Basic Concepts of Teletraffic Theory

(Exercises included)

Mr. H. Leijon, ITU

Basic Concepts of Teletraffic Theory

Traffic in Erlang = Average no. of simultaneous occupations in a trunk group during a defined period of time.

$$1 \quad A = y \cdot s$$

A = Traffic in Erlang.y = Call intensity (calls/time unit)s = Mean holding time

$$A = \frac{1}{T} \cdot \sum_{v=1}^{N} t_v$$

T = Length of the time period t_v = Length of occupation no. v N = Total no. of occupations

$$\mathbf{A} = \frac{1}{T} \cdot \sum_{p=0}^{n} p \cdot t_{p}$$

p = No. of simultaneous occupations in the group.

 t_p = Total time with exactly p occupations.

n = Max. no of occupations = no. of trunks.

Example

$$N = 5$$

$$1 \quad \boxed{\mathbf{A} = \mathbf{y} \cdot \mathbf{s}}$$

$$y = \frac{N}{T} = \frac{5}{10} = \frac{0.5 \text{ calls/time unit}}{10}$$

$$s = \frac{1}{N} \cdot \sum t_v = \frac{1}{5} \cdot (5 + 4 + 3 + 4 + 2) =$$

$$= \frac{1}{5} \cdot 18 = \underline{3.6 \, \text{time units}}$$

$$A = y \cdot s = 0.5 \cdot 3.6 = 1.8 \text{ Erlang}$$

$$2 \quad A = \frac{1}{T} \cdot \sum t_v$$

$$A = \frac{1}{10} \cdot 18 = 1.8 \text{ Erlang}$$

$$3 \quad A = \frac{1}{T} \cdot \sum p \cdot t_p$$

$$A = \frac{1}{T} \cdot \sum t_{v}$$

$$A = \frac{1}{10} \cdot 18 = \underline{1.8 \text{ Erlang}}$$

$$A = \frac{1}{T} \cdot \sum p \cdot t_{p}$$

$$A = \frac{1}{10} \cdot (0 \cdot 1 + 1 \cdot 2 + 2 \cdot 5 + 3 \cdot 2) = \underline{1.8 \text{ Erlang}}$$

$$= \frac{1}{10} \cdot 18 = \underline{1.8 \, \text{Erlang}}$$

 A_O = Offered Traffic A_C = Carried Traffic A_R = Rejected Traffic

- ① $y_O = y_C + y_R$ is true!
- ② $A_O = A_C + A_R$ is convenient for traffic calculations!
- $\cent{3}$ $S_O = S_C = S_R = S$ is <u>not true</u>, but the consequence of $\cent{1} + \cent{2}!$

Therefore, be careful when traffic congestion is high!

No. of successful calls at 1.st trial

No. of		Original Calls		TOT. No.	of Attempts
attempts	Totally		No Conver.	Totally	Failures
i	B	C	A	$T = i \cdot B$	N = T - C
1	140	57	83	140	83
2	63	37	26	126	89
3	41	22	19	123	101
4	22	7	15	88	81
5	6	3	3	30	27
6	15	3	12	90	87
7	2	-	2	14	14
8	3	1	2	24	23
9	3	1	2	27	26
11	1	1	1	11	11
19	1	1	-	19	18
Totally	↑ 297	↑ 132	165	♦ 692	560
	Total no.	Total no.		Total no.	
	of	of		of offered	:
	desired	successful		calls	

calls

calls

Exercise: complete the diagrams for n = 4

	11 12				
5	10		25		35
4	9	16	22	31	
2	8	15 19	24	30	34
3	7 14	18	21	29	33
1 6	13	17	20 23	28	32

Exercise (cont.)

