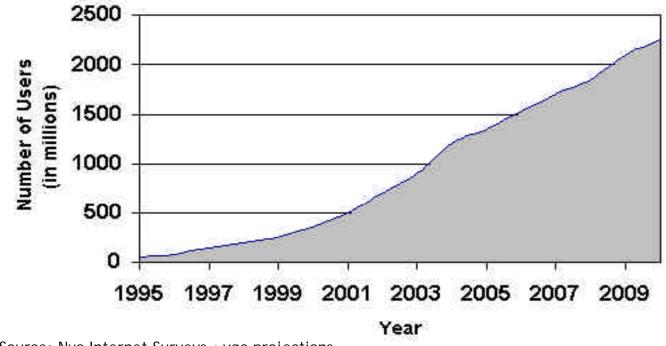


Quality of Service Architectures for Satellite Based Internet

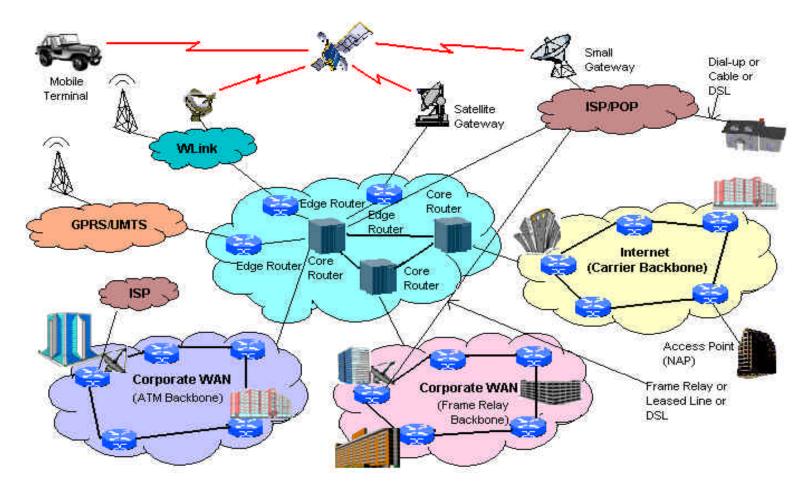
Sastri Kota Technical Consultant Loral Skynet Palo Alto, CA 94303, USA

> Workshop on Satellites in IP and Multimedia Geneva, 9-11 December 2002


Outline

- Quality of Service Framework
- QoS Objectives
- Proposed Satellite IP QoS Architectures
- Return Channel Multiple Access
- o Conclusions

Internet Growth


- o 75% of Traffic Web Based
- 3.6 million websites with 300-700 million web pages
- Traffic consists of 80 % data and 20 % voice with traffic growth of 100-1000% per year

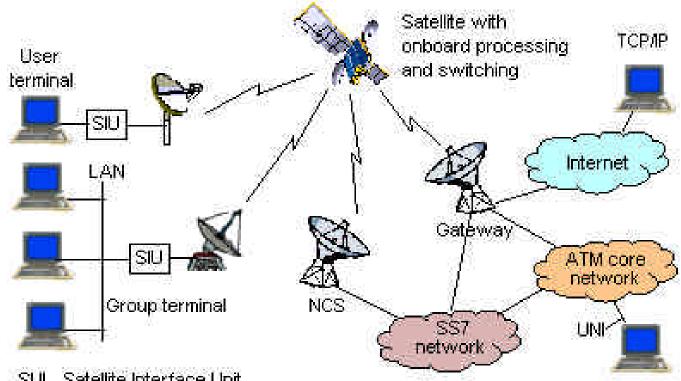
Source: Nua Internet Surveys + vgc projections

Global Communication -A Scenario

What is the role of satellites in providing broadband Internet access? And how to achieve?

