IPCablecom Security

Eric Rosenfeld, CableLabs Sasha Medvinsky, Motorola Simon Kang, Motorola

ITU IPCablecom Mediacom Workshop

March 13, 2002

Geneva, Switzerland

Agenda

- IPCablecom Overview
- How it Works
- Services and Capabilities
- Security Goals of IPCablecom
- IPCablecom Security Architecture
- Security Mechanisms & Component
- Summary

What is IPCablecom?

PCablecom is a set of standards that define protocols and functional requirements for the purpose of providing Quality-of-Service (QoS) enhanced secure communications using the Internet Protocol (IP) over the cable television Hybrid Fiber Coax (HFC) J.112 network

IPCablecom Framework

Voice/Video Telephony Conferencing Video/Data Applications

IPCablecom

IPCablecom Protocols

Internet Protocol

J.112

Media Access Control

Broadband Modem Physical Layer

IPCablecom How it Works

IPCablecom Architecture

IPCablecom: What Equipment?

• Home:

 Embedded Multimedia Terminal Adapter (MTA) -cable modem with RJ-11 jacks

Headend:

- Cable Modem Termination System (CMTS): J.112 AN
- IPCablecom Servers: Call Management Server (CMS),
 Record Keeping Server (RKS), Device Provisioning
 Server, Key Distribution Center (KDC)
- Gateways: To link IP calls to backbone or PSTN

And now the security...

Why do we need security?

- Threats to the IPCablecom Network
 - Threats exist because:
 - Shared network
 - Access in the users home
 - Valued functionality
 - Types of threats:
 - Network attacks
 - Theft of service
 - Eavesdropping
 - Denial of Service

Security Services provided by J.112

- Baseline Privacy Interface + (BPI+)
 - Privacy between the Cable Modem and CMTS
 - DES encryption
 - Protection from theft of Service
 - Authentication of Cable Modems via X.509 digital certificates
 - Enable secure code download to the Cable Modem
 - Authentication of Cable Modem software image via X.509 Code Verification Certificate

BPI+ Applicability to IPCablecom

- Embedded MTAs rely on Cable Modem for secure code download
- Privacy of J.112 QoS messages prevents some denial of service attacks
- Theft of Service protection doesn't apply:
 - CPEs behind a CM are not authenticated
 - IP Telephony servers also not authenticated
- Additional security at application layer is needed to protect IPCablecom services

IPCablecom Security Objectives

- End-to-end secure communication
 - Must be at least as secure as PSTN networks
- Protection for the user
 - Ensure privacy of media sessions
- Protection for the operator
 - Combat theft-of-service
 - Protect infrastructure
- Comprehensive plan
 - Who/What needs to protect and why?
 - When/Why do we protect this information?
 - How will we incorporate security?

IPCablecom Security Objectives

- Use open standards whenever possible
- Conduct a risk assessment
- Provide a reasonable level of security
- Specify Interface security
 - No device or operator network security
 - Assume operators must have reasonable network management security policy
- Require J.112 networks with BPI+ enabled

IPCablecom Security Architecture

- Kerberos
 - Centralized network authentication via a Key Distribution Center (KDC)
 - Public Key Initialization (PKINIT)
 - Digital Certificates are used to authenticate the MTA to the KDC and KDC to MTA
 - Key Management
 - Allows MTAs and CMSs to agree on cryptographic keys for secure communications

- IPsec
 - IP-layer security protocol (IETF standard)
 - Encapsulating Security Payload (ESP)
 - Transport mode for end-to-end security
 - Privacy/authentication/integrity of payload
 - 3DES, HMAC SHA1 or HMAC MD5
 - Initial Authentication & Key Management provided by:
 - Kerberos+PKINIT for MTAs
 - Internet Key Exchange (IKE) with pre-shared keys for infrastructure components (CMS, CMTS, RKS, Gateways)

- SNMPv3 security
 - SNMPv3 is used to monitor & manage MTAs
 - Initial Authentication & Key Management
 - Kerberos+PKINIT
 - Message Authentication & Integrity
 - HMAC MD5 algorithm
 - Privacy (optional)
 - DES algorithm

- Call Signaling Security
 - NCS, TCAP/IP, ISTP, and TGCP Protocols
 - Protocol security provided by IPsec
 - Mix of authentication & key management technologies:
 - IKE with pre-shared keys for servers
 - Default for IPsec, comes bundled with offthe-shelf implementations
 - Kerberos+PKINIT for MTAs
 - Needed to address scalability issues on the CMS-MTA interface

- RTP/RTCP (Media Stream)
 - Initial Authentication
 - Each end-point (MTA or MG) authenticated by the Call Management Server
 - Key Management
 - Via IPsec-secured Network-based Call Signaling (NCS)
 - Privacy
 - Advanced Encryption Standard (AES)
 - Authentication & Integrity (optional)
 - MMH (Multilinear Modular Hash)

Key Distribution Center (KDC)

- The only standalone security component in IPCablecom
- Acts as a trusted third-party authentication service
- Implements:
 - Kerberos version 5
 - PKINIT w/X.509 digital certificates

Multimedia Terminal Adapter

- X.509 Digital Certificates for authentication
 - IP Telephony Root CA Certificate
 - MTA Manufacturer CA Certificate
 - MTA Device Certificate
 - MTA Private Key
- FIPS 140-1 Cryptographic Module
 - Level 1 required (minimal physical security)
 - Additional physical security recommended for higher value services
- Random Number Generator
- AES, MMH, IPsec, Kerberos+PKINIT
- Embedded J.112 CM with BPI+

Device Provisioning Server

- Authentication & Key Management
 - Kerberos+PKINIT authentication
- Integrity & Privacy
 - SNMPv3 security
 - Authentication
 - HMAC MD5
 - Privacy (optional)
 - DES

PSTN Gateways

- Media Gateway Controller (MGC)
 - IPsec, IKE w/pre-shared keys for call signaling
- Media Gateway (MG)
 - AES, MMH for media stream
 - IPsec, IKE w/pre-shared keys for call signaling
- Signaling Gateway (SG)
 - IPsec, IKE w/pre-shared keys for call signaling

Other Components

- Cable Modem Termination System (CMTS)
 - J.112 Access Node (AN) w/BPI+
 - IPsec w/pre-shared keys and RADIUS authentication for QoS interface with CMS
- Call Management Server (CMS)
 - IPsec w/pre-shared keys
 - IPsec w/Kerberized Key Management for MTAs
- Record Keeping Server (RKS)
 - IPsec w/pre-shared keys for billing events

On-Net to Off-Net Media Path

Summary

- IPCablecom provides QoS-enhanced secure communications
- Security is a major component and is integrated into the architecture
- A range of security protocols and services are used
- IPCablecom security architecture is fully defined in the J.170 recommendation

For More Information...

Eric Rosenfeld
CableLabs
PacketCable Security Architect
e.rosenfeld@cablelabs.com

Sasha Medvinsky Motorola Senior Staff Engineer smedvinsky@motorola.com

Simon Kang Motorola International Regulatory and Standards Specialist simonkang@motorola.com