

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.1012
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2020)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS

Conditional access and protection – Exchangeable
embedded conditional access and digital rights
management solutions

 Embedded common interface for exchangeable
CA/DRM solutions; CA/DRM container, loader,
interfaces, revocation

Recommendation ITU-T J.1012

 Rec. ITU-T J.1012 (04/2020) i

Recommendation ITU-T J.1012

Embedded common interface for exchangeable CA/DRM solutions;

CA/DRM container, loader, interfaces, revocation

Summary

Recommendation ITU-T J.1012 is part of a multi-part deliverable covering the conditional

access/digital rights management (CA/DRM) container, loader, interfaces, revocation for the

embedded common interface for exchangeable CA/DRM solutions specification.

This ITU-T Recommendation is a transposition of ETSI standard ETSI GS ECI 001-3, and is a result

of a collaboration between ITU-T SG9 and ETSI ISG ECI. Modifications have been introduced to

clauses 2, 7.7.2.5.2, 9.4.4.6.2, 9.4.6.1, 9.5.2.2, 9.8.1, 9.8.2, 10.2, I-2 and to the Bibliography. Some

additional editorial corrections were necessary.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T J.1012 2020-04-23 9 11.1002/1000/13573

Keywords

CA, DRM, swapping.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13573
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T J.1012 (04/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents, which may be required to implement this Recommendation. However, implementers are cautioned

that this may not represent the latest information and are therefore strongly urged to consult the TSB patent

database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.1012 (04/2020) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 2

3 Definitions .. 5

3.1 Terms defined elsewhere .. 5

3.2 Terms defined in this Recommendation ... 5

4 Abbreviations and acronyms .. 8

5 ECI Certificate System ... 12

5.1 Introduction .. 12

5.2 ECI Certificates .. 13

5.3 ECI Revocation List ... 16

5.4 Certificate Chains and Revocation List Trees .. 18

5.5 Revocation tree sets and revocation data files .. 22

5.6 Large data item signatures .. 23

5.7 Root Certificates ... 23

6 ECI Host Loader ... 24

6.1 Introduction .. 24

6.2 Storage, verification and activation .. 25

6.3 ECI Host related file formats .. 31

6.4 ECI Host Image transport protocols ... 33

7 ECI Client Loader ... 40

7.1 Introduction .. 40

7.2 Discovery of ECI Clients .. 41

7.3 Storage, verification and activation .. 46

7.4 ECI Client Chain structure formats .. 47

7.5 ECI Platform Operation Chain formats .. 50

7.6 File formats ... 53

7.7. ECI Client resources transport protocols .. 56

7.8 Platform Operation ECI Client installation .. 68

8 Revocation .. 73

8.1 Introduction .. 73

8.2 CPE revocation ... 74

8.3 Generic revocation process ... 74

8.4 Revocation Lists based ECI Host Revocation .. 75

8.5 ECI Platform Operation Revocation .. 75

8.6 ECI Client Revocation .. 75

9 ECI Client interfaces ... 76

9.1 Introduction .. 76

9.2 ECI virtual machine interface ... 77

iv Rec. ITU-T J.1012 (04/2020)

 Page

9.3 Mechanism for ECI Client APIs ... 80

9.4 APIs for general ECI Host resources .. 85

9.5 APIs for ECI specific ECI Host resources ... 131

9.6 APIs for access to the ECI Host decryption resource 158

9.7 APIs for access to the ECI Host re-encryption resources 187

9.8 APIs for content property related resources ... 233

9.9 APIs for ECI Client and Application communication 254

10 Mandatory and optional ECI Host functionalities .. 259

10.1 Introduction .. 259

10.2 List of mandatory and optional ECI functionalities for different types of

CPE devices .. 259

Annex A – Cryptographical functions of the ECI host .. 261

A.1 Hash function .. 261

A.2 Asymmetrical cryptography ... 261

A.3 Symmetrical cryptography ... 261

A.4 Random number generation ... 261

Annex B – Interoperability parameters .. 262

B.1 Introduction .. 262

B.2 Revocation list length ... 262

B.3 ECI client image size .. 262

B.4 Broadcast carousel configuration parameters ... 262

Annex C – ECI Host API overview ... 263

Annex D – Forward compatibility of content property definitions ... 264

Appendix I – List of all available API messages in alphabetic order 266

Appendix II – Areas for further development .. 276

Bibliography... 278

 Rec. ITU-T J.1012 (04/2020) v

Introduction

This ITU-T Recommendation1 is a transposition of the ETSI standard [b- ETSI GS ECI 001-3] and

is a result of a collaboration between ITU-T SG9 and ETSI ISG ECI. Modifications have been

introduced to clauses 2, 7.7.2.5.2, 9.4.4.6.2, 9.4.6.1, 9.5.2.2, 9.8.1, 9.8.2, 10.2, I-2 and to the

Bibliography. Some additional editorial corrections were necessary.

The objective of this Recommendation is to facilitate interoperability and competition in electronic

communications services and, in particular, in the market for broadcast and audio-visual

devices. However other technologies are available and may also be appropriate and beneficial

depending on the circumstances in Member States.

Service and content protection realized by conditional access (CA) and digital rights management

(DRM) are essential in the rapidly developing area of digital broadcast and broadband services. This

includes the distribution of high definition (HD) and ultra high definition (UHD) content to various

types of customer premises equipment (CPE)2 in order to protect the business models of content

owners and service providers, including broadcasters and PayTV operators. While CA systems

primarily focus on the protection of content distributed via unidirectional networks, typically used in

broadcast environment, DRM systems originate from bidirectional network environments and permit

access to content on certified devices for authenticated users, with typically rich content rights

expressions. In practice, a clear distinction between CA and DRM functionalities is not feasible in all

cases and therefore in this Recommendation the term CA/DRM systems is used.

Currently implemented CA/DRM solutions, whether embedded or as detachable hardware, often

result in usage restrictions for service/platform providers on one side and consumers on the other.

The consequences for consumers are dependencies with regard to the applicable network, service and

content providers and the applied CPE suited for classical digital broadcasting, TV using the Internet

protocol (IPTV) or over-the-top (OTT) services. While CPEs with embedded platform-proprietary

CA or DRM functionality bind a customer to a specific platform operator, detachable hardware

modules allow the use of retail CPE, for example, set-top-boxes (STB) and integrated TV sets

(iDTV). Due to their form factor and cost, detachable hardware modules do not fulfil future demands,

especially those related to the consumption of protected content on tablets and mobile devices and

for cost-critical deployments.

Existing technologies thus bind the freedom of many players in the digital multimedia content

markets. Due to technological progress, innovative, software-based CA/DRM solutions become

feasible. Maximizing interoperability while maintaining a high level of security, these solutions

promise to meet upcoming demands in the market, allow for new businesses, and broaden consumer

choice with respect to content consumption via broadcast and broadband connections.

It is in consumers' interest that the CPEs they purchased for their own use are available for further

use after a move or a change of network provider and that those devices can be utilized for services

of different commercial video portals. This can be achieved by the implementation of interoperable

CA and DRM mechanisms inside CPEs based on an appropriate security architecture. Further

fragmentation of the market for CPEs can only be prevented and competition encouraged by ensuring

solutions for consumer-friendly and flexible exchangeability of CA and DRM systems, associated

with a state-of-the-art security environment.

It is in the platform operator's interest that security technology can be deployed flexibly and managed

easily across various networks and on all kinds of devices. The advantage of updating existing devices

with the latest security systems in a seamless way provides unparalleled business opportunities.

1 Several areas for further development have been identified in Appendix II.

2 The use of boldface in the text of this Recommendation indicates terms with definitions specific to the

context of the embedded common interface that may differ from common use.

vi Rec. ITU-T J.1012 (04/2020)

An ECI Ecosystem as specified in this Recommendation, according to the ECI multi-part

deliverable, addresses important attributes, such as flexibility and scalability due to software-based

implementation, exchangeability fostering a future-proof solution and enabling innovation. Further

aspects are applicability to content distributed via different types of networks, including classical

digital broadcasting, IPTV and OTT services. The ECI system specification of an open eco-system,

fostering market development, provides the basis for exchangeability of CA and DRM systems in

CPEs, at the lowest possible costs for the consumers and with minimal restrictions for CA or DRM

vendors to develop their target products for the PayTV market.

In addition to part 4 of this multipart deliverable, which addreses the virtual machine, and Part 5,

which addresses advanced security, this Recommendation, which constitutes Part 3, specifies all the

necessary elements that are essential for the download and exchange of CA/DRM clients (ECI

Clients) and their execution environment (ECI Host) under a trusted environment, including

communication with necessary functional entities via APIs, which are specified in detail.

 Rec. ITU-T J.1012 (04/2020) 1

Recommendation ITU-T J.1012

Embedded common interface for exchangeable CA/DRM solutions;

CA/DRM container, loader, interfaces, revocation

1 Scope

The architecture of the ECI system is defined in [ITU-T J.1011]; refer also to [b-ETSI GS ECI

001-1]. The ECI system is based on requirements as defined in [ITU-T J.1010]; refer also to [b-ETSI

GS ECI 001-2]. This Recommendation specifies the core functionality of an ECI Ecosystem,

including CA/DRM Container, Loader, Interfaces and Revocation details; see also [b-Illgner]. A

major advantage and innovation of the ECI Ecosystem, compared with currently deployed systems,

is a complete software-based architecture for the loading and exchange of CA/DRM systems,

avoiding any detachable hardware modules. Software containers provide a secure ("Sandbox")

environment for either CA or DRM kernels, hereafter named as ECI Clients, together with their

individual Virtual Machine instances. Necessary and relevant application programming interfaces

(API) between ECI Clients and ECI Host ensure that multiple ECI Clients can be operated in a

secure operation environment and completely isolated from the rest of the CPE firmware and are

specified in full details. The installation and exchange of an ECI Host as well as multiple ECI Clients

is the task of the ECI Loader, which is initially loaded by a chip loader. ECI Host and ECI Clients

are downloaded via the digital video broadcasting (DVB) data carousel for broadcast services and/or

via IP-based mechanisms from a server in case of broadband access. This process is embedded in a

secure and trusted environment, providing a trust hierarchy for installation and exchange of ECI Host

and ECI Clients and thus enabling an efficient protection against integrity- and substitution attacks.

For this reason, the ECI Ecosystem integrates an advanced security mechanism, which relies on an

efficient and advanced processing of control words (CWs), specified as Key Ladder block and

integrated in a system-on-chip (SoC) hardware in order to provide the utmost security necessary for

ECI compliance. ECI-specific advanced security functions also play a key role in a re-encryption

process in case of stored protected content and/or associated with export of protected content to an

ECI-compliant or non-compliant external device. An advanced micro DRM system provides the

necessary functionality and forms an integral part of such a concept. Advanced security functionality

is relevant also in case of revocation of a CPE or a specific ECI Client. Related APIs are specified

in this Recommendation, while advanced security is covered in detail in [ITU-T J.1014] and

[ITU-T J.1015], refer also to [b-ETSI GS ECI 001-5-1] and [b-ETSI GS ECI 001-5-2].

A number of APIs characterize the ECI Ecosystem, guaranteeing communication with relevant

associated entities, e.g., with ECI Loaders, the import and export of protected content, advanced

security, decryption and encryption, local storage facilities and watermarking. Additional APIs are

available for ECI Client man-machine-interface (MMI) or for an optional Smart Card reader.

