

IP Telephony

Quality-of-Service Aspects

Bruce Pettitt

Overview - QoS for IP Telephony

- Background QoS Concepts
- Impact of Packet Loss and Delay
- The QoS Challenge for IP Telephony
- Technology Solutions supporting QoS
 - speech coding
 - traffic engineering
 - QoS resource management
- IP Telephony & QoS Situation Analysis
- Summary Major Issues

Background QoS Concepts

- Original "Best-Effort" Internet was designed
 - to guarantee network survivability
 - not to support high-speed, real-time applications
- New mechanisms now support "mission-critical" real-time, interactive applications
- QoS/Performance "guarantees" are described in Service Level Agreements
- IP Telephony presents QoS challenges, especially when inter-working with the traditional telephone network

Quality of Service addresses:

- end-user satisfaction
- efficient operations / cost savings

Impact of Packet Loss (Error) and Delay

- from the user perspective

Relatively Error Tolerant	Conversational voice and video	Voice messaging	Streaming audio and video	Fax
Error Intolerant	interactive	E-commerce, Web Browsing, E-mail Access	FTP, Still Image, Paging	Usenet
	Interactive	Responsive	Timely	Non-critical
	delay << 1 sec	delay ~ 1 sec	delay < 10 sec	delay > 10 sec

The QoS Challenge for IP Telephony

Challenge: Provide highly-reliable, ubiquitous, real-time service with acceptable speech quality while ensuring adequate performance for other traffic types.

Technology Solutions supporting QoS

- Speech Coding Aspects
- Traffic Engineering
- QoS Resource Management

Speech Coding Techniques

- Traditional digital telephony at 64 kbit/s
 - provides analog-to-digital conversion
 - using Pulse Code Modulation (PCM) technique
 - for "3.1-kilohertz" audio channel
- Lower bit-rate encoding techniques
 - good results obtainable at bit rates as low as 8 kbit/s
- Wideband encoding schemes
 - provide "Broadcast Quality" for 7-kHz channel

Lower bit rates typically involve some delay interval while a speech burst is observed - as well as additional processing delay to implement the encoding algorithm.

Audio Demonstrations

- Samples of Encoded Speech
- Packet-Loss Effects
- Wideband Capabilities

Samples of Encoded Speech

- (1) PCM at 64 kbit/s as a reference

(2) 8 kbit/s speech codec

- "Rice is often served in round bowls."
- "The soft cushion broke the man's fall."
- "The small pup gnawed a hole in the sock."
- "The meal was cooked before the bell rang."

Packet-Loss Effects

Reference without packet loss: 64 kbit/s PCM

With 5% packet loss:

- (2) 64 kbit/s PCM with packet-loss concealment

(3) 8 kbit/s speech codec

- "The term ended in late June that year."
- "Open the crate but don't break the glass."
- "Weave the carpet on the right-hand side."
- "Paste can cleanse the most dirty brass."

Audio Demonstration - Wideband

Speech

- 64 kbit/s PCM for reference
- 128 kbit/s wideband "broadcast quality" 🐠

Music

- 64 kbit/s PCM for reference
- 8 kbit/s speech codec 🍕
- 128 kbit/s wideband "broadcast quality" 🐠

Traffic Engineering in IP-based Networks

- Capacity management / Network design
- Long-term planning to handle traffic growth
- Traffic measurement
- Traffic characterization / modelling
- Adaptive / dynamic transport routing

As normally applied to IP-based networks, the term "Traffic Engineering" has a broader meaning than in traditional telephony networks.

QoS Resource Management

- Service differentiation / Priority mechanisms
- Resource allocation / Bandwidth reservation
- Admission controls
- Special QoS requirements for signalling
- Allocation of traffic to virtual networks

- Current standardization efforts are refining these techniques.
- Supporting signalling protocols are also being developed.

IP Telephony & QoS - Situation Analysis

- Many different techniques, standards, and various supporting tools exist to address specific aspects of QoS for IP Telephony
- The solution in a particular case may depend critically on:
 - end-user service specifications
 - need for inter-working with other networks
 - requirements for integration with legacy infrastructure
 - size and complexity of the network
- QoS standards for IP Telephony need further refinement
- Network design remains quite complex especially when several operators or administrative domains are involved
- Opinions vary on the need for fine-grained call control
- Wireless, cable, and digital subscriber loop systems present special requirements

The Future of IP QoS - Major Questions

In the near term:

Is "over-dimensioning" network bandwidth better, or more cost-effective, than the use of more complex "traffic-engineering/QoS" methods?

In the longer term:

Can general IP-oriented QoS solutions be developed to enable true multimedia convergence?

