ⋅

T = 0.094 6.4 ( 0.0039 / 1.5 + 0.01 / 2.    ) = 0.004632 ⋅ ⋅

T = 0.132 3.06 ( 0.01 / 1.5 + 0.0046 / 1.6 ) = 0.003812 ⋅ ⋅

Similarly, the traffic case 1 - 5, for which there are no alternative routes, would experience a overall grade of
service of

T B V

M

B V

M

15 13
13

13

35
35

35

1 1 0 01

1 5

0 01

2
0 017= ⋅ + ⋅ = + =.

.

.

.
.

As we now know how to calculate the overall grade of service experienced by any traffic case from v/m, and
V/M and B for the routes on the overflow path, we can set the proper values for these B so that the overall grade of
service for all traffic cases is within the limits specified.

In the example above, consider that the required overall grade of service for traffic case 1 - 2,
GOS  =  0.0112 . That means that

T   GOS12 12≤
or

%
9

0

7
9

0

*26

%
Y

P

13

13

13

32

32

32

12

12
12

12

+



















≤
⋅

or, with the values used before,

% 713 32

15 16

0 01

0132 3 06. .

.

. .
+





≤
⋅



- 12 -

Assuming the 2 terms within the brackets to be of the same size, we get

B13

1 5 0 01

2 0 132 3 06
0 019= ⋅

⋅ ⋅
=. .

. .
.

and

T32

1 6 0 01

2 0 132 3 06
0 020= ⋅

⋅ ⋅
=. .

. .
.

In a similar way, the values for the other final routes are found to be

B  =  0.01913

B  =  0.07135

B  =  0.05954

B  =  0.03342

However, there are also other traffic cases to be considered, and, as stated before, the "worst" case should
determine the GOS on the final routes.

If we then assume the required GOS15 = 0.02, and make similar calculations, we find that GOS13 and GOS35  should

be reduced to

B  =  0.01513

B =  0.02035

The same exercise should then be carried out for any other traffic case using any of the final routes in its overflow path,
and the relevant B-values will be set to satisfy all the GOS demands.

����� 1RQ�&RLQFLGHQW�%XV\�+RXUV

The various traffic flows in a network will rarely have their Busy Hour at exactly the same time. This is especially so for
international networks, where the time difference between countries becomes an important factor in determining the
traffic profiles. Similarly, in metropolitan networks the traffic for business subscribers will have its peak at a different
time than residential traffic. Considerable savings in terms of circuits can be achieved if these traffic profiles are taken
into account in dimensioning the inter-exchange network.

The dimensioning and optimization methods presented in the preceding sections of this chapter are valid or a certain
point of time, ie the busy hour.

For networks with non-coincident busy hours ( NCBH ), the dimensioning and optimization procedure will be somewhat
more complicated as we now have to work with ‘traffic profiles‘ instead of simple traffic values, thus introducing a new
dimension, ie time, into our traffic model.

The notations given in the beginning of Chapter 2.5 will, except for N and k, be vectors, eg

A(t), M(t),...,B(t), t=1,2,...T.

The assumption is that during a given time period, t, we can work using the previously described methods of congestion
calculation. This means that all formulae given in 2.5.1 and 2.5.2 can be used; we only have to affix the subscript t to the
variables A, M, V, m, v, and B.

'LPHQVLRQLQJ

A route offered traffic characterized by

0 W

9 W
W 7

( )

( )
, ,...........





= 1 2
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can then be dimensioned for a specified grade of service, B(t), by finding the traffic yielding the highest number of
circuits. It is obviously not necessary to investigate all points of time in detail, but only those with large traffics.

2SWLPL]DWLRQ��

Considering anew the triangular routing pattern of Ch. 2.5.4, and adding the time parameter to the traffics involved, the
optimisation equation then becomes

C N c N c N c N( ) = ⋅ + ⋅ + ⋅1 1 2 2∆ ∆

where

{ } { }[ ]∆1
1

0
0 W P 1 W 0 W

W W1
1

1
10 10= ⋅ + −

∂
∂

max ( ) ( , ) max ( )

{ } { }[ ]∆1
1

0
0 W P 1 W 0 W

W W2
2

2
20 20= ⋅ + −

∂
∂

max ( ) ( , ) max ( )

and M10(t) = traffic mean offered to route i-T at time t, not including overflow traffic from i-j
M20(t) = ditto for route T-j

The derivative 
∂
∂

N

M
1

1
 is calculated in the case of

• low-loss routes : with constant congestion value, and for the point of time, t, which determined N1 ;
 
• high-usage routes : with constant overflow traffic mean at the point of time, t, with the largest value.
 

