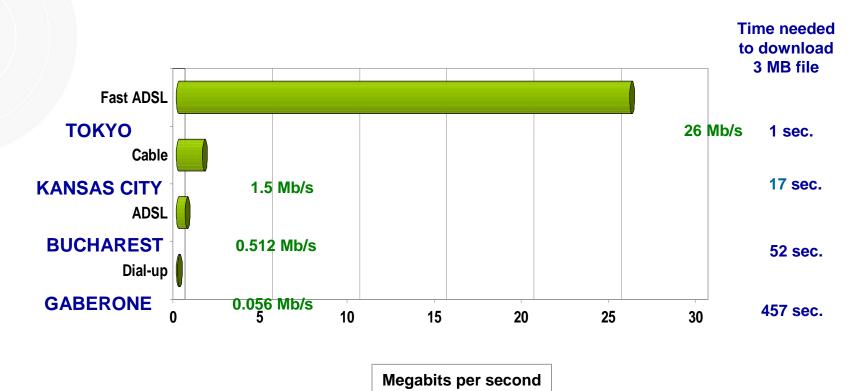


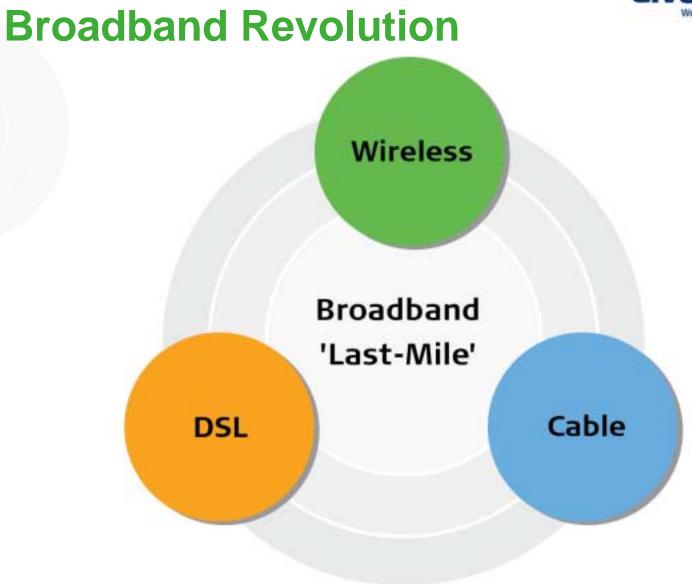
License Exempt Spectrum and Advanced Technologies

Marianna Goldhammer Director Strategic Technologies

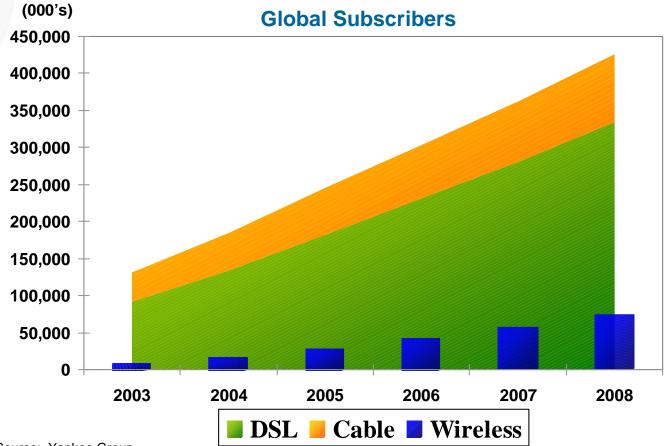

alvarion We're on your wavelength.

