Carnegie Mellon University

Emerging Technology and Spectrum Policy Reform Jon M. Peha Carnegie Mellon University

Associate Director, Center for Wireless & Broadband Networks
Professor of Electrical Engineering and Public Policy
www.ece.cmu.edu/~peha peha@cmu.edu

International Telecommunications Union (ITU) Headquarters, Geneva January 2007

Opportunities for Reform

- In many nations, there is a severe shortage of available spectrum
- Much of the useful spectrum is idle at any given time and location
- New technology will support far more efficient use of spectrum.
- To alleviate scarcity, policies must
 - exploit the realistic capabilities of current technology, and
 - rely on sound economic theory

Approaches to Reform

- Debate over "commons" and "property" is counter productive
 - Both approaches have merit if applied appropriately
 - Both approaches lead to problems if taken to extremes
 - Such that assumptions about current technology are invalid
 - The debate obscures another important class of reforms
 - Sharing between a primary spectrum user and one or more secondary users
- In this talk
 - Spectrum property
 - Spectrum commons
 - Sharing between primary and secondary

Spectrum Property

- Market-based mechanisms have many advantages
 - Allocate resources
 - to those who value them the most
 - in the amount that maximizes value
 - for the purpose that maximizes value
- But spectrum is not like most property
 - Occasionally need regulatory intervention to change how spectrum is used, e.g.
 - to redefine how spectrum can be shared as technology evolves
 - to insure that large contiguous blocks are available for useful purposes
 - This means that "property rights" must be limited
 - Maximal flexibility is not always best.
 - More importantly, licenses should expire. No permanent rights.
 - License expiration is an opportunity to act.

Spectrum Commons

- In a commons, spectrum is shared.
- Two very different types of commons
 - based on cooperation of devices
 - based on coexistence of devices

Spectrum Commons based on Coexistence

- Devices cannot all communicate with each other
- Proven to be useful in today's unlicensed bands
- Advantages
 - Allows spectrum sharing.
 - Makes mobile wireless systems possible:
 - No lengthy licensing process, promotes innovation.
 - Cost-effective when licensing cost would dominate
- Better than licensing for some applications.
- Completely inadequate for other applications.
- Technical rules governing the band are important
 - To promote efficiency, protect against tragedy of commons

Spectrum Commons based on Cooperation

- All devices communicate with shared protocol and coordinate
- Cooperative gain may yield much greater efficiency
- Promising but still immature technology
- Challenges
 - What if some devices do not cooperate?
 - Security issues for selfish or malicious nodes
 - Who will define the protocol?
 - A challenge for regulators. Perhaps easier for a license-holder

Primary-Secondary Sharing

- Primary gets guaranteed quality of service
- Secondary cannot cause harmful interference to primary
 - Uses spectrum that would otherwise sit idle
- Facilitated by emerging technologies
 - e.g. cognitive radio, software radio, GPS, sensor networks, secure payment technology
- Different sharing schemes, different policy regimes
 - License-holder permits secondary to operate
 - A new form of secondary spectrum market
 - Regulator gives license to operate as secondary
 - e.g. to operate when primary license-holder allows, or in white space
 - Regulator permits secondary to operate without a license
- Different approaches are suited to different applications

Primary and Secondary Coexist

- Secondary is invisible to primary
- All complexity in secondary devices.
 Good where legacy systems are not easily changed.
- Probably no QOS guarantee possible for secondary.
- Secondary transmits
 - at low power, or
 - opportunistically after sensing the environment
- Technology of opportunistic access is
 - challenging in some environments.
 An area of current research.
 - easier if primary transmitters are fixed,
 e.g. where broadcasters or fixed point-point are primary.

Primary and Secondary Cooperate

- Example: secondary requests permission to use spectrum before transmitting
 - an opportunity for primary to guarantee QOS
 - an opportunity to collect payment, if commercial
- Primary needs component that can act as gatekeeper.
 - e.g. more convenient for cellular than broadcaster
- We've analyzed scenarios where extensive communications among secondaries is possible with little impact on primary.
 - Use location technology to enhance frequency reuse, and secure payment system technology.

Primary-Secondary Models

Research at CMU has considered the following models.

Primary: blue Secondary: red	Secondary is unlicensed	Secondary is licensed
No coordination between primary and secondary	Unlicensed underlay. e.g. Broadcasters with site licenses and opportunistic devices w.o. QOS guarantees	Licensed secondary with exclusive access in white space, guard bands, e.g. Broadcasters and microcellular or cellular
Coordination between primary and secondary	Real-time secondary market, e.g. Cellular and devices with temporary QOS guarantees	Secondary with exclusive access but interruptible access, e.g. Public safety and cellular

Conclusion

- Great opportunities to relieve spectrum scarcity through policy reform
 - More market-based mechanisms in spectrum licensing
 - e.g. auctions, secondary markets
 - More use of commons based on coexistence (unlicensed spectrum)
 - Perhaps someday commons based on cooperation too
 - More sharing between primary and secondary users
 - There are multiple models. Each better for some applications and worse for others.
- Regulators should make a variety of different approaches available in different bands
- While both commons and property approaches have merit, taking either to extremes leads to problems.

Carnegie Mellon University

Some of the papers referred to in these slides are available at www.ece.cmu.edu/~peha/wireless.html

Jon M. Peha

Professor and Associate Director, Center for Wireless & Broadband Networking Carnegie Mellon University