As in the case of coincident busy hours, the optimal value of N is found by comparing the values of &(N) for
N =  0,1,2,.....,N .D

As an illustration of the difference in the cost, and circuit number, using the NCBH concept, compare direct route, i-j,
and the tandem routes, i-T and T-j. In the other two cases, the traffic profile on the tandem routes are the same, but the
traffic peak on the direct route coincides with high traffics on the tandem routes in the figure at center, and coincides
with low traffics on the tandem routes in the figure at the right.
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7UDIILFV�LQ�HUODQJ�DW�WLPH�W
t = 1 1 2 3 4 5 6 1 2 3 4 5 6

i - j 40 20 30 40 5 5 10 5 5 10 20 30 40
i - T 100 50 80 100 90 80 60 50 80 100 90 80 60
T - j 100 50 100 90 80 75 70 50 100 90 80 75 70

Result of
optimi-
sation :

1LM ��
&�1� �� 1LM �����������&�1� �� 1LM ����������&�1� ����

T

i j

c
1 c2

c

$VVXPWLRQV��

c=1

c
N

M
= 0.91

1

1

⋅ ∂
∂

c
N

M
= 1.12

2

2

⋅ ∂
∂
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3.6 CALCULATION OF DERIVATIVE, 
∂
∂
1
0

When dimensioning or optimising the number of circuits in a route, it is also necessary to evaluate the efficiency

of the route, ie the partial derivative of the number of circuits with regard to the mean of the offered traffic, 
∂
∂
1
0

. In the

next iteration of the planning programs these derivatives will then be used for various purposes,ie

• optimization of exchange area boundaries;
 
• optimization of routes on lower levels of the network hierarchy;
 
• evaluating changes in the junction network cost when introducing new exchanges;
 
• optimising availabilities of individual routes from exchanges with restricted availability.

For the general case of non-Poisson traffic, characterized by the mean, M, and the variance, V, and restricted
availability, described by a system dependent blocking function, :

L
, the route congestion as a function of these

parameters can be written as

B(M,V,N,W)

where N is the number of circuits. It will be more convenient, however, to use ( M , V/M ) instead of ( M , V ) to
describe the traffic offered; in the formulae in this chapter this ratio will be denoted by Θ. For the calculation of
derivatives, Θ can be assumed to be approximately constant. The use of Θ instead of V facilitates the necessary
calculations, without affecting the accuracy of the results significantly. Thus, the congestion on the route will be denoted

B(M, Θ,N,W)

Two cases have to be considered, routes with overflow possibility, and routes without.

For the case of direct, low-loss routes without overflow possibility, the route congestion has a certain pre-defined
value, in other words,

B(M, Θ,N,W) = constant

Partial derivation of B with regard to M yields

∂
∂

∂
∂

∂
∂

%
0

%
1

1
0

+ ⋅ = 0

or

⋅ = −∂
∂

∂
∂
∂
∂

1
0

%
0
%
1

For the case of high-usage routes, ie routes with overflow possibility, the overflow traffic from the route should
be considered constant rather than the congestion, so that

m = M * B(M, Θ, N, W) = constant

In this case partial derivation with regard to M yields

% 0
%
0

%
1

1
0

+ ⋅ + ⋅





=∂
∂

∂
∂

∂
∂

0

or
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⋅ = −
+∂

∂

∂
∂

∂
∂

1
0

%
0

%
0

%
1

We then have to find suitable expressions for 
∂
∂
%
0

 and 
∂
∂
%
1

 for the cases of

• full availability  (Θ =1 and Θ > 1 )
 
• restricted availability, Poisson traffic (Θ = 1 )
 
• restricted availability, degenerated traffic (Θ > 1 )

3.6.1  Full availability

We now want to find the partial derivatives 
∂
∂
%
0

 and 
∂
∂
%
1

 for the configuration shown below :

As in Chapter 2.5.1, Congestion Theory, Full availability,Alternative Routes, this configuration is replaced by

The parameters N* and A* of this "equivalent group" can be determined from the equation system

M A E A
N

= ⋅* *
* ( )

(3.6.1)

Θ = − +
+ − +

1
1

0
$

1 $ 0

*

* *

The mean of the overflow traffic from the alternative route is then estimated as

P $ ( $
1 1

= ⋅ +
* *

* ( )

