International Telecommunication Union

QoS activities in ITU-T Recent Progress

Jean-Yves Monfort ITU-T SG 12 Chairman France Telecom R&D

Workshop on Satellites in IP and Multimedia Geneva, 9-11 December 2002

QoS and NP activities at ITU-T

- SG 12 : End to end quality, as perceived by the users. It is fully addressed to Quality, and WP3/12 is dedicated to QoS for IP.
- SG 2 : Mainly on operational aspects of QoS and SLA. New QoS handbook and activities on the impacts of routing on QoS.
 - QSDG : 1 forum meeting each year and QSDG Magazine. (Chaired by L. Cardoso)
- SG 13 : WP4/13 is dedicated to Network Performance
- **o** SG 4 : Management of QoS and SLA.
- SG 9 : QoS for cable networks and video assessment.
- SG 11 : QoS signalling.
- SG 15 : System-specific requirements for network and transport equipment.
- SG 16 : QoS Mecanisms for H.323-based multimedia systems. Quality of speech and video coders.
- o SG 17 : Frame Relay QoS.

QoS and NP. Definitions

• E.800 definitions:

- QoS : "The collective effect of service performance which determines the degree of satisfaction of a user of a service"
- NP : "The ability of a network or network portion to provide the functions related to communications between users."

4 viewpoints on QoS Rec. G.1000

> (Communications Quality of Service : a framework and definitions)

A selection of recently approved Recommendations

- G.1000 «Communications Quality of Service : A framework and definitions »
- o G.1010 «End-User multimedia QoS categories »
- G.107 « Revised « The E-Model, a computationnal model for use in transmission planning »
- P.561 Revised « In-service, Non-intrusive Measurement device - Voice services measurements »
- o E.860 "Framework for service level agreement"
- Y. 1541 "IP Performance objective and allocations"

Recommendations under AAP

• Revised Y.1540 « IP Packet transfer and availability performance parameters"

A selection of works in progress in the ITU-T SGs

- On terminal equipments : P.VOIP (IP Terminals), P.GTW(IP Gateways), P. 380 (Headsets),...
- <u>On transmission Planning and transmission parameters</u> : G.VoIP-Islands, Revised G.114 ...
- On Quality parameters, modelling and classes : G.IPP (Transmission performance pameters for IP ...), P.562 revised, G.MMPerf (Multimedia performance requirements), H.mmclass, several Rec. for perceptual Video Quality.
- <u>Handbooks</u> : QoS, Subjective Testing Procedure, Telephonometry
- On Performance: Future revision -already began- of Y.1541 (IP Performance objectives and allocations), I.350 (General aspects of QoS and NP), Draft Rec. TCP Performance on IP-Based networks, Y.1530, ...
- o <u>On Management</u> : M. QoS, H.QoS.m
- <u>On QoS Signalling</u> Draft TRQ "Signalling Requirements for IP-QoS", E-QSC (Signalling of proposed QoS services classes...)
- o <u>On QoS Architecture</u> : H.QoSarch, Y.qosar

E.860 "Framework for Service Level Agreement"

In this Recommendation, SLA is defined as a tool to formalise the inter-relationships between entities (an entity being a generic unit involved in using/delivering a service)

o E.860

- recalls QoS terms and definitions
- define the one stop responsibility concept
- describes a generic structure of SLA
- illustrates how to apply in a multiprovider environment

QoS Classes and Categories

- SG12 considers that the concept of QoS classes should be preferred to individual parameters, in general and for signalling end-to-end QoS.
- It is important that the parameters that make up a given QoS class are independent of one another.
- Progress in QoS classes signalling is in progress in the relevant SG (mainly SG 11)
- In the following slides, a special focus will be done on Rec. G.1010 and Y.1541.

Recommendation G.1010

End-User Multimedia QoS Requirements

- Performance expressed by parameters
 - Focused on user perceivable effects
 - Independent of the networks internal design
- o Parameters
 - Delay; Delay variation; Packet loss Ratio
- Model for user-centric performance requirements Mapping can be formalised into model for QoS categories

Benefit of end-user QoS category model

- Model is based on end to end user perception of impairments, therefore not dependent on any specific technology for its validity
- Provides basis for realistic network QoS classes (eg ITU-T Rec. Y.1541)
- Rec. G.1010 provides an indication of the upper and lower boundaries for applications to be perceived as essentially acceptable to the user (A new Recommendation G.Mmperf is under developpment)
- Shows how the underlying impairments of information loss and delay can be grouped appropriately, without implying that one class is "better" than another

Recommendation Y.1541 QoS Classes: A Basis for IP Network QoS Control

NI-to-NI Reference Path for network QoS Objectives

NOTE : Customer installation equipment is shown for illustrative purposes, only

Recommendation Y.1541 QoS Classes: A Basis for IP Network QoS Control

Network Performance Parameter	Nature of Network Performance Objective	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5 (Un- specified)
IPTD	Upper bound on the mean IPTD	100 ms	400 ms	100 ms	400 ms	1 s	U
IPDV	Upper bound on the 1-10 ⁻³ quantile of IPTD minus the minimum IPTD	50 ms	50 ms	U	U	U	U
IPLR	Upper bound on the packet loss probability	1*10 ⁻³	1*10 ⁻³	1*10⁻³	1*10⁻³	1*10 ⁻³	U
IPER	Upper bound	1*10-4					U

U means « unspecified » or « unbounded »

Note for IPVD : The value of 50ms is dependent on the capacity of inter-networks links. Smaller variations are possible where all the capacities are higher than primary rate, or when competing packet information fields are smaller than 1500 bytes

<u>A new parameter as been recently included in Y.1540</u> (the limits are still under study: IPSLBR : IP Paket Severely Loss Block Ratio

Two types of tools to measure voice quality

Non-intrusive (I.N.M.D.) : on real communication without reference signal, better for the supervision of network quality of service,

End-to-end intrusive : on test calls with reference signal, better fitted for the measurement of quality as perceived by end users.