Contents

- BWA Market trends
- Power & Spectral Ingredients for Successful BWA Deployments
- Are regulations a limit for new radio technologies? Do they enable "spectrum mess" ?
- LE vision new regulatory rules
- Conclusions



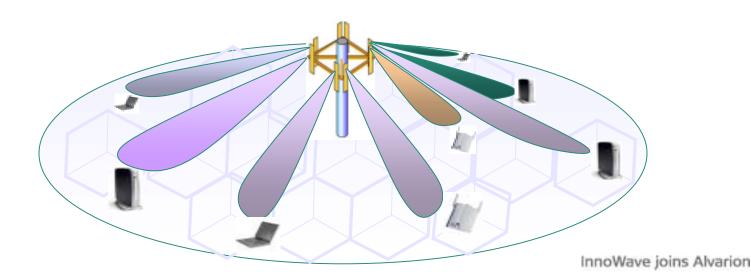
Definition of Broadband Depends on Geography


Source: Pyramid Research

BWA Follows DSL Trend

License Exempt Broadband by Country Type

Developing Countries	Developed Countries
Service Provider Types	Service Provider Types
ILECs	Large ISPs
CLECs	small WISPs
Large (Nationwide) ISPs	ILECs (limited deployment)
<u>Region</u>	
■ Urban	Sub Urban
Sub Urban	■ Rural
Types of Service	Types of Service
Business Data & Voice	Residential Data
Residential Data	Business Data



Power & Spectral Ingredients for Successful BWA Deployments

High Power for Positive Business Case

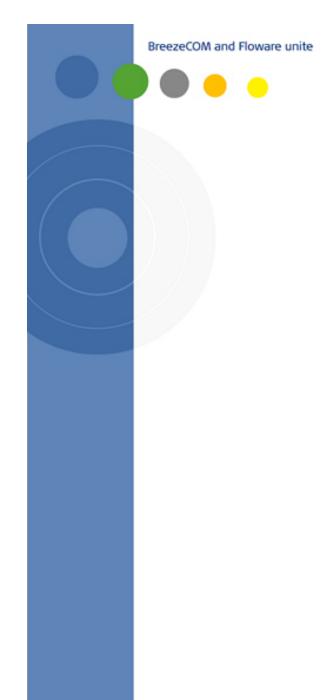
- Efficient and high quality BWA requires higher power transmissions than WLAN:
 - Larger cell size
 - Outdoor-to-indoor penetration (NEW!)
 - Higher sustained aggregated throughput
 - Increased overall cell performance

High Power, Advanced Technologies for Positive Business Case - Example

- Covered area: 225 Mile^2
- Penetration Rate 18% @ 5Yr

Year 1	Year 2	Year 3	Year 4	Year 5
0.80%	1.80%	4.80%	6.60%	4.00%

- Household Density:
 - Sub urban high density 4500 HH/mi^2
 - Sub urban low density- 1500 HH/mi^2
 - Rural -500 HH/mi^2


BreezeMAX using 5.8GHz, FCC ISM rules, TDD, 5MHz channels						
Area	Configuration	No. Of BST's	BST Range [Km]	Total SU per BS	Price Per Line	ROI
Rural High	Macro 4 ways, 6 sectors	16	4.0	1300	\$360	36 Months
	Macro 2 ways, 3 sectors	31	3.0	650	\$370	36 Months
Suburban Low	Macro 4 ways, 6 sectors	34	3	1800	\$330	36 Months
Suburban High	Macro 4 ways, 4 sectors	350	1.0	500	\$450	40 Months

High Power for Positive Business Case (contd.)

- Operator Benefits:
 - More subscribers in each cell reduce the base station CAPEX and OPEX load on each subscriber.
 - Increased subscriber throughput (higher modulation states can be used) allows for higher subscription rates for lucrative services.
 - Faster ROI, Higher NPV
- Subscriber Benefits:
 - Affordable subscription rates.
 - High throughput

Present and near future

License Exempt Spectrum Allocations

- Lack of spectrum
- 2.4GHz
 - Interference in 2.4GHz ISM band is driving service providers and equipment vendors away from this band.
 - Europe: limited power, almost no use for access

• 5GHz

- US: U-NII and upper ISM bands (5.15 5.85 GHz)
 - FWA applications using mainly roof-top antennae High cost / line
- No 5.8GHz European allocation yet; CEPT studies consider less power than allowed by FCC
- Needed allocation of LE spectrum below 3GHz!
 - Better coping with high distances and NLOS conditions^{ave joins Alvarion}

