The Need for a Socio-economic Approach in Assessing Spectrum Requirements for Future Mobile Communications Markets and Services

Simon Forge SCF Associates Ltd

> A Gorithin - ve-engineer for fisher A Gorithin - ve-engineer for fisher 'is Sites, h rain rang Kando vido straning mill in UM plotform had, Still need water on h/S How on caston chip Nos @ 100 Mbps clock

ITU Geneva Ubiquitous Networks and Radio Aspects 07 April 2005

New services have often been mysteries to the industry - greatly underestimated or overestimated

	<i>Telecoms Industry</i> <i>view at launch</i>	The consumer speaks – the 'street' view
ISDN	The next generation of telecoms- replace POTS	UK / USA : "Idiot Services users Don't Need"
WAP	The mobile user will really go for this <i>technology</i>	<i>"WAP is crap"</i> - expensive, no services, difficult to use
Iridium LEOs	Just what the remote business traveller needs	20 times too expensive
Internet/WWW	Ignore Oh still there ?!! horror -stifle!VoIP wins	Just use it (@ no cost)
GSM – digital mobile	An extra (minor) feed for our fixed networks	Just what we need! - till we see the bill ! -so <i>PAYG</i> rules
SMS	Minor supplementary service (CLASS for Mobile)	The <i>only</i> service (mobile or fixed) for many users

While some of the biggest product launches in communications services over the last 20 years have delivered flops, seemingly trivial services have exploded.

ITU Geneva Ubiquitous networks and Radio Aspects

SCF Associates Ltd

all rights reserved

We need a better strategy to assess spectrum demands

- the underlying concepts and policy need to be improved as we have a rapidly evolving market with exploding demand –

- a discontinuity in radio technology could occur at any time, in order to cater for a far larger user population than the industry has ever seen before as radio exceeds fixed line, *and this effect is price sensitive*

- a transformation is under way from a mobile communications market for the transport of plain vanilla voice, over networks, towards a media and commercial transaction environment *and again this effect is price sensitive*

However, many players in the traditional telecommunications world have yet to fully realise these developments will occur.

Any useful approach must take account of this - it should track the most likely path for customer demand based on needs and income and the healthy development of radio services, not biased by a technical view or that of specific short-term interests.

The context – a global user population growth

With globalisation, costs of services and handsets will slowly be set by average world prices
Saturation is set by affordable price for the majority of users – numbers which may reach near 65% of a global population of over 7.5Bn by 2020 = 5Bn users

Potential take-up of radio services: from communication to mobile applications relies on a price benevolent context for disposable income levels of the global mass market

Usage of a Public Service is dictated by cost

- with demand following to the Dupuit Curve (1840)

User Population

Understanding the potential take-up of services

Mapping the potential of services to succeed

The strategy going forward in spectrum

- what form of spectrum allocation suits each type of underlying technology?

	Differentiation mechanism	Usable Freq range (Actual range)	Form of spectrum assignment
2G	FDD & TDD & Limited Spread spectrum CDMA	0.3 – 3.5 GHz (0.45- 2.3 GHz)	Assigned Bands + Guard bands
2.5G	FDD & TDD & Limited Spread spectrum CDMA	0.4 – 3.5 GHz (0.45- 2.3 GHz)	Assigned Bands + Guard bands
3G	Limited Spread spectrum W-CDMA/ CDMA-2000	0.4 – 3.5 GHZ (2.5- 3.3GHz)	Assigned Bands + Limited Guard bands
4G	Spread spectrum	Under 5 GHZ, possibly 6-10 GHz	Unlicenced spectrum, possibly in bands
Other NON- cellular AWTs* (WiFi etc)	Limited Spread spectrum/other	Under 5 GHZ, possibly 6-10 GHz	Unlicenced spectrum, possibly in bands

*Alternative wireless technologies

Growth of take-up of radio services

Our perspective of demand is economic – it sets social and technical parameters and features

Focus on user needs gives a balanced estimate of future mobile services

How can we draw socio-economic pictures of future demand?

Scenarios generate motivations & user types with needs analysis

ITU Geneva Ubiquitous networks and Radio Aspects

SCF Associates Ltd

all rights reserved

The study for IPTS : -

Future Mobile Services and Markets in Europe http://fms.jrc.es

Simon Forge Colin Blackman **Eric Bohlin**

SCF Associates Ltd

ITU Geneva Ubiquitous networks and Radio Aspects

The whole FMS method can be summarised as 6 steps – based on the economic, social and technical parameters

The FMS method can be mapped on to the economic, social and technical parameters

Mapping scenarios - against the economic and sociological conditions

Comparing development in the Main Socio-Economic Scenarios

SCF Associates Ltd