The exchange of ECI Clients is initiated by the User or may be requested by an Operator in case of

necessary updates. A minimum of two ECI Clients are supported, with two additional ECI Clients

as far as local storage on a personal video recorder (PVR) is available or for export reasons.

This Recommendation covers specification details in the following clauses:

The ECI certificate system is specified in clause 5, covering Certificates for various purposes for

ECI Host Loader, ECI Client Loader and ECI Operator Certificates, including the definition of

these Certificates and associated Revocation List, their composition into chains and the root

certificate structure.

The ECI Host Loader is covered in clause 6, where the ECI Host loading process addresses the

storage of an image, verification of the authenticity of the image by the CPE using ECI TA provided

authentication data, and the subsequent activation of the image. This includes specification of the file

format, th etransport protocol and the Operator specific revocation of the ECI Host Images.

2 Rec. ITU-T J.1012 (04/2020)

Clause 7 covers all specification details with regard to the ECI Client Loader based on the fact that

the ECI Host can download, store and activate ECI Client Images and accompanying data. The ECI

Client loading process can be split up into several steps ranging from discovery process to download

and initialization of ECI Clients, allowing the download process to be performed using data from the

broadcast stream or from the internet.

Clause 8 deals with revocation specification details including functionality to selectively exclude the

delivery of services to CPEs based on the ECI TA status of the CPE hardware, the ECI Host, other

Platform Operations and ECI Clients loaded.

Detailed specifications of ECI Client interfaces can be found in clause 9, covering very

comprehensive specification details necessary for the ECI eco-system, APIs for general ECI Host

resources, ECI-specific ECI Host resources, ECI Host decryption resources, ECI Host

re-encryption resources, content protection-related resources and ECI Client-to-ECI Client-related

resources.

Finally, clause 10 deals with mandatory and optional ECI Host functionalities.

This ECI core specification only applies to the reception and further processing of content, which is

controlled by a conditional access and/or digital rights management system and has been encrypted

by the service provider.

Content that is not controlled by a conditional access and/or DRM system is not covered by this

Recommendation.

This Recommendation is intended to be used in combination with a contractual framework (licence

agreement), compliance and robustness rules and appropriate certification process agreements under

the control of a trust authority, which are not subject to technical specifications as represented by ECI

Group Specifications. Some of these basic aspects can be found in an informative annex to [b-ETSI

GS ECI 001-6], related to trust environment, which specifies the technical mechanisms and relations

concerning a trusted environment.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T J.1010] Recommendation ITU-T J.1010 (2016), Embedded common interface for

exchangeable CA/DRM solutions; Use cases and requirements.

[ITU-T J.1011] Recommendation ITU-T J.1011 (2016), Embedded common interface for

exchangeable CA/DRM solutions; Architecture, definitions and overview.

[ITU-T J.1013] Recommendation ITU-T J.1013 (2020), Embedded common interface for

exchangeable CA/DRM solutions; The virtual machine.

[ITU-T J.1014] Recommendation ITU-T J.1014 (2020), Embedded common interface for

exchangeable CA/DRM solutions; Advanced security – ECI-specific

functionalities.

[ITU-T J.1015] Recommendation ITU-T J.1015 (2020), Embedded common interface for

exchangeable CA/DRM solutions; The advanced security system – Key

ladder block.

 Rec. ITU-T J.1012 (04/2020) 3

[ITU-T T.871] Recommendation ITU-T T.871 (2011), Information technology – Digital

compression and coding of continuous-tone still images: JPEG File

Interchange Format (JFIF).

[ISO/IEC 23001-7] ISO/IEC 23001-7:2015, Information technology – MPEG systems

technologies – Part 7: Common encryption in ISO base media file format

files.

[ISO/IEC 23009-1] ISO/IEC 23009-1:2014, Information technology – Dynamic adaptive

streaming over HTTP (DASH) - Part 1: Media presentation description and

segment formats.

[ISO/IEC 13818-1-1] ISO/IEC 13818-1-1:2007, Information technology – Generic coding of

moving pictures and associated audio information – Part 1: Systems.

[NIST Block 2001] National Institute of Standards and Technology, 2001, Recommendation for

Block Cipher Modes of Operation Methods and Techniques.
<https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-methods-and-
techniques>

[NIST FIPS 197] NIST U.S. FIPS PUB 197 (FIPS 197) (2001), Advanced Encryption

Standard (AES).

[ISO/IEC 21320] ISO/IEC 21320, Information technology - Document Container File –

Part 1: Core.

[IETF RFC 4122] IETF RFC 4122 (July 2015), A Universally Unique IDentifier (UUID) URN

Namespace.

[CEN EN 50221] CEN EN 50221 (1997), "Common Interface Specification for Conditional

Access and other Digital Video Broadcasting Decoder Applications.

[ETSI TS 102 006] ETSI TS 102 006, Digital Video Broadcasting (DVB); Specification for

System Software Update in DVB Systems.

[ETSI EN 301 192] ETSI EN 301 192, Digital Video Broadcasting (DVB); DVB specification

for data broadcasting.

[ETSI TR 101 202] ETSI TR 101 202, Digital Video Broadcasting (DVB); Implementation

guidelines for Data Broadcasting.

[ISO/IEC 13818-6] ISO/IEC 13818-6, Information technology – Generic coding of moving

pictures and associated audio information – Part 6: Extensions for

DSM-CC.

[ETSI EN 300 468] ETSI EN 300 468, Digital Video Broadcasting (DVB); Specification for

Service Information (SI) in DVB systems.

[ETSI TS 101 162] ETSI TS 101 162, Digital Video Broadcasting (DVB); Allocation of

identifiers and codes for Digital Video Broadcasting (DVB) systems.

[ETSI TS 101 211] ETSI TS 101 211, Digital Video Broadcasting (DVB); Guidelines on

implementation and usage of Service Information (SI).

[IETF RFC 768] IETF RFC 768, User Datagram Protocol (UDP).

[IETF RFC 791] IETF RFC 791, Internet Protocol (IP).

[IETF RFC 793] IETF RFC 793, Transmission Control Protocol (TCP).

[IETF RFC 1034] IETF RFC 1034, Domain names – Concepts and Facilities.

[IETF RFC 1035] IETF RFC 1035, Domain names – Implementation and Specification.

[IETF RFC 8200] IETF RFC 8200, Internet Protocol, Version 6 (IPv6) Specification.

https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-methods-and-techniques
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-methods-and-techniques

4 Rec. ITU-T J.1012 (04/2020)

[IETF RFC 1123] IETF RFC 1123, Requirements for Internet Hosts -- Application and

Support.

[IETF RFC 952] IETF RFC 952 DOD Internet Host Table Specification.

[ISO/IEC 7816-1] ISO/IEC 7816-1, Identification cards – Integrated circuit cards – Part 1:

Cards with contacts – Physical Characteristics.

[ISO/IEC 7816-2] ISO/IEC 7816-2, Identification cards – Integrated circuit cards – Part 2:

Cards with contacts – Dimensions and location of the contacts.

[ISO/IEC 7816-3] ISO/IEC 7816-3, Identification cards - Integrated circuit cards – Part 3:

Cards with contacts – Electrical Interface and transmission protocols.

[ETSI TS 103 205] ETSI TS 103 205 (V1.2.1) (2015), Digital Video Broadcasting (DVB);

Extensions to the CI Plus™ Specification.

[ISO/IEC 7816-5] ISO/IEC 7816-5, Identification cards – Integrated circuit cards - Part 3:

Cards with contacts – Registration of application providers.

[ISO/IEC 7810] ISO/IEC 7810, Identification cards – Physical characteristics.

[ISO/IEC 23001-9] ISO/IEC 23001-9:2014, Information Systems – MPEG system technologies -

Part 9: Common Encryption of MPEG2 transport streams.

[ETSI TS 103 285] ETSI TS 103 285 (2015), Digital Video Broadcasting (DVB); MPEG-DASH

Profile for Transport of ISO BMFF Based DVB Services over IP Based

Networks.

[ISO/IEC 14496-12] ISO/IEC 14496-12:2015, Information technology - Coding of audio-visual

objects - Part 12: ISO base media format.

[ETSI ETR 289] ETSI ETR 289 (1996), Digital Video Broadcasting (DVB); Support for use

of scrambling and Conditional Access (CA) within digital broadcasting

systems.

[ETSI TS 103 127] ETSI TS 103 127, Digital Video Broadcasting (DVB); Content Scrambling

Algorithms for DVB-IPTV Services using MPEG2 Transport Streams.

[ETSI TS 100 289] ETSI TS 100 289, Digital Video Broadcasting (DVB); Support for use of the

DVB Scrambling Algorithm version 3 within digital broadcasting systems.

[IETF RFC 7230] IETF RFC 7230 (2014), Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing.

[IETF RFC 7231] IETF RFC 7231 (2014), Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content.

[IETF RFC 5246] IETF RFC 5246 (2008), The Transport Layer Security (TLS) Protocol

Version 1.2.

[IETF RFC 5288] IETF RFC 5288 (2008), AES Galois Counter Mode (GCM) Cipher Suites

for TLS.

[IETF RFC 6066] IETF RFC 6066 (2011), Transport Layer Security (TLS) Extensions:

Extension Definitions.

[IETF RFC 5280] IETF RFC 5280 (2008), Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile.

[IETF RFC 6818] IETF RFC 6818 (2013), Updates to the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

 Rec. ITU-T J.1012 (04/2020) 5

[IETF RFC 8446] IETF RFC 8446 (2018), The Transport Layer Security (TLS) Protocol

Version 1.3.

[W3C PNG] W3C Recommendation (2003), Portable Network Graphics (PNG)

Specification (Second Edition).

[IETF RFC 6151] IETF RFC 6151 (2011), Updated Security Considerations for the MD5

Message-Digest and the HMAC-MD5 Algorithms.

[IETF RFC 6125] IETF RFC 6125 (2011), Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using

X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS).

[ISO/IEC 8859-1] ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded

graphic character sets, Part 1: Latin alphabet No. 1.

[ISO 3166-1] ISO 3166-1:2006, Codes for the representation of names of countries and

their subdivisions – Part 1: Country codes.

[ISO 639-2] ISO 639-2:1998, Codes for the representation of names of languages –

Part 2: Alpha-3 code.

[ISO/IEC 62766-5-2] ISO/IEC 62766-5-2:2017, Consumer terminal function for access to IPTV

and open multimedia services – Part 5-2: Web standards TV profile.

[W3C GIF V89a] W3C, Graphics Interchange Format version 89a

[ISO/IEC 7816-4] ISO/IEC 7816-4, Identification cards – Integrated circuit cards – Part 4:

Organization, security and commands for interchange.

3 Definitions

3.1 Terms defined elsewhere

None.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

The use of terms in bold and those starting with capital characters in this Recommendation shows

that those terms are defined with an ECI specific meaning that may deviate from the common use of

those terms.

3.2.1 Advanced Security System (AS system): Function of an ECI compliant CPE, which

provides enhanced security functions (hardware and software) for an ECI Client.

3.2.2 AS slot: Resources of the advanced security block provided exclusively to an ECI client by

the ECI Host.

3.2.3 AS slot session: Resources and computing in an AS slot related to the de-cryption or

re-encryption of a content element.

3.2.4 Brother: Other Child of the same Father.

NOTE – Father, Children, Brother refer to entities that manage Certificates.

3.2.5 Certificate: Data structure as defined in clause 5 of this Recommendation with a

complementary secure digital signature that identifies an Entity.

NOTE – The holder of the secret key of the signature attests to the correctness of the data – authenticates it –

by signing it with its secret key. Its public key can be used to verify the data.