0

Non-intrusive techniques

- The non-intrusive measurement techniques
 - can be implemented as part of network equipments (switches) or in stand-alone devices
 - do not require tests signal since they are performed on real communications.
- The tools used to perform those measurement are generally called I.NM.D.s (for In service Non-intrusive Measurement Devices).
- Four classes depending on the type of networks and Round trip delay (Classe D is for Packet-switched networks and a maximum value of 1000 ms for Round Trip Delay)
- The parameters that one can measure with non-intrusive systems are of two kinds :
 - related to protocol or signalling
 - calling and called number, call duration, packet loss, one point and two point jitter, RTP delay, etc.
 - derived from the analysis of the voice signal
 - echo, noise and speech levels, etc...
 - IP packet loss ratio, etc...for Class D
 - clipping, voice quality, etc.

Links with perceived quality (P.562) and workplan

- The analysis of measurement results can be done for individual parameters or by combining several parameters : use of a customer opinion models :
 - E model (G.107)
 - CCI (Call Carity Index)
- A competition has started:
 - Call for model submission for the assessment of voice transmission quality from protocol analysis information in IP networks- In progress

E-Model (G.107)

- applicable to network planning of traditional, narrowband and handset terminated networks
- estimates voice transmission quality mouth-to-ear as perceived at receive side
- o renders a transmission factor *R*

The Rating factor **R** is composed of

 $R = R_0 - Is - Id - Ie, eff + A$

- R₀ represents in principle the basic signal-to-noise ratio, including noise sources such as circuit noise and room noise.
- Is is a combination of all impairments which occur more or less simultaneously with the voice signal.
- *Id* represents the impairments caused by delay and the equipment impairment factor
- *le, eff* represents impairments caused by low bit rate codecs; it also include impairments due to packet loss of random distribution;
- o *A*, the advantage factor, allows for compensation of impairment factors when there are other advantages of access to the user.

Provisional guide for the relation between R-value and user satisfaction (Annex B of G.107)

R-value (lower limit)	MOS (lower limit)	GoB (%) (lower limit)	PoW (%) (upper limit)	User satisfaction
90	4.34	97	~0	Very satisfied
80	4.03	89	~0	Satisfied
70	3.60	73	6	Some users dissatisfied
60	3.10	50	17	Many users dissatisfied
50	2.58	27	38	Nearly all users dissatisfied

A way to mesure End-to-endspeech quality P.862 : Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs

 Overview of the basic philosophy used in PESQ : A computer model of the subject, consisting of a perceptual and a cognitive model, is used to compare the output of

> the device under test with the input, using alignment information as derived from the time signals in the time alignment module

Market needs, limitations and Progress

Market needs

- Instrumental methods that cover end-to-end speech quality including the terminal
- Single-ended speech quality monitoring tools for packetoriented networks
- Robust speech quality measures for speech quality enhancement effects in the network
- Instrumental models that consider conversational speech quality aspects
- Scalable measurement solutions (for e.g. different classes / profiles of application, price, accuracy, ...)
- Speech quality assessment using knowledge of network parameters and of the psychoacoustics
- Speech quality analysis systems

Coverage of models

- ... (cf. ITU-T Rec. P.862, Table 2 and 3)
- PESQ has demonstarted acceptable accuracy for packet loss and packet loss concealment with CELP Codecs, but nor validated for PCM type codecs
- PESQ has demonstarted acceptable accuracy for waveform codecs (G.711, G.726,...), CELP and hybrid codecs <u>></u> 4 kbit/s (G.729, G.723.1,..GSM codecs, TETRA), but has not been currently validated for CELP and hybrid Codecs < 4kbit/ or MPEG 4 HVXC...
- Work Plan to expand the coverage of the model :
- New draft Recommendation
 P.SEAM (single ended assessment models)
- New draft Recommendation P.AAM (acoustic assessment models)

Future of QoS/NP in ITU-T

- We have the basis for QoS Classes. We have to complete and to converge on complete figures (for the different services and layers)
- What have to define a set of network protocols capable of establishing IP network QoS classes. In the future, other mechanisms and protocols may enable dynamic QoS over multiple networks.
- We have to continue the cooperation with other standardization bodies to communicate our progress and to improve the compatibilities of the standards
- We have to consolidate our level of quality and of production of new recommendations for the benefit of the Industry, the Telco and Service providers and the regulatory bodies

Thanks

- To the organizators, speakers and participants
- To the Specialists whose works are summarized in this Presentation, and especially M. Yam, M. Seitz, M. Kim, M. Dvorak, M. Coverdale, M. Barriac, M. Klaus, M. Möller and Mrs Jekosch
- Thanks to all the contributors

- For complementary informations, don't hesitate to contact me :
 - Jeanyves.monfort@francetelecom.com