The congestion, B, can then be written as

% 0 1
P
0

( $

( $
1 1

1

( , , )
( )

( )

*

*

*

*
Θ = = + (3.6.2)

and therefore,

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

%
0

%
1

1
0

%
$

$
0

= ⋅ +
*

*

*

*

M, V N m, v

M, ΘA* N* N m, v ∞
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Partial derivation of (3.6.1) with regard to M gives

∂
∂

∂
∂

∂
∂

$
0

0
0

1
0

( $

1
$1

* * *

*
** ( )

⋅
+ −

+ ⋅ ⋅ =
Θ 1

1

( )
∂
∂

∂
∂

$
0

0
0

1
0

$

0

* * *

⋅ +
+ −

− = + ⋅
+ −

Θ
Θ Θ1

1
1

2

from which 
∂
∂
$
0

*

 and 
∂
∂
1
0

*

  can be calculated.

From (3.6.2) we obtain

∂
∂
%

$
%

1

$
( $ ( $
1 1 1* *

* *
* *( ) ( )= ⋅ − +





+

∂
∂

∂
∂

∂
∂

%

1 ( $

( $

1 1
%

( $

1
1

1 1 1

* *

*

*

*

*
*

* *

( )

( )

( )

( )
= ⋅

+
− ⋅













+1

∂
∂

∂
∂

%
1 ( $

( $

1 1
1

1 1= ⋅
+

+1

*

*

( )

( )

( )*

*

*

The remaining derivatives 
∂

∂
( $

1
1

* ( )*

*  and 
∂
∂
( $

1 1
1 1+

+
* ( )

( )

*

*  are treated in Chapter 3.9.2, Erlang’s formula for

non-integer number of circuits.

3.6.2   Restricted availability, Poisson traffic

As discussed in chapter 2.5.2, the congestion B(N,M) can be written as

% 1 0 : 3 L
L

L

1

( , ) ( )= ⋅
=
∑

0

where P(i) can be determined from the relations

3 L 0 : 3 L L

3 L

L

L

1

( ) ( ) ( ) ( )

( )

⋅ ⋅ − = + ⋅ +

=
=
∑

1 1 1

1
0

(i=0,1,2,...N-1)

Derivation yields

∂
∂
%
0 0

N : 3 N % %
N

N

1

= ⋅ ⋅ ⋅ − ⋅ −
=

∑1
1

0

( ) ( )

For 
∂
∂
%
1

 no explicit formula is available; a suitable approximation is

∂
∂
%
1

% 1 % 1≈ − − − +( ( ) ( )1 1

2
3.6.3  Restricted availability,non-Poisson traffic
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Explicit formulae are not available for this case. An approximation similar to the one used in chapter 2.5.2 for
overflow traffics and circuits has been found to be adequate for our needs :

∂
∂

∂
∂

∂
∂

∂
∂

1
0

1
0

1
0

1
0







≈ 





+ 





− 





2 3 1

where the subscripts indicate the simpler cases, that is

1 : Full availability , Θ = 1

2 : Full availability , Θ > 1

3 : Restricted availability , Θ = 1
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3.7 CALCULATION OF WILKINSON’S EQUIVALENT GROUP

In some of the chapters dealing with dimensioning and /or optimisation of circuits, use has been made of

Wilkinson’s Equivalent Group parameters, 1 *  and $* . These parameters can be found by solving the following
system :

M A E A
N

= ⋅* *
* ( )

V M M
A

N A M
= ⋅ − +

+ − +
( )

*

* *
1

1

for given values of M and V/M ( M > 0 , V/M > 1 ). This can be done in the following way :

1 *  is expressed as a function of M, V/M and $* , ie

1
$

9 0 0
$ 0*

*
*

/
=

+ −
+ − −

1
1

thus reducing the problem to one independent variable, $* .

We can then use Newton-Raphson’s method to solve the remaining equation,

M A E A
N

= ⋅* *
* ( )

or

I $ 0 $ ( $
1

( ) ( )* * *
*= − ⋅ = 0

in the usual way, that is by finding a suitable starting value for A]*], A[o[, and improving it iteratively by using

$ $
I $
I $. .

.

.

+ = −
′1

( )

( )

until the resulting values become close enough to M and V/M.

