Junction Network

Solution of Case Study 1

Mr. T. Fried, ITU

UNION INTERNATIONALE DES TELECOMMUNICATIONS INTERNATIONAL TELECOMMUNICATION UNION UNION INTERNACIONAL DE TELECOMUNICACIONES

Solution of Case Study 1 : Route Optimisation

Case 1 :

The improvement factor $F_N(A) = C_D / C_T = 1/2 = 0.5$

From the diagram we find for $F_N(A) = 0.5$ and A = 20 that the optimal number of circuits N = 21

The route congestion $B_R = 0.13$, and the mean of the overflow traffic

$$m = B_{R} \times A = 0.13 \times 20 = 2.6$$

The cost for this arrangement would then be

$$Cost = N \times C_{D} + m \times C_{T} = 21 \times 1 + 2.6 \times 2 = 21 + 5.2 = 26.2$$

However, dimensioning of the route for B = 0.1 yields $N_D = 23$ without any traffic overflowing to the tandem, and the corresponding cost would then be

$$Cost = N_D \times C_D = 23 \times 1 = 23$$

which is a more economic solution.

Case 2 :

A similar argument leads to $N_{\rm D}=~26$, with a corresponding cost of

 $Cost = N_D \times C_D = 26 \times 1 = 26$

which is still slightly better than the overflow arrangement which would cost 26.2 as in the previous case.

Case 3 :

Dimensioning the route for B = 0.01 gives $N_D = 30$, with a corresponding cost of

 $Cost = N_{D} \times C_{D} = 30 \times 1 = 30$

For this case, alternative routing is the better solution.

Case 4 :

The same reasoning as for Case 3.

SOLUTION :

Α	CD	CT	В		Ν	B _R	m	V	Cost
20.	1.	2.	0.10	→	23	0.08	-	-	23
20.	1.	2.	0.05	→	26	0.04	-	-	26
20.	1.	2.	0.01	→	21	0.13	2.62	7.1	26.2
20.	1.	1.2	0.01	>	13	0.41	8.20	15.5	22.8