P _x		ffered raffic	n = 6			n = 4			n = 3					
(x = 0,		$n \ge 8$)		arried		ejected	Carried Rejected		Carried		Rejected			
				raffic		raffic		raffic	T	raffic		raffic	Traffic	
C or R)	t _{Po}	$P_{o} \cdot t_{P_{o}}$	$t_{P_{C}}$	$P_{C} \cdot t_{P_{C}}$	t_{P_R}	$P_R \cdot t_{P_R}$	t_{P_C}	$P_C \cdot t_{P_C}$	t_{P_R}	$P_R \cdot t_{P_R}$	$t_{P_{C}}$	$P_{C} \cdot t_{P_{C}}$	t_{P_R}	$P_R \cdot t_{P_R}$
0					27	0					3	0	6	0
1	3	3	4	4	6	6					4	4	16	16
2	5	10	6	12	7	14					12	24	8	16
3	8	24	10	30							21	63	4	12
4	10	40	10	40									5	20
5	6	30	6	30									1	5
6	4	24	4	24										
7	3	21												
8	1	8												
\sum	40	160	40	140	40	20					40	91	40	69
$A_x =$	160/	40 = 4.0	140/	40 = 3.5	20/4	40 = 0.5					91/	 40 =2.3	69/	4 = 1.7
$=\frac{\sum p_{x} \cdot t_{p_{x}}}{\sum t_{p_{x}}}$		A_{O}		A_{C}		A_R		A_{C}		A_R		$A_{\rm C}$		A_R

Exercise (cont.)

			The Erlang Table:			
n	Rejected Calls, Nos.	No. of rejected calls	В	Е	A_R/A_O	E(=B)
8	-	0	0	1/40 = 0.03	0	0.03
6	11, 12, 27	3	3/32 = 0.09	4/40 = 0.10	05/40 = 0.13	0.12
4						
3	5, 9, 10, 11, 12, 16, 22, 25, 26, 27, 31, 35	12	12/32 = 0.38	21/40 = 0.53	1.7/4.0 = 0.43	0.45

$$m_1 = m = \sum_{p=0}^{n} p \cdot f(p)$$

$$m_2 = v = \sum_{p=0}^{n} (p - m)^2 \cdot f(p)$$

for

POISSON TRAFFIC: m = v = A

(= fresh traffic from many sources)

		n ≥ 8						= 6				
		$m = A_0$				$m=A_0$			$m=A_R$	=0.5		
p	p - m	$ \mathbf{p} - \mathbf{m} ^2$	t _p	$t_p \cdot p-m ^2$	p - m	$ \mathbf{p} - \mathbf{m} ^2$	t _p	$t_p \cdot p-m ^2$	p - m	$ \mathbf{p} - \mathbf{m} ^2$	t _p	$t_p \cdot p-m ^2$
0									0.5	0.25	27	6.75
1	3	9	3	27	2.5	6.25	4	25	0.5	0.25	6	1.5
2	2	4	5	20	1.5	2.25	6	13.5	1.5	2.25	7	15.75
3	1	1	8	8	0.5	0.25	10	2.5				
4	0	0	10	0	0.5	0.25	10	2.5				
5	1	1	6	6	1.5	2.25	6	13.5				
6	2	4	4	16	2.5	6.25	4	25				
7	3	9	3	27								
8	4	16	1	16								
Σ				120				82.0				24
				<u>.</u>				=				
v	v=120/40=3.0			v=82/40=2.1			v=24/40=0.6					
v/m	•	v/m = 3.0/4	4.0 = 0.7	<u>75</u>		v/m = 2.1	$\sqrt{3.5} = 0.$	<u>6</u>	v/m = 0.6/0.5 = 1.2			

ERL. Table <u>NOT VALID</u> for the last group! Explanation: the offered traffic (1.7 erl.) <u>NOT</u> FRESH!

Exercise:

Assume T = 10 min

In all 32 new calls arrived.

$$y_O = \frac{32}{10} = \frac{3.2 \text{ calls / min.}}{10}$$

$$A_O = 4.0$$
erl

Then we calculate S_0 :

$$S_O = \frac{A_O}{y_O} = \frac{4.0}{3.2} = 1.25 \text{ min}$$

What values would have been recorded and calculated for the following (fictitious) arrangements?

Each call will occupy a circuit in group I. Immediately after the seizure, group II will be called. If a free circuit is found, the connection will be set up and so both the circuits are occupied the whole holding time. Should however group II reject the call, the circuit in group I would be released immediately.

		Group I	Group II
ALUES	A_C		
RECORDED VALUES	\mathcal{Y}_{C}		
RECO]	\mathcal{Y}_R		
UES	S_C		
CALC. VALUES	B		
CAI	A_O		