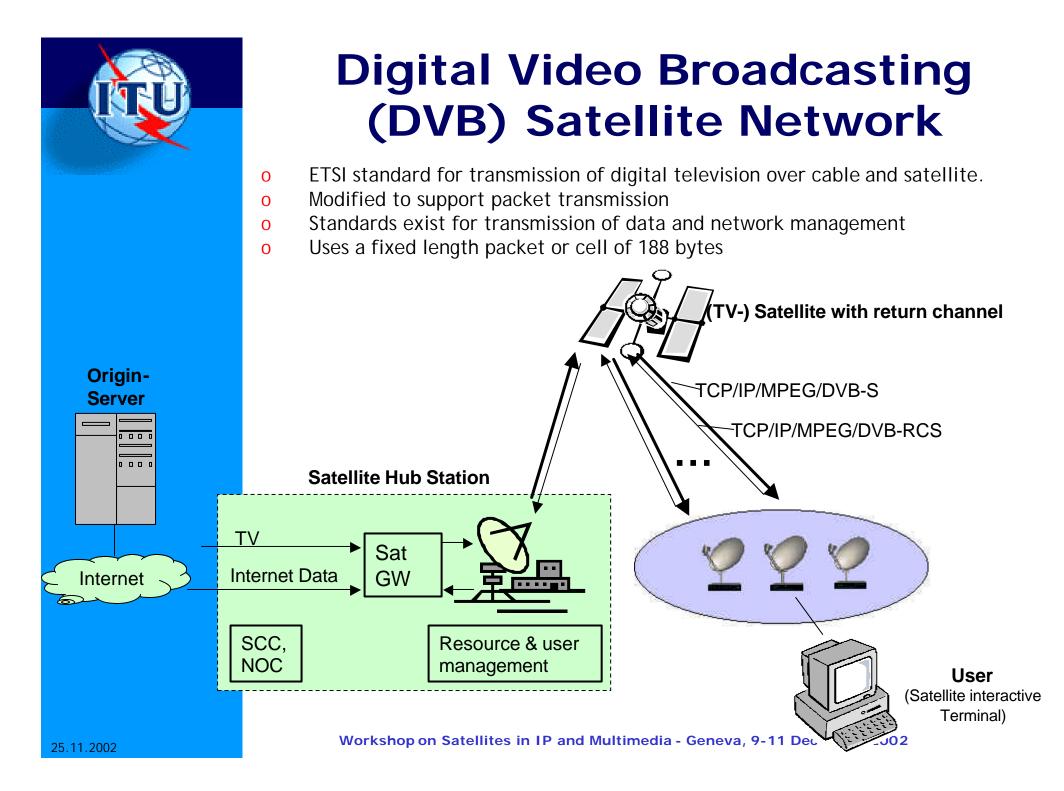
4

Workshop on Satellites in IP and Multimedia - Geneva, 9-11 December 2002



Satellite Internet Access

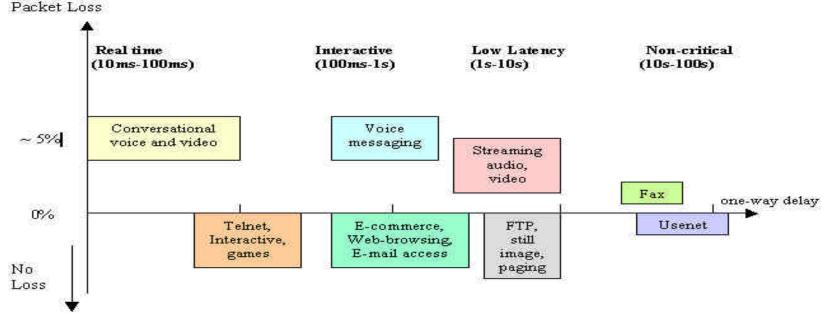
- Connectivity Network: User-to-user connectivity via satellite onboard routing; avoids ground infrastructure complexity
- Access Network: Broadband interactive connectivity to the Internet
 - Forward link; network gateway to the user
 - Return link: user to network gateway
- Satellite Architectural Options
 - GSO vs.NGSO
 - Onboard processing
 - Onboard processing with ground based cell. ATM or fast packet switching
 - Onboard processing and onboard ATM or fast packet switching
 - Spot beam vs. wide area coverage beam



Broadband Satellite Network

SUI - Satellite Interface Unit NCS - Network Control Station UNI - User Network Interface

- Protocol adaptation
- Fast packet switching or ATM-like switching
- Resource allocation, routing and management
- Connectivity to external networks



What is Quality of Service (QoS)?

