

s Share

Standardization in ITU-T SG15

Hiroshi Ota Advisor, ITU-T Study Group 15, TSB

www.wsis.org/forum

WSIS AGEND	A SESSION 1	Innovate	Discuss	Share
What are Standards	Role of ICT Standards and	dards ions , International Standard d key ICT Standards Organiza ed: Principles of Standard de	ations	ndards
How ITU-T develops Standards		tandards etwork, Study Groups and IT nsensus based decision-mak		
Standardization in ITU-T SG15	 Study Group 15 (SG15) m Lead Study Group SG15 Structure Working Parties and Que Key Recommendations an Cooperation with other S 	stions highlights nd future work		

ITU-T Study Groups

Innovate

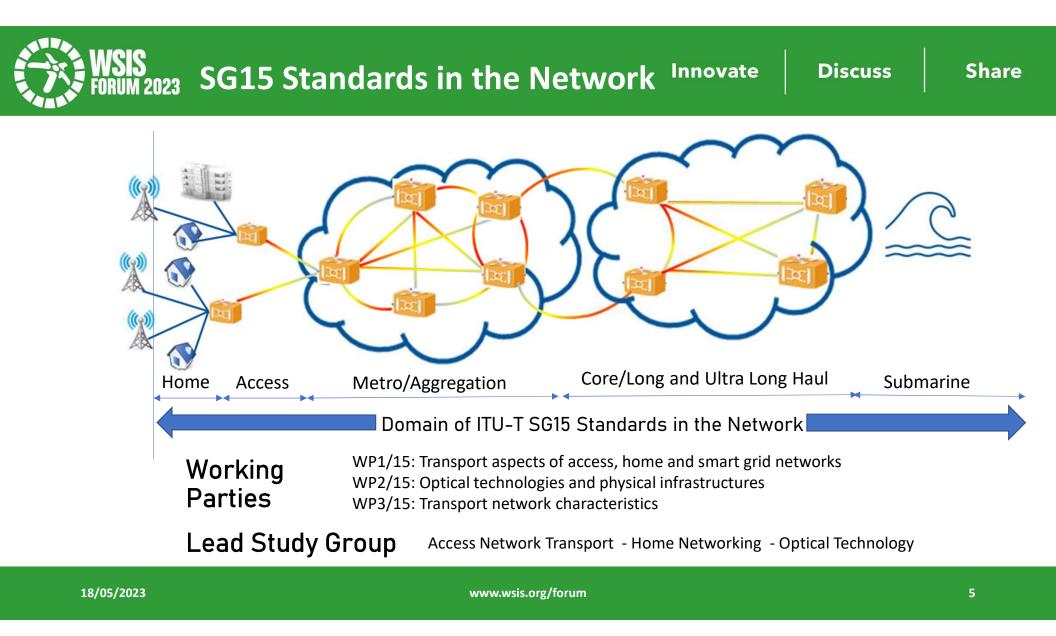
Share

- SG2 Operational aspects
- SG3 Economic & policy issues
- SG5 Environment, EMF & circular economy
- SG9 Broadband cable & TV
- SG11 Protocols, testing & combating counterfeiting
- SG12 Performance, QoS & QoE
- SG13 Future networks
- SG15 Transport, access & home
- SG16 Multimedia & digital technologies
- SG17 Security

SG20 - IoT, smart cities & communities

SG15 mandate

Innovate


Discuss

Share

SG15 is responsible for the development of standards on:

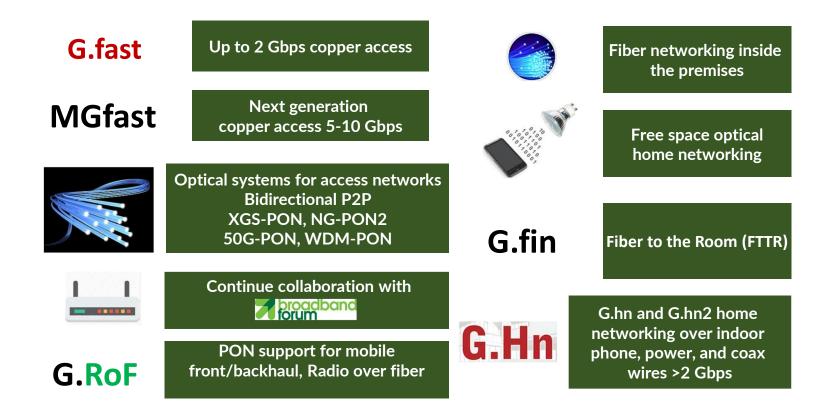
optical transport network	optical access network	home network and power utility network	
	equipment	infrastructures	
Gigabit copper transmission	maintenance	optical fibers and cables and their related installation	
	management		
instrumentation			
and measurement	test	control plane technologies	
techniques			

to enable the evolution toward intelligent transport networks, including the support of smart-grid applications