6 Rec. ITU-T J.1012 (04/2020)

3.2.6 Certificate Chain: List of Certificates that authenticate each other up to and including a

root revocation list.

3.2.7 certificate processing subsystem (CPS): Subsystem of the ECI Host that provides

Certificate verification processing and providing additional robustness against tampering.

3.2.8 child, children: Entity (entities) referred to by a Certificate signed by a (common) Father.

NOTE – Father, Children, Brother are referring to entities that manage Certificates: initialization data and

software that is used to start the SoC of a CPE.

3.2.9 content protection system: System in an ECI Ecosystem that employs cryptographic

techniques to manage access to content and services.

NOTE – The term may be interchanged frequently with the alternate service protection system. Typical

systems of this sort are either conditional access systems (CAS), or digital rights management systems (DRM).

3.2.10 customer premises equipment (CPE): Media receiver which has implemented ECI,

allowing the User to access digital media services.

3.2.11 CPE manufacturer: A company that manufactures ECI compliant CPEs.

3.2.12 ECI (embedded CI): Architecture and the system specified in the ETSI ISG "Embedded

CI", which allows the development and implementation of software-based swappable ECI Clients in

customer premises equipment (CPE) and thus provides interoperability of CPE devices with respect

to ECI.

3.2.13 ECI application: HTML based application hosted on an ECI Client, and running in a

dedicated browser session for the purpose of interacting with the User and providing User input to

the ECI Client.

3.2.14 ECI chip manufacturer: A company providing systems on a chip that implement ECI

specified chipset functionality.

3.2.15 ECI client (embedded CI client): The implementation of a CA/DRM client which is

compliant with the Embedded CI specifications.

NOTE – It is the software module in a CPE, which provides all means to receive in a protected manner, and

to control the execution of a consumer's entitlements and rights concerning the content that is distributed by a

content distributor or operator. It also receives the conditions under which a right or an entitlement can be

used by the consumer, and the keys to decrypt the various messages and content.

3.2.16 ECI client image: File with software as VM code, and initialization data required by the ECI

Client Loader.

3.2.17 ECI client loader: The software module part of the ECI Host, which allows downloading,

verifying and installing new ECI Client software in an ECI Container of the ECI Host.

3.2.18 ECI container: A single VM instance with complementary support libraries and ECI API

that permits a single instance of an ECI Client to run on a CPE.

3.2.19 ECI ecosystem: A commercial operation consisting of a TA and several platforms and ECI

compliant CPEs in the field.

3.2.20 ECI host: The hardware and software system of a CPE, which covers ECI related

functionalities and has interfaces to an ECI Client.

NOTE – The ECI Host is one part of the CPE firmware.

3.2.21 ECI host image: File(s) with software and initialization data for an ECI environment

NOTE 1 – An ECI Host image may consist of a number of ECI Host Image files.

NOTE 2 – It may also contain other software that does not cause interference with or permit undesirable

observation of the ECI Host.

 Rec. ITU-T J.1012 (04/2020) 7

3.2.22 ECI host loader: software module, which allows downloading, verifying and installing ECI

Host software into a CPE.

NOTE – In a multi-stage loading configuration this term is used to refer to all security critical loading functions

involved in loading the ECI Host.

3.2.23 ECI root certificate: Certificate which issues to verify items approved by an ECI TA

3.2.24 entity: organization (e.g., manufacturer, operator or security vendor) or real world item

(e.g., ECI Host, Platform Operation or ECI Client) identified by a unique ID in an ECI Ecosystem.

3.2.25 export chain: Chain of certificates used for authorization of export to one or a group of

Micro DRM Systems.

3.2.26 export connection: authenticated relation between an ECI Client that can decrypt content

and a Micro Server that can re-encrypt content.

3.2.27 export group: Group of Micro DRM-Systems, to which export is permitted

3.2.28 father: Signatory of the Certificate of the Child Entity.

NOTE – Father, Children, Brother are referring to entities that manage Certificates.

3.2.29 image series: Series of images for an ECI Host or an ECI Client that are different depending

on the CPE_id of the CPE, nevertheless represent (nearly) identical functionality.

3.2.30 import chain: Chain from the POPK of an ECI Client to an Entity that represents an export

system or an Export Group.

NOTE – An Export Chain and a matching Import Chain can be used to authenticate a Micro Server session

importing content to an exporting ECI Client.

3.2.31 import connection: Approved connection from an ECI Client to a Micro Server that

permits it to import decrypted content for subsequent re-encryption.

3.2.32 manufacturer: An entity which develops and sells CPEs, which accommodate an

implementation of the ECI system and allows ECI Hosts and ECI Clients to be installed per software

download.

3.2.33 media handle: Reference to a single program decryption or re-encryption processing setup

between an ECI Client and an ECI Host.

3.2.34 micro client: ECI Client or non-ECI client that can decrypt content which was re-encrypted

by a Micro Server.

3.2.35 micro server: ECI Client that can import decrypted content, re-encrypt this content and

authenticate a specific ECI Client or group of ECI Clients as the Target for subsequent decryption

3.2.36 micro DRM system: Content Protection System that re-encrypts content on a CPE with a

Micro Server and that permits decoding of that re-encrypted content by authenticated Micro Clients.

NOTE – Micro Server and Micro Clients being provisioned by a Micro DRM System operator.

3.2.37 operator: Organization that provides Platform Operations that is enlisted with the ECI TA

for signing the ECI Ecosystem.

NOTE – An Operator may operate multiple Platform Operations.

3.2.38 platform operation (PO): specific instance of a technical service delivery operation having

a single ECI identity with respect to security

3.2.39 re-encryption session: A process controlled by a Micro Server of importing content from

an Import Connection, re-encrypting it and producing the decryption information necessary by the

authenticated Target to subsequently decrypt it.

8 Rec. ITU-T J.1012 (04/2020)

3.2.40 request: A message from a sender to a receiver asking for certain information or to perform

certain operation within an ECI Ecosystem, which is specified in the data fields of that request.

NOTE – More details are given in clause 9.2.3.

3.2.41 response: A message within an ECI Ecosystem answering a request.

NOTE – More details are given in clause 9.2.3.

3.2.42 revocation list (RL): A list of Certificates that have been revoked and therefore should no

longer be used.

3.2.43 root: A public key or Certificate containing a public key that serves as the basis for

authenticating a chain of Certificates.

3.2.44 secure authenticated channel (SAC): A communication path (channel) that has been

established between two Entities where the Entities have securely identified themselves to each other

(authenticated) and agreed on an encryption of data transferred between them (secure).

3.2.45 service: The content that is provided by a Platform Operation.

NOTE – In the context of ECI only protected content is considered.

3.2.46 sender public key (SPK): The public key of the sender of the encrypted content used in an

ECI Ecosystem to verify the origin of the signature of the first key of a key chain used to decrypt the

content, the sender being part of a Platform Operation.

3.2.47 smart card: A detachable hardware security device used by several CA or DRM providers

to enhance the level of security of their products in an ECI Ecosystem.

3.2.48 target: micro client or a group of Micro Clients for which content is re-encrypted by a

Micro Server.

3.2.49 trust authority (TA): An organization governing all rules and regulations that apply to a

certain implementation of ECI and targetted at a certain market.

NOTE – The Trust Authority has to be a legal entity to be able to achieve legal claims. The Trust Authority

needs to be impartial to all players in the ECI Ecosystem that it is governing.

3.2.50 Trusted Third Party (TTP): Security services provider, which issues Certificates and keys

to compliant Manufacturers of the relevant components of an ECI-system

NOTE – It is under the control of the Trust Authority (TA).

3.2.51 user: A person who operates an ECI compliant device.

3.2.52 VM instance: Instantiation of VM established by an ECI Host that appears to an ECI Client

as an execution environment tooperate in.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

4CC Four Character Code (also FourCC)

3DES Triple-DES

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AES-GCM AES Galois Counter Mode

AID Application IDentifier

AK Authentification Key

APDU Application Protocol Data Unit

 Rec. ITU-T J.1012 (04/2020) 9

API Application Programming Interface

AS Advanced Security

ASCII American Standard Code for Information Interchange

ATR Answer to Reset

BAT Bouquet Association Table

BMFF Base Media File Format

BSD Berkeley Software Distribution

CA Conditional Access

CA/DRM Conditional Access/Digital Rights Management

CAT Conditional Access Table

CBC Cipher Block Chaining

CENC Common Encryption

CI Common Interface

CP Content Property

CPE Customer Premises Equipment

CPS Certificate Processing Subsystem

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CSA Common Scrambling Algorithm

CSA1 Common Scrambling Algorithm, first version

CSA3 Common Scrambling Algorithm, third version

CSS W3C Cascading Style Sheets

CSS3 CSS version 3

CTR Counter Mode

CW Control Word

Dash Dynamic Adaptive Streaming over HTTP

DDB Download Data Block

DDOS Distributed Denial of Service

DES Data Encryption Standard

DHE Ephemeral Diffie-Hellman

DII Download Info Indication

DLNA Digital Living Network Alliance

DNS Domain Name System

DRM Digital Rights Management

DSI Download Server Initiate

DSMCC Digital Storage Media Command and Control

10 Rec. ITU-T J.1012 (04/2020)

DVB Digital Video Broadcasting

EAC Export Authorization Certificate

EAOC Export Authorization Operator Certificate

ECM Entitlement Control Message

EGC Export Group Certificate

EIT Event Information Table

EMM Entitlement Management Message

ES Elementary Stream

ESC Export System Certificate

GCM Galois/Counter Mode

GMT Greenwich Mean Time

HD High Definition

HDCP High-bandwidth Digital Content Protection

HTML Hyper Text Mark-up Language

HTTP Hypertext Transfer Protocol

HTTP(S) Hypertext Transfer Protocol Secure

iDTV integrated Digital TV receiver

IFSC Information Field Size of Card

IFSD Information Field Size of Device

IP Internet Protocol

IPTV TV using the Internet Protocol (IP)

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISO International Organization for Standardisation

ISOBMFF ISO Base Media File Format

LAN Local Area Network

LSB Least Significant Bit

MIME Multipurpose Internet Mail Extensions

MMI Man Machine Interface

MP4 Digital Multimedia Container Format (also called MPEG-4 part 14)

MPD Media Presentation Description

MPEG Motion Picture Experts Group

MSB Most Significant Bit

N.A. not applicable

NV memory Non-Volatile memory

NV Non-Volatile

OS Operating System

 Rec. ITU-T J.1012 (04/2020) 11

OTT Over The Top (over the open Internet)

OUI Organizationnally Unique Identifier

PAT Program Association Table

PayTV Pay Television

PES Packet Elementary Stream

PID MPEG Packet Identifier

PIN Personal Identification Number

PKIX Public-Key Infrastructure X.509

PMT Program Map Table

PO Platform Operation

POC Platform Operation Certificate

POPK Platform Operation Public Key

PPS Protocol and Parameter Selection

PSI Program Specific Information

PSSH Protection System Specific Header

PVR Personal Video Recorder

RAM Random Access Memory

RFU Reserved for Future Use

RL Revocation List

SAC Secure Authenticated Channel

SDT Service Description Table

SHA Secure Hash Algorithm

SI Service Information

SIM Subscriber Identity Module

SoC System on Chip

SPK Signature Public Key (also known as Signature Verification Key)

SSK Signature Secret Key (also known as Signature Private Key)

SSL Secure Sockets Layer

SSU System Software Update

STB Set Top Box

TA Trust Authority

TCK The Check byte

TCP Transmission Control Protocol

TLS Transport Layer Security

TPC Transmission Control Protocol

TPDU Transport Protocol Data Unit

TPEGC Third Party Export Group Certificate

12 Rec. ITU-T J.1012 (04/2020)

TS Transport Stream

TTP Trusted Third Party

TV TeleVision

UDP User Datagram Protocol

UHD Ultra High Definition

UI User Interface

uimsbf unsigned integer, most significant bit first

UNT Update Notification Table

URI Usage Rights Information

URL Uniform Resource Locator

USB Universal Serial Bus

UTF UCS (Universal Character Set) Transformation Format

UUID Universally Unique Identifier

VM Virtual Machine

WAN Wide Area Network

WEB World Wide Web

5 ECI Certificate System

5.1 Introduction

5.1.1 Scope

ECI uses Certificates for various purposes, like ECI Host Loader, ECI Client Loader and ECI

Operator Certificates. The definition of these Certificates and associated Revocation List, as well

as their composition into chains and the Root Certificate structure is defined in this clause. The

definition uses a compact binary format which is specified in this Recommendation amenable for

hardware implementation and suitable cryptography, and a simple signalling system for future

versions and extensions.