- Ability of a network element to have some level of assurance that its traffic and service requirements can be satisfied.
- Requires cooperation of all network layers and every network element
- o ISO 8402 QoS definition
 - "the totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs."
- o ITU-T Recommendation E.800 QoS definition
 - "the collective effect of service performance which determine the degree of satisfaction of a user of the service"
- ITU-T Recommendations on QoS
 - ITU-T I.350 and ITU-T Y.1540 network performance and network interface-to-network interface QoS.
 - ITU-T Y.1541 6 classes of applications and application QoS objectives

QoS Requirements Example-ITU-T G.1010

- Throughput: Effective data rate
- Delay: Time taken to transport data from source to destination
- Delay Variation: Due to processing and queuing
- Packet loss: Due to congestion, error conditions, and link outages
- Reliability: Percentage of network availability

ITU-T Y.1541 Provisional IP QoS Class Definitions and Network Performance Objectives

Network Perfor- mance Para- meter	Nature of Network Performance Objective	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5 (Unspec ified)
IPTD	Upper bound on the mean IPTD	100 ms	400 ms	100 ms	400 ms	1 s	U
IPDV	Upper bound on 1-10 ⁻³ quantile of IPTD minus the minimum IPTD	50 ms	50 ms	U	U	U	U
IPLR	Upper bound on the packet loss probability	1 x 10 ⁻³	1 x 10 ⁻³	1 x 10 ⁻³	1 x 10 ⁻³	1 x ₃ 10 ⁻	U
IPER	Upper bound	1 x 10 ⁻⁴	1 x 10 ⁻⁴	1 x 10 ⁻⁴	1 x 10 ⁻⁴	1 x ₄ 10⁻	U

Satellite IP QoS – Fundamental Issues

- IP QoS architectures and objectives are influenced by proper selection of the following
 - Services and applications
 - Transport layer protocols
 - Security algorithms
 - Flow and congestion control
 - Buffering and queue management drop policies
 - Multicasting protocols
 - Routing and addressing schemes
 - Media Access Control protocols
 - Bandwidth allocation and bandwidth-on-demand algorithms
 - Interfaces, protocols, air interfaces
 - Interoperability networks and policies
 - Network control and management

Network QoS Components

- Packet Processing
 - Classification, Queuing and Scheduling
 - Shaping, Policing. Marking
- Routing and Traffic Engineering
 - QoS Based Routing
 - Explicit Path Control (IP Tunnels, MPLS)
- o Signaling
 - Network signaling
 - End System Signaling
- Policies, Authentication, Billing

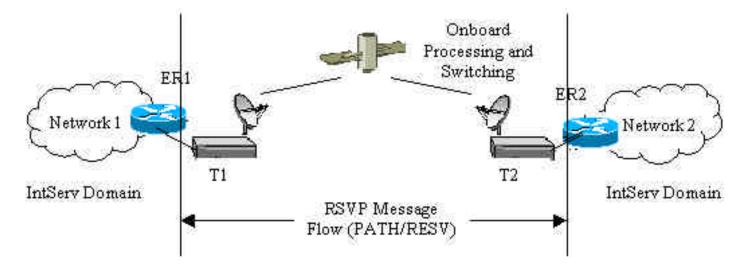
QoS-Mechanisms for Terrestrial Networks

o Integrated Services: IntServ

- End-to-End QoS guarantees for individual flows
- End-to-End signaling of traffic parameters service type and QoS (RSVP)
- Issues
 - Scalability Concern–Number of flows and per flow packet
 processing
 - Limited deployment of IntServ-aware applications
- **o** Differentiated Services: DiffServ
 - Scalable solution on coarse QoS service class and simple packet forwarding
 - Service classes identified by DiffServ Code Points (DSCP) in packet header
 - Ingress nodes perform policing and masking, Egress nodes perform shaping—All nodes implement appropriate DiffServ Per-Hop Behaviors (PHB)