A suitable starting value for $*  has been given by Y. Rapp as

$ 9 9 0 9 00 3 1= + ⋅ ⋅ −/ ( / )

The calculation of ′I $( )  remains, and we get

− ′ = + ⋅ + ⋅I $ ( $ $
( $

$
( $
1

1
$1

1 1( ) ( ) (
( ) ( )

)
∂

∂
∂

∂
∂
∂

or

( )− ′ = ⋅ + − + ⋅ + ⋅ ⋅ +
+ −

I $ ( $ 1 $ $ ( $ $
( $
1

9 0 0
9 0 01 1

1( ) ( ) ( )
( ) /

/
1

1

∂
∂

For calculation of 
∂

∂
( $
1
1

( )
see Chapter 3.9.2 ‘Erlang’s formula for non-integer number of circuits‘.

Practical hint : to avoid numerical problems which can occur for some combinations of M and V/M, it is advisable to
ensure convergence of this method by saving the current lower and upper limits for A, checking A[K+1[
against these limits, and, if necessary, use halving of this interval to correct A should it fall outside the
interval.
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3.8 BLOCKING FUNCTIONS

In a restricted availability system the connection paths are so arranged that a call may be unsuccessful even when
there are still idle circuits in the called group. Thus the arrangements known as gradings and link systems, as well as
combinations of these two will generally be classified as restricted availability systems.

Calls may overflow from the primary group even when it has free circuits. The overflows are governed by a loss
function, :

L
, which is defined as the probability that a call arriving, when there are i occupied primary circuits, will be

rejected.

The loss function for a given system depends clearly on the way the connection paths have been arranged, and is
therefore much dependent on the type of switching equipment used. Thus it is necessary to construct these loss functions
for any type of switching equipment to be encountered in the planning of a specific network, and to program the
necessary routines.

Below is an example of such a loss function for Erlang’s Ideal Grading.

Erlang’s Ideal Grading

Using the assumption that the proceding calls are distributed at random among the outgoing circuits, Erlang
arrived at his well-known formula

:

L

.
1

.

L
=

















where N is the total number of outgoing circuits, and K is the number of circuits available from each inlet group.

The calculation of the W-values should be done according to the following recursion formula to avoid numerical
problems:

:
L

= 1

: :
L .
LL L− = ⋅ −

1 for I = N, N-1, N-2, ........,K

Other arrangements

For other arrangements of the connection paths, especially for two or three stage link systems, the formulae for
:

L
 are much more complicated. For some arrangements, calculation schemes have been developed and programmed.

Wallström's "Congestion Studies in Telephone Systems with Overflow Facilities" describes several such functions.
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3.9 ERLANG’S FORMULA

In the description of methods for optimising and dimensioning of the inter-exchange network there are numerous
references to Erlang’s formula, both for integer and non-integer number of circuits, and the derivatives thereof with
regard to circuits and/or offered traffic. This chapter deals with the numerical problems encountered in this context, and
describes ways arriving at numerical values of these entities for given parameters.

3.9.1 Erlang’s formula for integer number of circuits

For an integer number of circuits, N, and offered traffic mean, A, Erlang’s formula is usually written as

( $

$
1
$
L

1

1

L

L

1
( ) !

!

=

=
∑

0

This notation is, however, quite unsuitable for use in computer programs especially for higher values of N.

Separate calculations for 
$
1

1

!
 and the sum of such terms will result in such large values that the result is numerically

useless. It can be shown quite easily that E[N[(A) can be recursively calculated from the following formula :

( $
$ ( $

. $ ( $.

.

.

( )
( )

( )
=

⋅
+ ⋅

−

−

1

1

with

( $0 1( ) =

The partial derivative ( $
1

( )  of with regard to A is found to be

∂
∂

( $

$
( $

1
$

( $1

1 1

( )
( ) ( )= ⋅ − +





1

The partial derivative of ( $
1

( ) with regard to N has no mathematical meaning as long as we consider

( $
1

( ) as defined only for integer values of N. In this case we can approximate the derivative with a difference,

∂
∂

( $
1

( $ ( $1

1 1

( )
( ) ( )≈ −+1

or

∂
∂

( $
1

( $ ( $
1 1 1

( ) ( ) ( )
≈

−+ −1 1

2

or other expressions using higher order differences.