WSIS FORIUM 2023
FORUM 2023

List of Questions

Innovate


Discuss

	Question	Question title			
_	- Number 1/15	Coordination of Access and Home Network Transport Standards			
WP1 -	2/15	Optical systems for fibre access networks			
	3/15	Technologies for in-premises networking and related access applications			
	4/15	Broadband access over metallic conductors			
WP2 -	5/15	Characteristics and test methods of optical fibres and cables, and installation guidance			
	C /1 F	Characteristics of optical components, subsystems and systems for optical transport			
	6/15	networks			
	7/15	Connectivity, Operation and Maintenance of optical physical infrastructures			
	8/15	Characteristics of optical fibre submarine cable systems			
WP3 –	10/15	Interfaces, interworking, OAM, protection and equipment specifications for packet-			
	10/15	based transport networks			
	11/15	Signal structures, interfaces, equipment functions, protection and interworking for			
	11/15	optical transport networks			
	12/15	Transport network architectures			
	13/15	Network synchronization and time distribution performance			
	14/15	Management and control of transport systems and equipment			

SIS RUM 2023 WP1 – Broadband Access Innovate

te [

Discuss

Q2/15 – Optical systems for fibre access networks

- 50 Gigabit-capable Passive Optical Networks (HSP) (G.9804.x series)
- G Suppl. VHSP Point to multipoint passive optical access system requirements and transmission technologies above 50 Gbit/s per wavelength
- 10 Gbit/s-capable symmetric PON systems; XGS-PON (G.9807.x series)
- Radio over Fiber systems (G.9803)
- Wavelength multiplexed point-to-multipoint 10-Gigabit-capable passive optical network
- PON support for slicing
- Higher-speed bidirectional, single fibre, point-to-point optical access system (G.9806)

Discuss

Q3/15 – Technologies for in-premises networking and related access applications

- High speed fiber-based in-premises transceivers "Fiber to the Room (FTTR)" (G.fin)
- Unified high-speed wire-line based home networking (G.hn) transceivers
- Evolution of G.hn up to 10 Gbps (G.hn2)
- High speed indoor free space optical networking (G.vlc)
- Support of UHD video service over G.hn (G.uvs)
- Narrowband power line communication for smart grid (G.990x series)

Q4/15 – Broadband access over metallic conductors

- Mgfast optical class broadband access using existing metallic cables (G.971x series)
- G.fast up to 2 Gb/s for short copper access lines (G.970x series)

WP2 – Optical Technologies

Innovate

Discuss

Q5/15 – Characteristics and test methods of optical fibres and cables, and installation guidance

- Single-mode fibre Recommendations (G.652 and G.654)
- Optical fibre, cable and components for space division multiplexing transmission (TR.sdm)
- Characteristics of a bending-loss insensitive single-mode optical fibre and cable (G.657)
- Optical/electrical hybrid cables for access points (L.109.1 (ex. L.oehc))
- Optical fibre cables for duct and tunnel application (L.100)
- Optical fibre cables for direct surface application (L.110)
- Optical fibre cables for in-home applications (L.111)
- Criteria for optical fibre cable installation with minimal existing infrastructure (L.163)

Q6/15 – Characteristics of optical components, subsystems and systems for optical transport networks

- Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces (G.698.2)
- Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces (G.698.4)
- Multi-vendor interoperable optical interface specifications for mobile optimized applications at 25 Gbit/s. (G.698.1, G.698.2 and G.698.4)
- Multichannel WDM applications with single-channel optical interfaces in the O-band (G.owdm and G.owdm2)

Q7/15 – Connectivity, Operation and Maintenance of optical physical infrastructures

- Telecommunication infrastructure facility management (L.330)
- Cable identification for the construction and maintenance of optical fibre cable networks with optical sensing technique(L.316)
- Maintenance of telecommunication underground facilities (L.340/L.74)
- Requirements for Passive Optical Nodes: nodes for customer indoor premises (L.ncip)
- Topologies for optical access network (L.250/L.90)

Share

Q8/15 – Characteristics of optical fibre submarine cable systems

- Transverse compatible DWDM applications for repeatered optical fibre submarine cable systems (G.977.1)
- Dedicated Scientific Sensing Submarine cable system (G.dsssc)
- SMART submarine cables for both telecommunication and measurement (G.smart)