5.1.2 Notation and conventions of fields

The data structure definitions below map directly onto a sequence of bytes. Any cryptography

function is defined to operate on the byte sequence representation.

The data definition follows a natural alignment for 16-byte and 32-byte fields to simplify data

processing on 32-bit CPU core. Padding is used as a generic field to indicate the required stuffing

fields for this purpose. It uses the function padding(n_bytes) with n_bytes being the alignment

boundary in number of bytes from the start of the defined data structure. Padding fields shall be

skipped on interpretation of data structures. The value of padding field shall be set to 0.

Any field defined by another data structure through a type definition has no mnemonic. In general,

no field length definition is given for such a field.

5.1.3 Extension field

Many of the more substantial data structures defined have an extension field that permits future

(backward compatible) extensions to be added. The definition is shown in Table 5.1.3-1.

 Rec. ITU-T J.1012 (04/2020) 13

Table 5.1.3-1 – Extension field definition

Syntax No. of bits Mnemonic
Extension_Field {

 padding(4)

 length 32 uimsbf

 for (i=0; i<length; i++) {

 extension_byte 8 uimsbf

 }

}

Semantics:
length: integer Number of bytes in the loop following. The value should be a multiple of 4, and may be 0.

extension_byte: byte Data field with information that may be ignored by implementations based on versions of
the present document that did not define the content of this field.

5.2 ECI Certificates

The ECI Certificate has a straightforward structure. The ID of the Certificate is simply a binary

number intended only for machine interpretations unlike X.509 certificates used on the Internet.

The generic layout of a Certificate is shown in Figure 5.2-1

Figure 5.2-1 – ECI Certificate format version 1

The ECI Certificate format is defined in Table 5.2-1.

Any signed item shall use a distinct 8-byte start field, the first byte being the version format of the

item signed, then (for version 1 items) 3 bytes of padding, followed by the second 4 bytes representing

a unique ID in the context of the signing entity's secret key.

14 Rec. ITU-T J.1012 (04/2020)

Table 5.2-1 – ECI Certificate definition

Syntax No. of bits Mnemonic
ECI_Certificate_Id {
 padding(4)
 Type 4 uimsbf
 entity_id 20 uimsbf
 Version 8 uimsbf
}

ECI_Public_Key_v1 {
 byte modulus[256] 2 048
}

ECI_Certificate_Data_v1 {
 ECI_Certificate_Id id 32 uimsbf
 Public_Key_v1 public_key 2 304
 Extension_Field extension
}

ECI_Signature_v1 {
 byte signature[256] 2 048 uimsbf
}

ECI_Certificate {
 format_version 8 uimsbf
 if (version == 0x01) {
 ECI_Certificate_Data_v1 data
 ECI_Signature_v1 signature
 }
}

Semantics:
format_version: integer Values 0x00, 0x02..0xFF: reserved.

Value 0x01: ECI Certificate format version 1.

Implementations that do not recognize a Certificate type shall not process it and return

fail on validation requests.

id: integer Certificate Identification in the form of a 32 bit number which is unique in the context of

the Certificate Father (signatory of the Certificate). Values 0x00000 and 0xF0000-

0xFFFFF are reserved.

type: integer type defines the type of the Entity, like Manufacturer, ECI Host, Operator, etc. in the

context of the signatory (Father). Certificates with a type value 0x0 .. 0x7 shall require

a Revocation List for verification of Children. Type values of 0x8 and above shall not

require a Revocation List for verification of Children (see Table 5.2-2).

entity_id: integer Defines the number of the Entity. entity_id carries various sub formats as defined per

Certificate type. Unless otherwise defined, entity_id's are unique in the context of the

Father \(signatory of the Certificate or Revocation List).

version Version number of the entities Certificate, assigned in ascending order (typically

incrementing by 1).

extension: Extension_Field Data in this field shall be ignored by processing functions not defined to interpret this.

This field may be used for specific data in specific application of the generic Certificate

definition. Its interpretation is context dependent. This field shall not be used for non

ECI applications unless it is explicitly specified to be permitted.

public_key:

ECI_Public_Key_v1

Public key (assigned by Father) of the Entity of this Certificate.

data: ECI_Certificate_Data This is the data section of the Certificate.

signature: byte[256] The signature field contains the byte sequence representation of the signature of the

Father of the Certificate, using the cryptographical functions as defined in Annex A.

Any verification of an ECI Certificate shall include the verification of the total length of the

Certificate in terms of the accumulation of the field definitions.

Generic type values are used for most Certificates and Revocation Lists, so as to assure that all

assigned values are unique. Table 5.2-2 presents the overview of all ECI TA signed data.

 Rec. ITU-T J.1012 (04/2020) 15

Table 5.2-2 – ID assignment and Fathers for signed items

Father Type ID field Description

Root 0x0 0xFFFFF Root

Root 0x1 Manufacturer id,<> 0xFxxxx Manufacturer Certificate

Root 0x1 Manufacturer RL id, == 0xFxxxx Manufacturer Revocation List

Manufacturer 0x0 Host_id, <> 0xFxxxx ECI Host Certificate

Manufacturer 0x0 Host RL, == 0xFxxxx ECI Host Revocation List

Host 0x8 Host Image id ECI Host Image

Host 0x9 Host Image Series id ECI Host Image Series Certificate

Host Image Series 0x9 Image Target Id ECI Host series image

Root 0x2 Vendor id, <> 0xFxxxx Security Vendor Certificate

Root 0x2 Vendor RL id, == 0xFxxxx Security Vendor Revocation List

Vendor 0x0 Client id, <> 0xFxxxx ECI Client Certificate

Vendor 0x0 Client RL, == 0xFxxxx ECI Client and ECI Client series

Revocation List

Client 0x0 Client id ECI Client Image

Client 0x1 Client series id Client series Certificate

Client series 0x8 Image Target Id Client series image

Root 0x3 Operator id, <> 0xFxxxx Operator Certificate

Root 0x3 Operator RL id, == 0xFxxxx Operator Revocation List

Operator 0x0 Platform Operation id, <> 0xFxxxx Platform Operation Certificate

Operator 0x0 Platform Operation RL id, ==

0xFxxxx

Platform Operation RL

Platform Operation 0x0 Platform Operation Client Image

Cosignature id <> 0xFxxxx

Platform Operation Client image

cosignature

Platform Operation 0x0 Platform Operation Client Image RL

id == 0xFxxxx

Platform Operation Client Image

Revocation List

Platform Operation or Target

Group

0x0 Target Group id, <> 0xFxxxx Target Group, defined in [ITU-T J.1014]

Platform Operation or Target

Group

0x0 Target RL id, == 0xFxxxx Target Revocation list, defined in [ITU-T

J.1014]

Platform Operation or Target

Group

0x8 Micro Client id, <> 0xFxxxx Micro Client, defined in [ITU-T J.1014]

Platform Operation, Export

Group, Third Party Export

Group

0x4 Export Group id, <> 0xFxxxx Export Group

Platform Operation, Export

Group, Third Party Export

Group

0x4 Export Group RL id, ==0xFxxxx Export Group Revocation List

Export Group 0x5 Third Party Export Group id, <>

0xFxxxx

Third Party Export Group

Export Group 0x8 Export Group RL id, == 0xFxxxx Export Group Revocation List

Export Group,

Third Party Export Group

0xE Export System id, <> 0xFxxxx Export System

Root 0x4 Export Authorization Operator id,

<> 0xFxxxx

Export Authorization Operator

Root 0x4 Export Authorization Operator id,

== 0xFxxxx

Export Authorization Operator

Revocation List

Export Authorization

Operator,

Export Authorization

0x0 Export Authorization id, <> 0xFxxxx Export Authorization (with Children)

Export Authorization

Operator,

Export Authorization

0x0 Export Authorization id, == 0xFxxxx Export Authorization Revocation List

Others Others Reserved

NOTE – ECI functions may transport and process data field and signature sections of a Certificate or another signed

data item separately.

16 Rec. ITU-T J.1012 (04/2020)

5.3 ECI Revocation List

A Revocation List shall be signed by the same Entity that originally signed the Certificate being

revoked. The Revocation List is a list of identifiers of entities defining the minimum acceptable

version for their Certificates. In case an entry in a revocation list is a Certificate that has an

associated revocation list(s) there is a minimum version number for the Revocation List to be applied

with that Certificate. The layout of an ECI Revocation List is defined in Figure 5.3-1.

Figure 5.3-1 – Revocation List structure

ECI Host implementations shall store the latest (is defined in rl_version) Revocation List they

receive for an Entity that they manage, regardless of the source of the data.

The Revocation List (ECI_RL) is defined in Table 5.3-1.

 Rec. ITU-T J.1012 (04/2020) 17

Table 5.3-1 – Revocation List definition

Syntax No. of bits Mnemonic

ECI_RL_Id {

 padding(4)

 Type 4 uimsbf

 indicator = 0xF 4 uimsbf

 version 24 uimsbf

}

ECI_Revocation_List_v1 {

 base_entity_version 8 uimsbf

 base_rl_version 24 uimsbf

 number_of_entities 24 uimsbf

 for (i=0; i<number_of_entities; i++){

 entity_type 4 uimsbf

 entity_id 20 uimsbf

 min_entity_version 8 uimsbf

 min_rl_version 24 uimsbf

 }

}

ECI_RL {

 format_version 8 uimsbf

 if (format_version == 0x01){

 ECI_RL_Id rl_id 32+24 uimsbf

 root_version_indicator 1 uimsbf

 padding(1) 7 uimsbf

 root_version 8 uimsbf

 min_root_version 8 uimsbf

 padding(4)

 ECI_Revocation_List_v1 rev_list

 Extension_Field extension

 ECI_Signature_v1 rl_signature 2 048

(see note)

uimsbf

 }

}

NOTE – .. = in version 1 Certificate associated CRLs.

18 Rec. ITU-T J.1012 (04/2020)

Semantics:
format_version: integer Values 0x00, 0x02..0xFF: reserved.

Value 0x01: ECI Revocation List format version 1.