IntServ - RFC 2205, 2381

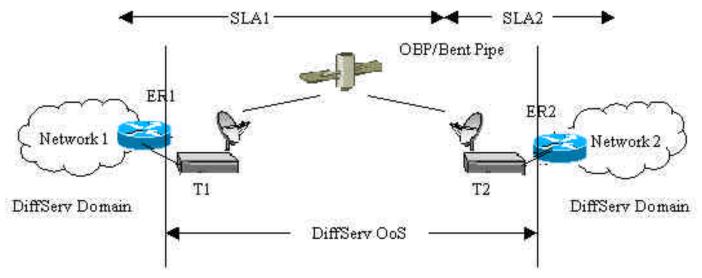
DiffServ - RFC 2474, 2475


QoS-Mechanisms for Terrestrial Networks Cont'd

- MultiProtocol Label Switching (MPLS)
 - Simplify Mechanisms of Packet Processing with Core Routers
 - Capability to Reduce Amount of Routing
 Information By Stream Merging
 - Capability to Produce an Efficient Tunneling Mechanism that can be Used for Traffic Engineering or VPNs
 - Packet Forwarding is based on "Labels" in MPLS Header
 - Label Switched Paths established by Signaling

MPLS - RFC 2702, 3031

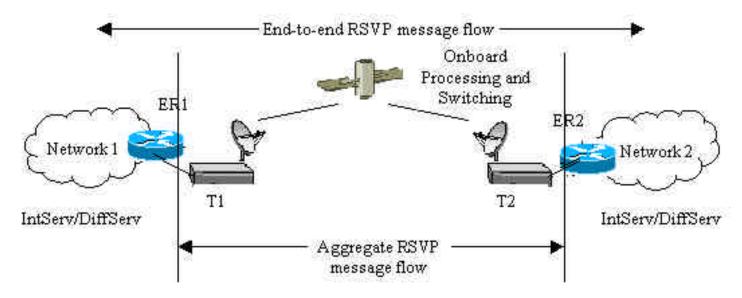
Satellite QoS Architecture - IntServ


- Network 1 and network 2 support only IntServ.
- RSVP messages flow between network 1 and network 2.
- o T1 and T2
 - RSVP aware to support end-to-end satellite IP QoS
 - process the PATH and RESV messages and perform admission control.
 - have to accept or reject RESV requests.
- Edge routers perform multi-field flow classifications, maintain flow state.

Feasible for satellites because packets bypass several terrestrial routers.

ITU-R 4B/086

Satellite QoS Architecture - DiffServ


o Global satellite network

- End-to-end QoS achieved based on DiffServ at the access and core network
- Assumed that a DiffServ SLA exists between network 1 and 2
- T1 and T2 are also DiffServ capable and able to read the DSCPs in the packet headers

o Access Satellite Network

- Network ISP and gateway support DiffServ
- A DiffServ SLA1 exists between network 1 and gateway; SLA2 exists between gateway and ISP
- Network 1 and ISP are not aware of each other's IP QoS
- Network 1 and gateway are DiffServ capable

Satellite QoS Architecture - IntServ/DiffServ

o Global Satellite Network

- Network 1 & 2 are IntServ capable and core network supports DiffServ
- End-to-end RSVP messages flow between network 1 & 2
- Aggregate RSVP messages flow between edge routers ER1 & ER2
- End-to-end RSVP messages indicates that DSCP should be used for each flow
- N1 & N2 must be DiffServ capable for flow classification and aggregate RSVP capable for signaling

These architectures must be evaluated for application QoS levels.

Return Channel Multiple Access

- TDMA-based DVB-RCS standard specifies bandwidth allocation mechanisms⁽¹⁾
 - Continuous Rate Assignments (CRA)
 - Rate Based Dynamic Capacity (RBDC)
 - Volume Based Dynamic Capacity (VBDC)
 - Free Capacity Assignment (FCA)
- o CDMA-based alternative⁽²⁾
 - Use of a unique code similar to Aloha reduces probability of collisions
 - Spread ALOHA One Code (SAOC) repeats the code or spread sequence every symbol
 - Spread ALOHA One Long Code (SALOC) uses single long code as long as the packet
 - Throughput performance analysis
- (1) ETSI EN 301 790, v1.2.2 (2000-12)
- (2) Kota S et.al (2002) Spread ALOHA Multiple Access for Broadband Satellite Return Channel. 20th AIAA ICSSC, Montreal, Canada, AIAA-2002-1918.

Conclusions

- QoS is a critical element for successful satellite broadband IP.
- Application specific QoS objectives are required for global and access satellite networks.
- Further analysis and tests for QoS architecture options for satellite IP must be performed.
- Liaison activities with other organizations e.g., ITU-T, IETF, ETSI and TIA.