There is, however, a definition of ( $
1

( )  for real N, that is

( $
$ H

W H GW
1

1 $

1 W

$

( ) = ⋅ −

−
∞

∫
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Derivation of this expression with regard to N yields

∂
∂

( $
1

( $ $1

1 1

( )
( ) ( )= − ⋅ +Ψ 1

where

Ψ1
1( )$ H W GW$ W

$

= −
∞

−∫

and Ψ
1

$+1 ( )  can be found recursively from

( )Ψ Ψ
1 1 1

$ ( $ $
.+ = − ⋅ +



1 1

1
( ) ( ) ( ) (K = 1,2,....,N)

Numerical calculation of Ψ1 ( )$  can be carried out according to one of the two following approximations:

Approximation I :

For small values of A ( 0 < A < 5 ) :

Ψ1
1

( ) log( )
!

$ H & $
$

. .
$

.

.

= ⋅ + + −
⋅







−

=

∞

∑

where C = 0.57721566490...   is Euler’s constant.

For large values of A ( 15 < A ) :

Ψ1
1

1 1
( )

( ) ( )!
$

N
$

5
.

.

.

Q

Q
= − − ⋅ − +

=
∑

where 5
Q
$Q Q

< +

!
1

Approximation II, yielding 8 correct decimals :

For A < 1 :

( )( )( )( )( )Ψ1 ( ) log( )$ H D $ D $ D $ D $ D $ D $$= ⋅ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − −−
1 2 3 4 5 6

For A > 1 :

( )( )( )
( )( )( )( )Ψ1

1 2 3 4

1 2 3 4

( )$
$ E $ E $ E $ E

$ F $ F $ F $ F $
=

+ ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅

where

a1 = 0.00107857 b1 =  8.5733287401 c1 =  9.5733223454
a2 = 0.00976004 b2 = 18.059016973 c2 = 25.6329561486
a3 = 0.05519968 b3 =  8.6347608925 c3 = 21.0996530827
a4 = 0.24991055 b4 =  0.2677737343 c4 =  3.9584969228
a5 = 0.99999193
a6 = 0.57721566
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3.9.2 Erlang’s formula for non-integer number of circuits

The definition of ( $
1 [+ ( ) ,where N is a non-negative integer and 0 < x < 1, is given by

( $
$ H

W H GW
1 [

1 [ $

1 [ W

$

+

+ −

+ −
∞= ⋅

⋅∫
( )

A recursion formula is readily found, yielding

( $
$ ( $

. [ $ ( $. [

. [

. [

+
+ −

+ −

=
⋅

+ + ⋅
( )

( )

( )
1

1

with

( $
$ H

W H GW
[

[ $

[ W

$

( ) = ⋅

⋅

−

−
∞

∫

For A < 1 , the integral can be re-written as

W H GW [
$

. [ .
[ W

$

. [ .

.

−
∞ + +

=

∞

∫ ∑= + − − ⋅
⋅ + +

Γ( )
( )

! ( )
1

1

1

1

0

where

Γ( )[
.
[
.

[

.

+ =
+





+=

∞

∏1
1

1

11

For A > 1 , the convergence of the sum may not be all that good, and the following algorithm, called continued
fractions expansion, should be used to find ( $

[
( )  :

Step 1 : Set C = 1
Set D = 1
Set R = 1
Set I = 0

Step 2 : Set B = I/2 - x    for even I
= (I+1)/2    for odd I

Set D = A/(A+B*D)

Set R = R*(D-1)

Set C = C + R

Step 3 : If & 5⋅ < ε  then ( $
&[

( ) = 1

& 5⋅ ≥ ε  then set I = I+1 ,and continue from Step 2
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The partial derivative of ( $
[+ ( )  with regard to A is, as before,

∂
∂

( $

$
( $

1 [
$

( $1 [

1 [ 1 [

+
+ += ⋅ + − +





( )
( ) ( )1

The partial derivative of ( $
[+ ( )  with regard to (N+x) is

∂
∂
( $

1 [
( $ $1 [

1 [ 1 [

+
+ + ++

= − ⋅
( )

( )
( ) ( )Ψ 1 )

where Ψ
1 [

$+ +1 ( )  can be recursively calculated from

( )Ψ Ψ
. [ . [ . [

$ ( $ $
. [+ + + += − ⋅ +

+




1 1

1
( ) ( ) ( ) K = 1,2,........,N

and, finally, Ψ
[

$+1 ( ) can be obtained approximately from

Ψ
∆

∆ ∆
[

[ [

[

$
( $ ( $

( $+
− +≈

−
⋅ ⋅1 2

( )
( ) ( )

( )

with ∆ a small value ( 0 < ∆ < x ).