Implementations that do not recognize a Certificate type shall not process it and

return fail on validation requests.

type: integer Type field is defined in ECI_Certificate_Id, see Table 5.3-1.

indicator: integer Indication of Revocation List; value shall be equal to 0xF.

version: integer The version of this RL. Starts at 1 (which is typically empty with a new Certificate)

and incremented on every update.

base_entity_version: integer All entities with a id.version smaller than base_id_version are revoked.

base_rl|_version All revocation lists for an entity with version equal base_entity_version that are

smaller than base_rl_version are no longer valid.

number_of_entities: integer Number of entities in the revocation list. See Table 5.3-1 for maximum values.

entity_type: integer Type of entity of which older versions are revoked.

entity_id: integer Entity_id of the entity of which older versions are revoked.

min_entity_version: integer Minimum version number of the entity (certificate id) matching entity_type and

entity_id. Lower versions are revoked.

min_rl_version Minimum version of the revocation list to be applied in conjunction with entity matching

entity_type, entity_id and entity_min_version. Lower revocation list versions are

no longer valid.

root_version_indicator: bit If value equal 0 the root_version and min_root_version field shall have no significance.

If value equal 1 and the Father are a Root Certificate the root_version and

min_root_version fields shall have the interpretation as below.

root_version Version of the Root Certificate that is the signatory of this Revocation List.

min_root_version: integer If the Father's (i.e., Root) version is larger or equal than this field all Root Certificate

versions less than min_root_version shall be revoked for verification of Certificates

of the type that is defined in revocation_id_lead.

extension: Extension_Field Additional data shall be ignored (except for signature calculation) by implementations

not designed to interpret this field, except for computation of the signature.

rl_signature: ECI_Signature_v1 The signature of the ECI Entity to which the Revocation List is associated. The

signature is computed over all preceding data.

NOTE – Hardware implementations can process Revocation Lists in chunks, looking for an ID of a subsequent

Certificate that should be validated while accumulating the signature hash and at reaching the end of the list

verifying the signature.

As a general rule ECI Hosts shall store the TA Revocation Lists of all Certificates required to verify

the entities that are loaded by the ECI Host. ECI Hosts shall replace a stored Revocation List for a

Certificate or item by a newly received Revocation List with a later version number.

The maximum length of the Revocation Lists shall be in accordance with clause B.2.

5.4 Certificate Chains and Revocation List Trees

5.4.1 Data structure definitions

A Certificate Chain is a sequence of Certificates with associated Revocation Lists where a

Certificate has been signed by the entity managing the preceding Certificate. It starts with the

Revocation List of the Father Certificate (typically a Root). The minimum (valid) version number

of a Certificate and the minimum (valid) Revocation List version for a Child are defined by the

Revocation List of its Father. Chains are used as credentials to verify an item to be loaded, and thus

a Certificate will typically not appear on the Revocation List of its predecessor. Nevertheless,

Revocation List processing is mandatory in order to verify the integrity of the chain. Table 5.4.1-1

presents the structure of a typical Certificate Chain.

 Rec. ITU-T J.1012 (04/2020) 19

Figure 5.4.1-1 – Host Certificate Chain example

Chains can be transported or stored and can be composed from different sections.

Revocation list trees are sequences of linked revocation lists that use a Certificate in a previous chain

as Father, thus spanning a large space of certified items. These can be used by Platform Operations

to deprecate (indicate the revocation of) other (TA-revoked) entities. The definition of Certificate

Chain and Revocation List tree shall be in accordance with Table 5.4.1-1.

Table 5.4.1-1 – Certificate Chain and Revocation List Tree definitions

Syntax No. of bits Mnemonic

ECI_Certificate_Chain {

 chain_length 8 uimsbf

 padding(4)

 for (i=0; i<chain_length; i++){

 ECI_RL rl

 ECI_Certificate certificate

 }

}

ECI_RL_Tree {

 ECI_RL father_revocation_list

 three_breadth 32 uimsbf

 for (i=0; i<three_breadth; i++){

 father_node_depth 8 uimsbf

 chain_length 8 uimsbf

 padding(4) 16 uimsbf

 for (i=0; i<chain_length-1; i++){

 ECI_Certificate certificate

 ECI_RL rl

 }

 }

}

20 Rec. ITU-T J.1012 (04/2020)

Semantics:
chain_length: integer Length of the chain.

rl: ECI_RL The Revocation List for the preceding Certificate or Father of the chain in case of

the first iteration of a chain. The version numbers of the identifier field of the

Revocation Lists in a chain shall be equal.

certificate: ECI_Certificate Father of next Certificate in current sequence.

father_revocation_list: ECI_RL Revocation List for the Father of the chain.

three_breadth: integer Number of sub-chains in the tree.

father_node_depth: integer Level of the Father Certificate in the preceding Certificate Chain (including the

Father of the tree). The inherited Father list is the Father of this chain, preceded by

its Father, etc. up to the Father of the tree itself.

The ordering rules on Certificates in Revocation List trees are:

• Trees shall not contain duplicate Certificates.

• The tree shall be ordered in a manner that all Brothers of the last leaf Certificate shall be

listed as chain_length=0 sub-trees immediately after the last Certificate, then followed by

the sub trees of the Brother of the Father, etc.

• Brother Certificates shall appear in id-order in the tree (lowest first).

5.4.2 Processing rules for Certificate Chains

The ECI Host performs the verification of the Certificate Chains and provides an appropriate

response for revoked items using the Advanced Security System. The critical security steps of

Certificate and Revocation List verification are performed by the secure Advanced Security

System. The Advanced Security System also provides ECI Clients with the ability to subsequently

verify the validity of the applied revocation version numbers of the chains.

The ECI Host can process a Certificate Chain in an iterative process. This starts with the ECI TA

Root Revocation List and ends with the end item in a chain. The Certificate Chain processing fails

on any intermediate check failure. In case the ECI Host fails on a condition it shall ensure that the

present Certificate and Revocation List and all preceding Revocation Lists and Certificates are

validated by their signature before triggering the ECI Host policy measures on revoked entities or

invalid credentials. The Advanced Security system, as defined in [ITU-T J.1014] and

[ITU-T J.1015] shall ensure that appropriate robustness is maintained for Certificate Chain

processing.

Any order of processing is permitted as long as it yields the same outcome regarding the acceptance

of chains.

1) The ECI Host shall perform the following verification steps on the Revocation Lists:

a) The ECI Host shall verify that the Revocation List format_version field matches a

version that it can interpret and ensure that the rl_id.type and rl_id.rl_indicator field

match the expected values.

b) The ECI Host shall verify whether the length of the Revocation List corresponds to its

field values.

c) If root_version_indicator=1 the ECI Host shall check if a Root is expected as Father

at this point in the chain processing, check if the root_version is present for verification

and check if the min_root_version does not exceed any root version used so far in chain

processing.

d) The ECI Host shall verify if this Revocation List has not been invalidated by the

minimum version number for this Revocation List from the preceding Revocation List

in the chain or in case of a root revocation list by the min_root_revocation_list number

used so far in chain processing.

 Rec. ITU-T J.1012 (04/2020) 21

e) The ECI Host shall verify the signature of the Revocation List with the public key of

the Father Certificate.

f) The ECI Host shall process any extension bytes in the Revocation List if it is capable

of doing so.

g) The ECI Host shall verify if the next <entity type, entity id, version> in the chain is not

revoked according to the Revocation List and establish the minimum Revocation List

version to apply to that Certificate.

2) The ECI Host shall perform the following pre-verification steps on the next Certificate:

a) The ECI Host shall verify the version of the Certificate. In case the version is not

matching its processing capabilities it shall fail loading the chain.

b) The ECI Host shall verify the type field of the certificate ID and fail if this does not

match an expected values.

c) The ECI Host shall verify that the length of the Certificate matches its format definition.

d) The ECI Host shall verify the signature of the Certificate with the public key of the

Father Certificate.

e) The ECI Host shall process any additional field and/or extension bytes in the Certificate

if it is capable of doing so.

A Revocation List chain, as extracted from a Revocation List tree can be used to verify the

revocation of a specific item that needs to be loaded by the Advanced Security System. Such an

item can be identified by the sequence of ids of Certificates used to verify it on loading it in the

Advanced Security System. The default processing rules for a Revocation List chain shall be

identical to that of a Certificate Chain.

3) The CPS shall load the current Revocation List and the <entity type, entity id, version> of

the next Certificate in the CPS. The CPS shall perform the following verification:

a) The CPS shall check the Revocation List format_version field to match a version that

it can interpret and the rl_id.type and rl_id.rl_indicator field to match the expected

values.

b) In case the Father is a Root Certificate (root_version_indicator=1) the CPS shall

select the Root Certificate with root_version to be the Father, otherwise the preloaded

or preceding Certificate is used.

c) The CPS shall verify the signature of the Revocation List with the public key of the

Father Certificate.

d) The CPS shall verify whether the length of the Revocation List corresponds to its field

values.

e) The CPS shall verify if the version number of the Revocation List has not been

invalidated.

f) The CPS shall verify if the next <entity type, entity id, and version> in the chain is not

revoked according to the Revocation List and shall establish the minimum Revocation

List version to accompany that Certificate.

4) Then the ECI Host shall load the Certificate in the appropriate CPS processing location,

which will perform the following verifications:

a) The CPS shall check the Revocation List format_version field to match a version that

it can interpret and the id.type and id.entity_id field to match the expected values.

b) The CPS shall verify whether the length of the Certificate corresponds to its field values.

c) The CPS shall perform signature verification against the public key of the Father

Certificate.

22 Rec. ITU-T J.1012 (04/2020)

5.5 Revocation tree sets and revocation data files

Revocation data for verifying a specific Entity should select revocation data containing the RL of the

Father of the targeted Entity.

When distributing revocation data, the chains to revoke multiple targeted entities can be combined

into a tree, thus avoiding duplicate Root and Child Certificates and their associated Revocation

Lists and permitting more ordered searching in CPEs.

For ease of assembly and disassembly of revocation, data revocation trees can also simply be

combined into a set of trees. However, sets of trees shall be non-overlapping except for the common

Father revocation list. Tree sets can contain multiple Root RLs (during an ongoing TA Root change

rollout).

The definition of Certificate Chain and Revocation List tree shall be in accordance with

Table 5.5-1.

Table 5.5-1 – Revocation List Tree set definition

Syntax No. of bits Mnemonic

ECI_RL_Tree_Set {

 tree_number 32 uimsbf

 for (i=0; i<tree_number; i++) {

 ECI_RL_Tree tree

 } 8 uimsbf

}

Semantics:
tree_number: integer Number of trees in the set

tree: ECI_RL_Tree Tree (including Root Certificate) of Certificates ad their Revocation Lists.

NOTE – Online servers can distribute single Entity targeted trees (effectively chains) to minimize data traffic.

On broadcast networks trees can be split and merged easily to match the number of buckets (see clause 7.7.2)

used in the transmission carousel.

Revocation trees or set of trees do not need to be complete in terms of containing all entities of a

class. It is up to the Platform Operation to compose the set of revocation trees as he sees fit, ensuring

minimal risk in deployed CPEs in the network of the Platform Operation. On broadcast networks

Revocation Lists can also be alternated in time to expand the revocation coverage.

ECI requires CPEs to permanently store ECI TA chains for all items to be potentially loaded in order

to ensure that entities once revoked, remain revoked. This is specified in the relevant clauses.

For the convenience of transport, ECI revocation tree sets are grouped in the format given in

Table 5.5-2.