Standards and the "mess" in LE bands

- IEEE 802.11
 - Define "listen before send"
 - Does not work with FWA (stations are "hidden", due to directional antennae)
 - Does not work in NLOS:
 - most of the stations are "hidden" due to "shadowing" and wall isolation effects
- IEEE 802.15
 - Frequency hopping!
- IEEE 802.16
 - Does not resolve the adjacent channel interference
- IEEE 802.11a, 802.16
 - Dynamic channel selection
 - With 20MHz channels, may work only in 5GHz!

alvarion We're on your wavelength.

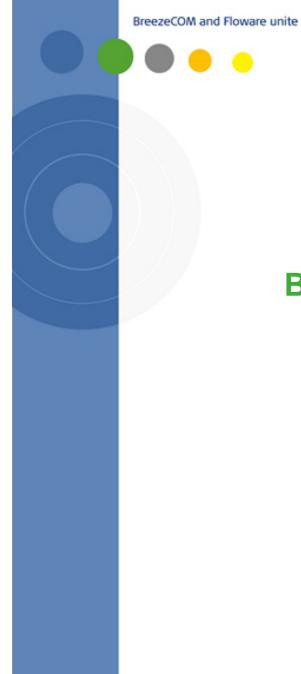
BWA and interference mitigation with higher power allowance

- Statistical approach
 - Reduce interference levels
 - Beam forming / switching new FCC proposal
 - Limited time occupancy new FCC proposal
 - Frequency Hopping
 - Not suitable for broadband (channel no. limitation)
 - Not suitable for QoS
 - Pros: fast solution to allow higher e.l.r.p. levels
 - Contras: no QoS guarantee
- BW Reservation approach
 - Technology independent
 - Inter-system communication why not?
 - Pros: suitable to new traffic types, requiring QoS
 - Not defined yet !

alvarion We're on your wavelength.

BWA: down-link cell-size limitation paradox

• 802.16a / ETSI HiperMAN / WiMAX define up-link OFDMA


- The Subscriber Terminal (ST) power may be concentrated on sub-channels
- Up to 12dB up/link gain for 16 sub-channels

System gain

- Up-link: Tx(ts) + AG(ts) + AG(bs) RSL(bs) + OFDMA(gain)
- Down-link: Tx(bs) + AG(bs) + AG(ts) RSL(ts)

• Example for FWA, max. e.l.r.p = 36dBm (4W):

- AG(bs) = 14dBi; AG(ts) = 17dBi; Tx (bs) = 22dBm; Tx(ts) = 19dBm;
- RSL (bs) = RSL(ts) = -88dBm; OFDMA(gain) = 12dB Results:
- Down-link system gain = 22+14+17-(-88) = 141dB
- Up-link system gain = 19 +17 +14 –(-88) + 12 = 150dB
- Existing regulations limit the cell size due to downlink max. power limitation!
- Higher downlink power allowance is needed!

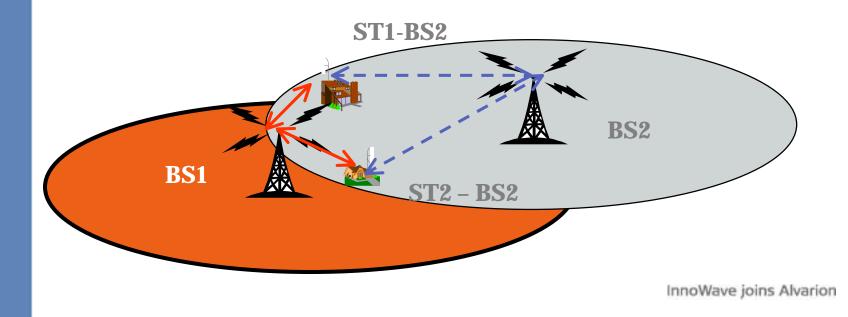
BW reservation in LE bands

-vision-

New regulations – wish list

- Enforce **bandwidth reservation** rules
 - Provide a QoS environment for Access and LAN
 - PANs (FH and Ultra-wideband) to be kept outside new bands
- Split capacity between systems according to fairness criteria
- Increase allowed down-link power
 - Let new access technologies, as up-link OFDMA, to work