WP3 – Optical Transport Networks Innovate

Discuss

Share

MTN

Transport and synchronization supporting 5G mobile fronthaul and backhaul

G.mtn (metro transport network) for 5G optimized transport

> Architecture and other **Transport SDN Aspects**

New "B400G" OTN interfaces. including the use of coherent

G.698.2 interfaces

BEYOND

400G

Equipment & management specifications for OTN, **Ethernet, MTN and MPLS-TP**

Optical

Transport

Networks

Management aspects of control and transport planes

Synchronization of packet

networks and future OTN

networks, e.g., beyond 400G

Network survivability (protection and restoration)

Core Information model enhancement for management of synchronization and optical media

Q10/15 – Interfaces, interworking, OAM, protection and equipment specifications for packet-based transport networks

- Network protection for Ethernet and MPLS-TP
- OAM functions for Ethernet and MPLS-TP
- Ethernet UNI and Ethernet NNI
- Interfaces for the MPLS-TP layer network
- Characteristics of Ethernet transport network and MPLS-TP equipment functional blocks
- Ethernet service characteristics

Share

Q11/15 – Signal structures, interfaces, equipment functions, protection and interworking for optical transport networks

- Interfaces for various transport network technologies
- Interfaces for the OTN beyond 400 Gb/s (e.g., 800 Gb/s)
- Interfaces for MTN (Metro Transport Network)
- Path layer network for sub 1G services

Q12/15 – Transport network architectures

- Architecture of transport networks (digital network layers and media)
- Architecture of control and management, including transport SDN and use of AI/ML applications for transport operations
- Architecture for various transport network technologies including OTN beyond 400Gb/s and MTN (G.83xx series)

Q13/15 – Network synchronization and time distribution performance

- Network synchronization and time distribution performance
 - Active since the 90s (when work on sync for SDH started in SG13)
 - Timing Needs of the transport networks (e.g., OTN, MTN)
 - End Applications Timing Needs (e.g., 5G Base Stations)
- Distribution of Time-Phase and Frequency
 - Methods (e.g., over physical layer, via packets, GNSS)
 - Architectures
 - Clocks
 - PTP (IEEE 1588) profiles
 - Performance, Redundancy, Reliability, etc.
- Target Networks
 - Ethernet, IP-MPLS, OTN, xPON, MTN ...
- Cooperation
 - Other SG15 Questions, e.g.: Q11/15 (sync for/over OTN , MTN), Q14/15 (Sync Management), Q2/15, Q4/15 (Sync in the access), Q6/15 (sync in optical components, Fibers)
 - Other SDOs (IEEE1588, 3GPP, O-RAN, etc.)

Q14/15 – Management and control of transport systems and equipment

- Management and control of transport systems and equipment
 - Generic requirements and Technology-specific requirements for
 - OTN, Ethernet, MPLS-TP, MTN, Synchronization, Optical/Electrical media
- Management information/data model
 - Management-protocol-neutral information models specified in UML
 - Management-protocol-specific data models in YANG
 - Utilize automatic translation from UML to YANG
- SDN control of transport networks including the use of AI/ML

Collaboration with other organizations Innovate

ate

Discuss

SDO	Related SG15 Questions	Торіся
BBF	Q2, Q3, Q4, Q14	G.fast, MGfast, xDSL and PON, YANG
CENELEC TC86A & TC86BXA	Q5, Q7	Optical fibers and cables, optical connectors & passive components
ETSI ISG F5G	Q2, Q3	PON, Fiber to the Room (FTTR)
IEC TC86 - SC86A	Q5	Optical Fibers and cables
IEC TC86 - SC86B	Q7, Q5	Optical connectors & passive components
IEEE 802.1	Q10, Q12, Q13,	VLAN Bridging, OAM/CFM, Synchronization, Time Sensitive
	Q14	Network (TSN), Information modeling Issues, YANG
IEEE 802.3	Q2, Q6, Q11, Q12,	OTN mappings for Ethernet, Optical characteristics of Ethernet
	Q14	modules used for OTN, PON, Information modeling Issues, YANG
IEEE 1588	Q13, Q14	Time Synchronization, Synchronization Management
FSAN	Q2	PON
MEF	Q10, Q11, Q14	Ethernet Services, OTN & Wavelength services, LSO
OIF Networking,	Q12, Q14	Optical Control Plane, SDN, Information modeling Issues, YANG
IETF (CCAMP, TEAS, PCE), ONF		
OIF PLL	Q6, Q11	Flex Ethernet, 400ZR, 800ZR