Table 5.5-2 – Revocation data file

Syntax No. of bits Mnemonic

ECI_revocation_data_file {

 magic = 'ERD' 24 uimsbf

 version 8 uimsbf

 father_type 4 uimsbf

 sub_type 4 uimsbf

 ECI_RL_Tree_Set revocation_data

}

 Rec. ITU-T J.1012 (04/2020) 23

Semantics:
magic: byte[3]

Magic number used for verification of the format of the following data. It has the value

of the three 8-bit ASCII representations of the characters 'ERD'. The ECI Host shall

check the value of this field to verify if an ECI file has the expected format for

additional data integrity.

version: byte Format version of the image header. Value 0x01 is the presently defined version; all

other values are reserved. The ECI Host shall ignore any image with a version

number that is not recognized.

father_type: integer Type of the common Father of the Revocation List data. 0x0 indicated the ECI Root

Certificate. Values 0x1-0x7 are reserved. Values 0x8-0xF may be applied for private

applications.

sub_type: integer For father_type field equal 0x0 this defines the type of the common Revocation List

in accordance with Table 5.2-2 of the ECI Root Certificate of the data contained in

the revocation data. This value is undefined for other values of father_type.

revocation_data:

ECI_RL_Tree_Set

Revocation List Tree set of revocation lists for revoked items.

5.6 Large data item signatures

ECI computes signatures over large data items (e.g., software images) using efficient hash function

for bulk data hashing in conjunction with a regular signature operation. In Table 5.6-1 the signature

of large data elements is defined.

Table 5.6-1 – Definition of the signature of large data elements

Syntax No. of bits Mnemonic

ECI_Data_Signature {

 sign_version 8 uimsbf

 padding(4) 24 uimsbf

 if (sign_version == 0x01){

 for (i=0; i<256; i++){

 signature_byte 8 uimsbf

 }

 }

}

Semantics:
sign_version: integer Version of signature. Value 0x01 is the present version; all other version values are reserved.

CPEs that have not implemented a version shall ignore this field (and any following data).

signature_byte: byte Sequence of bytes representing the large item signature.

The signing algorithm is defined in Annex A.

5.7 Root Certificates

5.7.1 Definition of a Root Certificate

ECI uses a sequence of Root Certificate versions. The ECI TA can start using a new Root

Certificate version for instance when any of the previous Revocation Lists for any of the Children

is too large or if the secret key associated with the Certificate's public key is no longer considered

sufficiently secret.

A Root Certificate uses the identifier field of ECI Certificates with the field definition as given in

Table 5.7-1. The type and identifier fields are never used; only the version field is applied.

24 Rec. ITU-T J.1012 (04/2020)

Table 5.7-1 – Definition of the ECI Root_ID field

Syntax No. of bits Mnemonic

ECI_Root_Id {

 type /* see Table 5.2-1*/ 4 uimsbf

 id /* see Table 5.2-2 */ 20 uimsbf

 version 8 uimsbf

}

Semantics:
version: integer The version number of the Certificate; numbering starts at 1, and is incremented by one on every

new issue of a Root Certificate. Value 0x00 is reserved.

5.7.2 ECI Host Root Certificate Management

The ECI TA can start using a new Root Certificate with a higher version number. It can at some

point in time thereafter issue a Revocation List for the new Root Certificate that revokes preceding

Root Certificates. This invalidates all Certificates signed by such a Root.

Alternatively, the ECI TA can decide that a Revocation List for specific type of entities

(e.g., Manufacturers) is too large and decide to reissue new versions of all previously issued

Certificates by using a higher min_id_version field in the Revocation List for that type of Entity.

This effectively invalidates all previously issued Certificates for the type of Entity up to

min_entity_version-1. Typically this requires issuing a significant amount of new Certificates with

a higher version number for entities still using a lower Certificate version to replace revoked

Certificates.

The resources an ECI Host shall provide for storage of Root Certificates are proposed in [b-ITU-T

J Suppl. 7].

6 ECI Host Loader

6.1 Introduction

The ECI Host loading process distinguishes the following aspects:

1) Storage of an image, verification of the authenticity of the image by the CPE using ECI TA

provided authentication data and the subsequent activation of the image.

2) The file format of the file(s) containing the image and all other information needed to load

the image into the CPE.

3) Transport protocol for delivering the ECI Host Image to the CPE. This includes any

discovery by the CPE of the location of the required images. It includes any storage of the

transported images and complementary ECI validation chain and signature data.

4) Any Operator specific revocation of ECI Host Images; the data format for such information

is defined in clause 6 and the application is defined in clause 8.

The logic of the verification and image authentication shall be applied on newly downloaded ECI

Host Images and authentication data, on every reboot of a CPE and where so provisioned during the

regular functioning of a CPE.

 Rec. ITU-T J.1012 (04/2020) 25

6.2 Storage, verification and activation

6.2.1 Principles of operation

The ECI Host ensures that ECI Clients can run in a private and tamper free environment in

accordance with ECI robustness requirements for the implementation of such clients. The ECI Host

also prevents the interference of one ECI Client with another ECI Client. For this purpose the ECI

TA can certify software for CPEs and the CPE loader shall verify the authenticity of the software

images it loads.

Many CPEs use multi-stage loaders. ECI assumes that the core CPE chip loads a number of chip

specific initialization images before commencing loading any regular software images. Such images

may be implicitly certified under the ECI TA chip vendor license agreement. Alternatively, they may

be made part of the Manufacturer certification process defined in this clause.

In case the software of one of the ECI managed images later demonstrates the presence of a security

bug, the ECI TA and CPE Manufacturer can revoke it and have it replaced by a version with a bug

fix.

In Figure 6.2.1-1 it is assumed that Img1 is a chip-specific image needed to bring the chip into a state

where it can start loading more regular application images. It is protected by a chip specific signature

CS1, which is verified by the Chip Loader using a chip vendor proprietary key.

Figure 6.2.1-1 – Example of ECI Host Loading process

Once Img1 is running the chip proceeds to load other images, it loads Img2, which can be

authenticated by a Certificate Chain and image signature TAC2. The verification of the image is

performed using the TA Root Certificate, the Certificate Processing Subsystem and TAC2. Img2

proceeds to load Img3 which contains the ECI Host software. Img3 is verified by the Certificate

Processing Subsystem, the Root Certificates and Trust Authority Certificate Chain and image

signature TAC3. Additional images like Img4 containing, for instance, a rich OS that are not certified

by the ECI TA may be loaded if the loading environment can guarantee this does not create a security

hazard for the ECI Host.

The Trust Authority Credentials for the images are carried in a special credential file.

The ECI TA certifies the security integrity of the ECI Host: its ability to provide client privacy,

tamper resistance from threats outside the ECI Host and to ensure clients create undesirable

interference with each other. CPE Manufacturers may wish to use complementary security

measures for loading images using their proprietary image encryption and authentication.

26 Rec. ITU-T J.1012 (04/2020)

Platform operations can verify the freshness of the ECI Host Images and decide not to decrypt

services. For this purpose the CPS extracts the minimum Revocation List version number used to

verify any loaded item, thereby permitting Platform Operations to verify the application of a recent

Revocation List. These Platform Operation specific acceptance procedures for an ECI Host are

defined in clause 8.

The ECI Host Loader shall store the latest ECI Host Images and the latest credentials thereof in

NV-RAM. The ECI Host Loader will re-verify every image it loads on reboot of the ECI Host. This

procedure re-establishes ECI Host authenticity on every reboot.

6.2.2 Credential definition

6.2.2.1 ECI Host Image related Certificates

ECI provides for two types of ECI CPEs with respect to ECI Host Image diversity:

1) Generic CPEs that will load the same set of ECI Host Images on every instance of the same

CPE type and version.

2) Individualized CPEs that will load a (partially) different set of images on each CPE of the

same CPE type and version. Such a series of images of the same "type" but individualized

per CPE is denoted as an Image Series.

The ECI Host Certificate Chain consists of the following Certificates (each certified by its

predecessor):

1) Root Certificate:

– This is the representation of the central ECI TA Root Entity. The public key of this

Certificate shall be used for verification.

2) Manufacturer Certificate:

– This is a representation of the ECI TA Entity for a specific Manufacturer. The public

key of this Certificate shall be used to verify.

3) Host Certificate:

– This is a representation of an ECI TA certified CPE hardware and ECI Host software

release. For generic ECI Hosts the public key of this Certificate shall be used to

authenticate all ECI Host Images. For "individualized" ECI Host Images the public

key of this Certificate shall be used to verify.

4) Host Image Series Certificate:

– This Entity provides a generic approval for a series of images that are specific for a

particular CPE configuration, but are otherwise identical from an ECI TA perspective.

For individualized ECI Hosts the public key of this Certificate shall be used to

authenticate the ECI Host Image intended for the specific CPE with a CPE ID matching

the identifier in the Certificate.

NOTE – Each Entity identifier has to be interpreted in the context of the authorizing Entity; i.e., IDs are

relative.

The ECI Host Image and accompanying certification structure is presented in Figure 6.2.2.1-1 and

Table 6.2.2.1-1 gives an overview of the related parameters.

 Rec. ITU-T J.1012 (04/2020) 27

Figure 6.2.2.1-1 – ECI Host Image certification structure

Table 6.2.2.1-1 – ECI Host related Certificate parameter overview

Type Entity Certificate ID field value Specific Processing by ECI Host

0x0 Manufacturer manufacturer_id, version Manutacturer_id shall be checked against CPE's

Manufacturer ID in the AS-block.

0x0 Host cpe_type, cpe_model,

host_version

cpe_type and cope_model shall be checked

against CPE type and CPE model by the AS-block.

0x8 CPE Image Series target_id The target_id shall be checked against the CPE's

identity.

0x8 CPE image n.a.

0x8 ECI Host Image ECI_Host_Image_Id This is the type for the actual image signature.

The Certificate definitions for the ECI Host related Certificates shall be in accordance with the

general ECI_Certificate as defined in clause 5.2. The definition of the identifier fields of the

Certificates for ECI Host management is given in Table 6.2.2.1-2.

28 Rec. ITU-T J.1012 (04/2020)

Table 6.2.2.1-2 – ID field definition of Host related Certificates

Syntax No. of bits Mnemonic
ECI_Manufacturer_Id {

 padding(4)

 type /* see table 5.2-2 */ 4 uimsbf

 manufuacturer_id 20 uimsbf

 Version 8 uimsbf

}

ECI_CPE_Type_ID {

 cpe_type 12 uimsbf

 cpe_model 8 uimsbf

}

ECI_Host_Id {

 padding(4)

 type /* see table 5.2-2 */ 4 uimsbf

 ECI_CPE_Type_Id cpe_type_id 20 uimsbf

 host_version 8 uimsbf

}

ECI_Host_Image_Series_Id {

 padding(4)

 type /* see table 5.2-2 */ 4 uimsbf

 image_series_model 8 uimsbf

 image_series_model_extension 4 uimsbf

 image_series_version 16 uimsbf

}

Semantics:
type Value in accordance with Table 5.2-2.

manufacturer_id: integer Id assigned to Manufacturer by the ECI TA.

cpe_type: integer Id assigned to CPE model by the ECI TA. Values 0x000 and 0x3F0..0x3FF are

reserved. CPEs of the same model shall have large commonalities and use the same

ECI security technology.

cpe_model: integer Id assigned to a version of a specific model that is identical in many respects but has

a number of non-trivial differences. Value is assigned by the ECI TA. Values 0x00

and 0xF0..0xFF are reserved.

cpe_type_id: ECI_CPE_Type_id ID of CPE hardware type (version + model); unique in the context of manufacturer_id.

cpe_host_version ID assigned to a set of images making up a CPE ECI Host configuration for the CPE.

image_series_model: integer ID of images of the same type for CPEs supporting Image Series, the distinction

being made by the cpe_id. Values 0x000 and 0xF00..0xFFF are reserved.

image_series_version: integer Id assigned incrementally to the version of the Image Series model by the ECI TA.