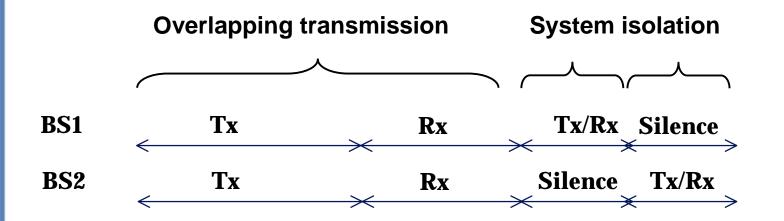
Dynamic Channel Selection


- Co-channel co-existence in frequency domain
 - Define a grid of allowed channel centers
 - Define 1-2 allowed channel widths
 - Make Dynamic Channel Selection a mandatory mechanism
 - Define thresholds for channel selection
 - Define the channel bandwidth consistently with allocated spectrum
 - Min. 12 ? Channels
 - Limit the transmitted e.l.r.p. as function of co-existence behavior

19

alvarion We're on your wavelength.

Adjacent channel interference problem


- TDD systems need a guard band equal with 2 channel widths
- An interference-avoidance mechanism is necessary

Ideal spectrum use

- Transmission that do not create interference
 - use same time, same or different frequencies
- In case of interference
 - time isolation

Co-existence in TDD

Same MAC frame duration – regulatory defined

- GPS synchronization of MAC frame start
- "listening" synchronization of MAC frame start

Synchronization of Tx and Rx intervals

• works for "almost co-located" systems

• Reservation of time-domain resources

- best interference avoidance
- allows QoS
- Use at least 3 sectors
 - good frequency reuse
 - interference avoidance
- Avoid interfering during Rx intervals

Inter-system communication

- Communication "puzzle words"
 - PCM, SC, OFDM, SC-FFT EQ., CDMA, DS, CCK, WCDMA, MC-CDMA, etc!
- Technology independent approach
 - enforce the RESERVATION approach
 - provide fairness between systems
 - Basic form of modulation / coding
 - Minimal communication protocol
 - to be mandatory
 - To be **defined** by regulatory rules
 - Radar detection algorithms are now defined for 5GHz

Proposed new regulatory principles: Equipment classes

• Function of co-existence capabilities

	Class 4	Class 3	Class 2	Class 1
Sync MAC frames with GPS	yes			
Sync Tx period to other systems	yes	yes	yes	yes
Advanced inter-system communication	yes	yes	yes	
Synchronize both Tx and Rx intervals	yes	yes		
> 3 sectors	yes			

alvarion We're on your wavelength.

Proposed new regulatory principles: Allowed power - example

- Allowed_power(dBm) = k(coexistence_behavior) + min_power (dBm)
 - Min. power (e.l.r.p) = 20dBm (100mW)
 - Class 1
 - K = 0dB
 - Potential systems: WLAN
 - Class 2
 - k=6dB
 - Potential systems: WLAN
 - Class 3
 - k=20dB
 - Potential systems: MAN (Metropolitan Area Network)
 - Class 4
 - k=30dB
 - Potential systems: MAN

Conclusion - what should be done

- Identify new harmonized LE spectrum in lower frequencies
 - Rural: below 1GHz
 - Mobile: below 3GHz
 - Administrations: press for moving P-P links above 7GHz
- Create a Question for defining the new Regulatory rules
 - Implement the **Resource RESERVATION** principle
 - Study co-existence of different equipment classes and define the allowed power levels
 - Define technology-independent inter-system communication
 - Simple protocol
 - Involve relevant standard bodies