Share

Discuss

Architecture aspects of Optical Transport Networks

ITU-T SG15 Q12

Liping Chen (Q14 Associate Rapporteur) Stephen Shew (Q12 Rapporteur)

Discuss

Share

Layer architecture of communication networks

• Current communication stack

• OSI 7 layer model (X.200)

	OSI layer	Example Protocol
7	Application	ftp
6	Presentation	
5	Session	
4	Transport	ТСР
3	Network	IP
2	Data Link	Ethernet MAC
1	Physical	IEEE802.3 PHY

	Example protocol stack	
	ftp	
	ТСР	
	IP	
	Ethernet MAC	
	VXLAN	
	UDP	
	IP	
	Ethernet MAC	
_	ODUflex (via GFP)	
	ODU4	ITU-T SG15
	ODUCn	Optical Transport
	OTUCn	Network
	fibres	

212W
FORUM 2023

Client/Server layer architecture

- In SG15, transport networks are modelled as a set of recuring layer networks each of which offers the same service using a specific protocol (the characteristic information).
- A client layer is supported by a server layer. e.g., Ethernet MAC over ODUFlex.
- The pattern is repeated as many times as needed.

Example protocol stack			
ftp			
•	client		
TCP IP		server	
		client	
		server	
		client	
Ethernet MAC		server	
		client	
VXLAN		server	
		client	
UDP		server	
		client	
IP		server	
		client	
Ethernet MAC		server	
Ethernet ivi	client		
ODUflex (via GFP)		server	
		client	
ODU4		server	
0001	client		
ODUCn	server		
00001	client		
OTUCn	server		
010CH	client		
fibres	server		
indic3			

Discuss

Example protocol stack

Innovate

www.wsis.org/forum

client

server

Share

٠

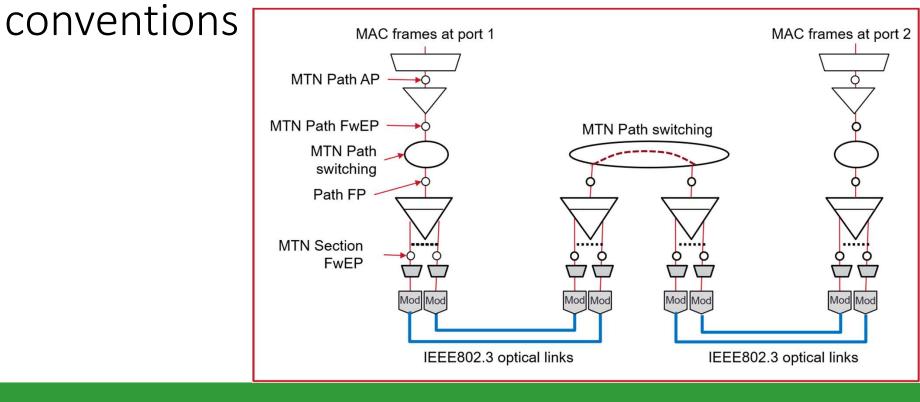
Innovate

Share

Discuss

client

server


Architecture of optical transport networks

- ITU-T G.800 "Unified functional architecture of transport networks"
 - Describes layer network functions and topology constructs
- ITU-T G.807 "Generic functional architecture of the optical media network"
 - Describes functions and topology of media (e.g., optical fibres) that supports light waves

<u>Technology specific architecture Recommendations</u>

- OTN ITU-T G.872 "Architecture of the optical transport network"
- Ethernet ITU-T G.8010 "Architecture of Ethernet layer networks"
- MPLS-TP ITU-T G.8110 "MPLS layer network architecture"
- MTN ITU-T G.8310 "Architecture of the metro transport network"

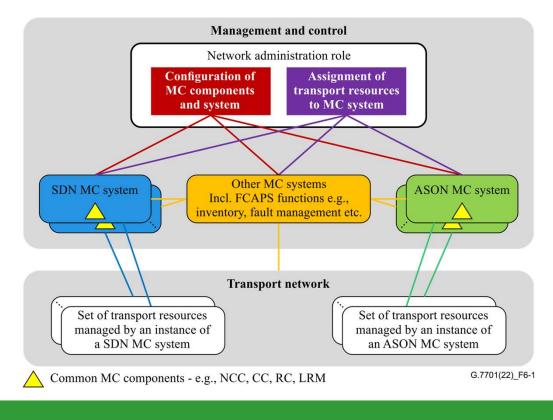
MTN Example of G.800 and G.807 diagrammatic

Innovate

Discuss

Share

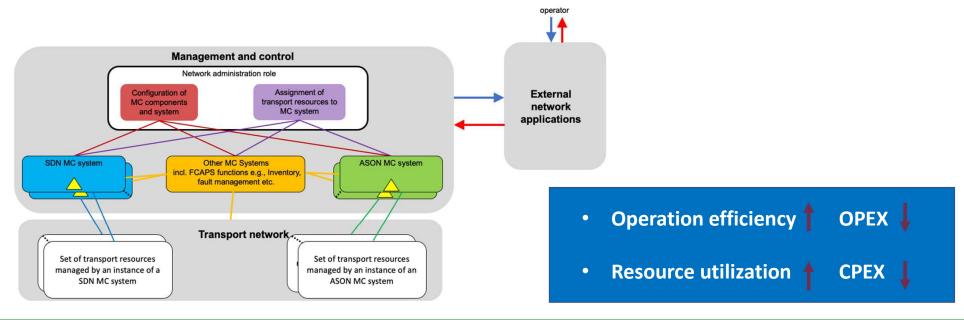
Management and control


- What is the difference between management and control?
 - Management refers to functions that configure equipment to provision and monitor connections. Historically management procedures were manual.
 - Control refers to automation of management functions such as discovery, connection setup, connection monitoring.
- Management and control (MC) can be viewed as functions on the same continuum

Discuss

Share

Management and control architecture


- Management and control continuum
 - Simplify the MC system architecture to avoid the duplication of MC functions
 - Flexible deployment, i.e., centralized, distributed or hybrid
 - Real-time monitoring of resource status and dynamic network control
- Series of MC architecture Recommendations
 - G.7701: Common control aspects
 - G.7702: SDN architecture
 - G.7703: ASON architecture

Discuss

Application of ML/AI to optical transport networks

- A typical area of AI/ML application is to enhance the intelligence of transport network management and control.
- AI/ML applications can be viewed as a type of external network applications that use the data from a transport MC system.

External collaborations on management and control

- Management and control architecture (ONF OIMT)
- Core information models, Lifecycle states of transport resources (ONF OIMT)

- Coordination on the management of Synchronization (IEEE 1588)
- Coordination on Ethernet OAM model (IEEE 802.1)

• Management and control architecture (OIF networking and operations WG)

WSIS FORUM 2023	Innovate	Discuss	Share

Q&A