Values 0x0000 and 0xF000..0xFFFF are reserved.

6.2.2.2 ECI Host Image Signatures

The ECI Host Image ID shall be equal to the Host Image Series id, and is defined in Table 6.2.2.2-1.

 Rec. ITU-T J.1012 (04/2020) 29

Table 6.2.2.2-1 – Host Image ID and Host Series image ID definitions

Syntax No. of bits Mnemonic

ECI_Host_Image_Id {

 padding(4)

 type /* see table 5.2-2 */ 4 uimsbf

 image_model 8 uimsbf

 image model_extension 4 uimsbf

 image_version 16 uimsbf

}

ECI_CPE_Id {

 cpe_serial_number 28 uimsbf

 cpe_type 12 uimsbf

 manufacturer_id 20 uimsbf

}

ECI_Image_Target_Id {

 padding(4)

 target type 4 uimsbf

 if (target type == 0x1){

 ECI_CPE_Id cpe_id 60 uimsbf

 }

}

Semantics:
type Value in accordance with Table 5.2-2.

image_model: integer Id assigned to an ECI Host Image or series of images replacing each other.

Values 0x00 and 0xF0.0xFF are reserved.

image_model_extension: integer Extension of above field. In regular applications this field should be set to 0x0.

image_version: integer Version of an image of the same type assigned incrementally. Values 0x00 and

0xF0..0xFF are reserved.

cpe_serial_number: integer Serial number of the CPE for which the image is intended. The cpe_serial_number

shall be unique within the context of <manufacturer_id, cpe_type_id>

cpe_type: integer cpe_type field as defined in the ECI_CPE_Type_Id structure

manufacturer_id: integer manufacturer_id field as defined in the ECI_Manufacturer_Id structure

target type: integer Type of target identification for the series image. Value 0x1 defines this structure

definition and indicates a cpe_id used as target, other values are reserved.

cpe-id: ECI_CPE_Id ID of the CPE that is the target of a series (ECI Host or ECI Client) image.

ECI Host Image signatures and ECI Host Image Series signatures that are used to sign the actual

ECI Host Images shall use the Large Data signature structure as defined in clause 5.5.

6.2.2.3 ECI Host Credentials

Table 6.2.2.3-1 defines the ECI Host Credential structure which verifies an ECI Host Image set.

30 Rec. ITU-T J.1012 (04/2020)

Table 6.2.2.3-1 – ECI Host credential structure definition

Syntax No. of bits Mnemonic

ECI_Host_Credentials{

 image_credential_version 8 uimsbf

 if (image_credential_version == 0x01) {

 padding(4) 24 uimsbf

 ECI_Certificate_Chain image_chain

 nr_images 8 uimsbf

 padding(4) 24 uimsbf

 for (i=0; i<images; i++){

 ECI_Host_Image_Id image_id 32 uimsbf

 if (image_id.type == 0x8) {

 ECI_Certificate series_cert

 } else if (image_id.type == 0x9){

 ECI_Data_signature image_signature

 }

 }

 Extension_Field extension

 }

}

Semantics:
image_credential_version: byte Format version of the credentials. Value 0x01 is the presently defined

version; all other values are reserved. ECI Host Loaders shall ignore any

credentials with a value other than the values they recognize.

image_chain: ECI_Certificate_Chain 2-level deep Certificate Chain starting with Manufacturer Root RL, up to

ECI Host Certificate. The last Certificate shall be used to verify the image

signature of any Image Series Certificate.

nr_images: integer The number of images for which the signatures are included.

image_id ID of the image for which the signature follows in the loop.

The image_ids listed in the loop shall have different image_id.image_model

field values.

series_cert: ECI_Certificate Certificate used for verification of an Image Series

image_signature: ECI_Data_Signature Signature of the image (including Host Image Id).

extension: Extension-Field Backward compatible extension field.

When verifying the image_chain the CPE shall obey the generic processing rules for chains as

defined in clause 5.4.

6.2.3 Loading process of ECI Host Image file

The CPE shall store, verify and activate the execution of the set of ECI Host Image file required to

start the ECI Host. The actual activation of the ECI Host Image typically happens on CPE boot.

The CPE shall use a robust processing function called the ECI Host Loader to download, verify and

activate the chosen ECI Host Image. If, for example, the CPE boot image containing the ECI Host

Loader starts the execution of a second image, and the second image loads and starts the execution

of a third image, the functionality of the second image to properly load the third performing

verification of the image signature shall be considered ECI Host Loader functionality for that CPE.

Only the ECI Host Loader function can verify and start an ECI Host Image. The ECI Host Loader

shall use the Certificate Processing Subystem (CPS) to verify the image credentials.

The CPE shall store the latest set of ECI Host Image files and its credentials it has downloaded in

NV memory. On CPE boot the ECI Host Loader shall be able to locate these and start loading the

images in a manner that is suitable for the specific CPE-type.

 Rec. ITU-T J.1012 (04/2020) 31

The ECI Host Loader, using the CPS, shall use the regular chain processing rules in clause 5.4 to

verify every image that is loaded. Generic images and Image Series Certificates shall be verified

using the Host Certificate public key. The Image Series Certificate public key shall be used to

verify Image Series images, and the CPE shall verify the cpe_id in the image against the cpe_id of

the CPE.

In case of a compromised image (signature check failure by the CPS) the ECI Host Loader shall

reject an image, which means the CPE will be unable to instantiate an ECI Host on the CPE. The

CPE shall be able to recover from this situation: it shall have a recovery procedure to re-initialize the

latest ECI Host Image and their credentials, e.g., through reloading the latest set of ECI Host Image

files from the broadcast channel, from its online ECI Host Image server or through some other

means.

The ECI Host shall store the latest versions of the ECI Host chain Certificates it acquires regardless

of the channel through which it is acquired. Effectively this "locks" the latest available Host

Certificate as the basis for future image verifications.

The sequence of loading ECI Host Images is not verified directly by the signature verification

process: this shall be performed by the bootloader for the first ECI Host image and for subsequent

activations by the preceding ECI Host images themselves.

6.3 ECI Host related file formats

This Recommendation does not define any file naming or other Meta attributes for ECI Host Image

files. It manages ECI Host Image data in the form of a set of data containers (ECI wise nameless

files) identified by their Host Image id, and the ECI credentials (Certificate Chains and signatures)

needed to authenticate these.

An ECI Host Image file shall be a sequence of an ECI_Host_Image_Header and the image content.

It shall follow the definition in Table 6.3-1.

Table 6.3-1 – ECI Host Image file definition

Syntax No. of bits Mnemonic

ECI_Host_Image_File {

 magic = 'EHI' 24

 image_header_version 8 uimsbf

 if (image_header_version == 0x01) {

 ECI_Host_Image_Id host_image_id 32 uimsbf

 ECI_Manufacturer_Id manufacturer_id 32 uimsbf

 Extension_Field extensions

 for (i=0; i<n; i++) {

 host_image_byte 8 uimsbf

 }

 }

}

32 Rec. ITU-T J.1012 (04/2020)

Semantics:
host_image_byte: byte The actual ECI Host Image; format proprietary to CPE.

magic: byte[3] The magic number is used for verification of the format of the following data.

It has the value of the three 8-bit ASCII representations of the characters

'EHI'. The CPE firmware shall check the value of this field to verify if an

ECI file has the expected format for additional data integrity.

image_header_version: byte Format version of the image header. Value 0x01 is the presently defined

version; all other values are reserved.

host_image_id: ECI_Host_Image_Id ECI Host Image ID of the image. CPEs shall check this field before loading

a (new) ECI Host Image.

manufacturer_id: ECI_Manufacturer_Id ECI_Manufacturer_ID of the Manufacturer of the CPE of the ECI Host

Image. CPEs shall check this field before loading a (new) ECI Host Image.

See Note.

extensions: Extension_Field See clause 5.1 of this Recommendation: backward compatible extensions.

host_image_byte: byte The actual ECI Host Image.

NOTE – This should also correspond with the Manufacturer OUI used in broadcast carousels to carry the associated
file.

Image Series files have a unique signature which is carries in the image file itself. Therefore a specific

file format shall follow the definition as given in Table 6.3-2.

Table 6.3-2 – ECI Host Image Series file definition

Syntax No. of bits Mnemonic

ECI_Host_Image_Series_File {

 magic = 'EHS'

 image_header_version 8 uimsbf

 if (image_header_version == 0x01) {

 ECI_Data_Signature image_signature

 ECI_Image_Target_Id target_id 64

 Extension_Field extensions

 for (i=0; i<n; i++) {

 host_image_byte 8 uimsbf

 }

 }

}

Semantics:
host_image_byte: byte The actual ECI Host Image; format proprietary to CPE.

magic: byte[10] Magic number used for verification of the format of the following data. It

has the value of the three 8 bit ASCII representations of the characters

'EHS'. The CPE firmware shall check the value of this field to verify if an

ECI file has the expected format for additional data integrity.

image_header_version: byte Format version of the image header. Value 0x01 is the presently defined

version; all other values are reserved.

image_signature: ECI_Data_Signature Signature over all data following in the image file.

target_id: ECI_Series_Image_Target_Id Target ID for the image. Value for target_id.target_type value is 0x01, all

other values are reserved.

extensions: Extension_Field See clause 5.1: backward compatible extensions.

host_image_byte: byte Sequence of bytes forming the Host Image.

The ECI Host Image credentials follow the definition in Table 6.3-3, which in essence is the

Certificate Chain with the set of the image signatures or Image Series Certificates.

 Rec. ITU-T J.1012 (04/2020) 33

Table 6.3-3 – ECI Host Image credential file definition

Syntax No. of bits Mnemonic

ECI_Host_Image_Credential_File{

 magic = 'EHC' 24 uimsbf

 version 8 uimsbf

 if (version == 0x01) {

 ECI_Host_Credentials credentials

 }

}

Semantics:
magic Magic number used for verification of the format of the following data. It has

the value of the three 8 bit ASCII representations of the characters 'EHC'. The

CPE firmware shall check the value of this field to verify if an ECI file has the

expected format for additional data integrity.

version Format version of the file. Value 0x01 is the presently defined version; all other

values are reserved.

credentials: ECI_Host_Credentials The credentials for one or a group of ECI Host Images.

The host_image_id is used for the identification of ECI TA signatures for a set of ECI Host Image

files comprising a full download in the ECI credential structure.

ECI compliant CPEs are allowed to download other proprietary CPE software modules using the

same transport protocol as the one used for ECI Host Image files. There is no specific format required

for such images.

On broadcast media it is convenient to distribute the revocation data of many ECI Hosts as one large

file. ECI Hosts receiving such data can use this to check their own ECI Host Certificate.

The ECI Host revocation data file uses the ECI_Revocation_Data_File format defined in Table 5.5-2.

The ECI Host revocation data file uses father_type equal 0x0 (Root Certificate) and sub_type equal

to the Manufacturer revocation list type. The revocation_data conforms to the constraint that the

leaf revocation list in the trees are ECI Host revocation lists.

6.4 ECI Host Image transport protocols

6.4.1 Introduction

This Recommendation distinguishes three types of Host Image delivery:

1) Broadcast: ECI defines protocols to permit Platform Operators to signal and deliver new

ECI Host Image files from the CPE Manufacturer to CPEs in the field using DVB-SSU.

2) On-line: ECI permits internet connected CPEs to download ECI Host Image files using

any proprietary protocol, suggesting the use of HTTP 1.1 as well as using an ECI defined

interface to an operator provided web server.

3) Other: CPE Manufacturers and/or Operators can also use other means to deliver ECI

Host Image files including off-line methods like delivery via USB stick. This means of

transport of images is outside the scope of this Recommendation. Nevertheless, images

loaded with such a protocol shall be in compliance with the file format and image verification

in clauses 6.2. and 6.3

CPEs designed to acquire Services from digital broadcast networks shall implement the ECI Host

Image broadcast transport protocol as defined in clause 6.4.2.

CPEs with an IP connection shall implement an online ECI Host Image internet transport protocol

as defined in clause 6.4.3 as well as the protocol defined in clause 7.7.3.3.

34 Rec. ITU-T J.1012 (04/2020)

A CPE may implement any complementary ECI Host Image transport protocol, including the ECI

Host broadcast and off-line transport protocols (e.g., USB stick). In all cases the CPE Manufacturer

shall ensure practical means by which an ECI Host can be updated in the field through a combination

of the above transport protocols, taking into account practical use cases where some of the network

connections are not connected.

6.4.2 ECI Host broadcast transport protocol

6.4.2.1 General and profiling

The ECI Host broadcast transport protocol permits new ECI Host Image files and associated data

to be transported from CPE Manufacturer via the Operator broadcast headend infrastructure to the

CPE. The protocol also permits transport of non ECI Host Image files (for non-security critical

functions). The Operator may play an active role in managing the software version on the CPE. This

protocol facilitates cooperation by setting standards for the technical interoperability points between

the CPE Manufacturer and the Operator:

• Voluntary standard handover of download data from the CPE Manufacturer to the

Operator.

NOTE – The technical details of such a handover are outside the scope of the ECI specifications.

• Standard broadcast transport protocol (enabling a single playout provision at the Operator

broadcast headend).

• Standard discovery, transport protocol implementation and operational transport protocol

parameter choices in receivers.

The ECI Host broadcast Transport Stream (TS) and CPE implementations shall be compliant with

DVB SSU [ETSI TS 102 006], and as a consequence comply with the relevant section of the DVB

data carousel definition [ETSI EN 301 192] and implementation guidelines [ETSI TR 101 202] and

the MPEG data carousel definition [ISO/IEC 13818-6].

Operators and CPEs shall both support DVB-SSU simple profile; and optionally support DVB-SSU

UNT profile.

Operators may support multiple simultaneous carousels.

CPEs shall scan all carousels signalled appropriately in the SI, UNT (if applicable) and PMT for

relevant download items.

The overall broadcast scheme for downloading images in outlined in Figure 6.4.2.1-1.

 Rec. ITU-T J.1012 (04/2020) 35

Figure 6.4.2.1-1 – Host Image signalling and carousel structure overview (no UNT variant)

6.4.2.2 CPE Manufacturer to Operator handover

Any future ECI based Eco-System will have to define a guideline for Operators and CPE

Manufacturers to provide a uniform way of exchanging image file information (both ECI Host and

non ECI Host Images), ECI image credentials and meta information regarding the download from

(many) CPE Manufacturers to (many) Operators.

6.4.2.3 DVB SI Signalling

6.4.2.3.1 Download location signalling

Operators shall support DVB-SSU linkage descriptor (linkage type 0x09) with minimally the generic

DVB OUI (i.e., non Manufacturer specific linkage to all carousels) in all NIT (terrestrial or cable)

or in BAT tables (satellite).

Simple profile CPEs shall support the DVB-SSU linkage descriptor (linkage type 0x09).

Operators supporting DVB-SSU UNT profile shall support the SSU scan linkage descriptor (linkage

type 0xA) in all NIT (terrestrial or cable) or in BAT tables (satellite).

UNT profile CPEs shall support the DVB-SSU scan linkage descriptor (linkage type 0x09).

6.4.2.3.2 Emergency updates

In order to indicate the need to urgently replace an ECI Host image, one or more

ECI_host_emergency_download descriptors can be placed in NIT, BAT or in one of the SDT entries

for a service for which the flagged ECI Host can provide access. The ECI Host shall be able to

retrieve this descriptor from any of the tables in which it appears in any of the currently tuned

multiplexes and perform the associated processing, and use any spare tuner to access relevant

multiplexes to acquire this descriptor with a worst case 30 minutes interval period, during power-on

state. More frequent checking of non-tunes multiplexes (3 minute interval) is recommended.

The ECI_host_emergency_download_descriptor permits targeting specific operation platforms and

specific Platform Operations and client images in order to minimize the number of Users

experiencing any disturbance potentially caused by emergency updates.

When the ECI Host finds a new ECI_host_emergency_download descriptor it shall match its ECI

Host and ECI Client configuration against the targeting information in the descriptor. If a target

36 Rec. ITU-T J.1012 (04/2020)

match is found and the version of the currently installed host image requires an update, the ECI Host

shall perform this update in accordance with the emergency_indicator. This will cause a disruption

for ongoing User activities in the CPE.

The ECI operation descriptor is a DVB private descriptor and shall always be preceded in the table

it appears in by the DVB private_data_specifier_descriptor (see [ETSI EN 300 468] and [ETSI

TS 101 211]) using the ECI private_data_specifier_field. The syntax of the descriptor is defined in

Table 6.4.2.3.2-1.

Table 6.4.2.3.2-1 – ECI_host_emergency_download_descriptor

Syntax No. of bits Mnemonic

ECI_host_emergency_download_descriptor{

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 /* main loop */

 main_loop_nr 8 uimsbf

 for (i=0; i<main_loop_nr; i++){

 /* client loop */

 client_nr

 for (j=0; j<client_nr; j++){

 platform_operation_tag 8 uimsbf

 Reserved 3

 client_flag 1

 client_tag 4 uimsbf

 }

 /* host image loop */

 host_nr 8 uimsbf

 for (j=0; j<host_nr; j++){

 Reserved 4

 emergency_indicator 4 uimsbf

 manufacturer_id 20 uimsbf

 cpe_type_id 20 uimsbf

 min_host_version 8 uimsbf

 }

 }

 /* private data till end of descriptor*/

 for (i=0; i<n; i++){

 private_data_byte 8

 }

}

 Rec. ITU-T J.1012 (04/2020) 37

Semantics:
descriptor_tag ECI private tag value for descriptor_tag: see [b-ITU-T J Suppl. 7].

descriptor_length See [ETSI EN 300 468].

main_loop_nr Number of entries in the main loop. The separate main loop entries shall be evaluated
separately by the ECI Host, i.e., have OR semantics. The various elements in one loop entry
shall have AND semantics.

client_nr Number of entries in the client target loop; value 0x00 shall mean any client will match. The
separate loop entries shall have OR semantics and all clients that match shall be considered
for an emergency update. The fields of one loop entry shall have AND semantics.

platform_operation_tag Tag value for the ECI Platform Operation as listed in the
ECI_platform_operation_descriptor in the NIT/BAT. The ECI Host shall consider an
emergency update if the platform_operation matches to the platform_operation of one of the
installed Clients.

client_flag Signals whether the client_tag field is relevant for matching. Value=0b0 means not relevant
(i.e., any client_id will match), value=0b1 means the client_tag is relevant.

host_tag Tag value identifying the ECI Host as listed in the ECI_platform_operation_descriptor in the
NIT/BAT that matches the platform_operation_tag field in the same client loop entry. The
ECI Host shall consider an emergency update if the referred vendor_id and client_id match
with one of the installed clients in the ECI Host for the Platform Operation.

host_nr Number of entries in the host loop. The minimum value shall be 1.The loop entries shall have
OR semantics; i.e., if any host specification matches the target condition the main loop has
a matching state.

emergency_indicator The ECI Host shall use the value of this field to select the appropriate behaviour for starting
the download and the subsequent update of the host as defined in Table 6.4.2.3.2-2.

manufacturer_id Manufacturer_id of the host targeted by an emergency update. The ECI Host shall consider
an emergency update if the value of this field matches the manufacturer_id of the ECI Host.

cpe_type_id Value as defined by ECI_CPE_Type_ID in Table 6.2.2.1-2. The ECI Host shall consider an
emergency update if the cpe_type_id of the Host matches to the value of this field.
cpe_type_id.cpe_type equal 0x000 shall mean any ECI Host cpe_types is a match (and
cpe_model and host-version shall be ignored). cpe_type_id.cpe_model equal 0x00 shall
mean any ECI Host cpe_model is a match (and host version shall be ignored).

min_host_version The ECI Host shall consider an emergency update if and only if its host version is less or
equal to the value in this field.
NOTE – field value equal 0xFF implies all host versions match.

private_data_byte Private data: the content may be defined by the Operator managing the broadcast of this
descriptor.

Table 6.4.2.3.2-1 defines a number of conditions in the main loop (having AND semantics) that shall

be met in order for the ECI Host to consider performing an emergency update. If all these conditions

are met the ECI Host shall perform an emergency download and installation of a new host image in

accordance with the emergency_indicator field for that ECI Host. The indicator field values are

defined in Table 6.4.2.3.2-2.

Table 6.4.2.3.2-2 – ECI_host_emergency_download_descriptor emergency_indicator

field values

Name Value Description

System emergency 0x01 The ECI Host shall download the new host image and install it as quickly as possible
interrupting ongoing User instigated activities if so required. See note.

Regular urgency 0x03 The ECI Host shall download the new host image and install it on the first occasion
which does not cause any disruption to any User instigated activity. The ECI Host
shall download the new host image at the latest during the next power-up event.
NOTE – Platform Operators can use this, for instance, if the present ECI Host has
serious deficiencies for decrypting services but can perform reasonably for regular
use cases.

RFU other Reserved for future use.

NOTE – Platform Operators can use this, for instance, if the present ECI Host has significant performance issues in
combination with the targeted platform/client combinations.

38 Rec. ITU-T J.1012 (04/2020)

6.4.2.4 PSI signalling

Operators shall support the data_broadcast_id_descriptor in the PMT [ETSI EN 300 468] for every

carousel transmitted, but are not required to support any OUI signalling in the selector bytes of this

descriptor.

SSU Simple profile CPEs shall use the data_broadcast_id_descriptor to locate the PID of the stream

carrying a DVB-SSU carousel.

6.4.2.5 UNT option

This clause only applies to CPEs and Operators supporting the UNT profile.

In the PMT the data_broadcast_id_descriptor shall be used containing the

system_software_update_info structure with update_type 0x2 and OUI field set to DVB OUI

0x00015A.

Operators shall carry an SSU table entry in one of the SSU tables for each CPE type they support.

ECI Hosts shall be able to interpret the following UNT descriptors (see [ETSI TS 102 006]):

• SSU_location_descriptor (if a carousel for the CPE-type is being broadcast).

• Scheduling_descriptor (if a carousel for the CPE-type is planned for the foreseeable future).

• Message_descriptor.

CPEs shall be able to consistently perform a successful download of a practically error-free received

carousel that is mounted and dismounted on the nominally published times and that makes two full

cycles (repetition of all messages in the carousel) under the provision that there is no User initiated

activity interfering with the download.

6.4.2.6 Carousel structure

ECI DVB SSU carousels (for details see [ETSI TS 102 006]) shall use two layer data carousels.

The ECI DVB SSU carousel shall use the DSI message with the following constraints:

• There shall be a complete list of all available groups for download.

• Each group shall correspond to one cpe_type + cpe_model of one Manufacturer, and

contain all resources for the ECI Host of the CPE type. This implies a maximum of 255

modules (image files) can be available (plus one file for the credentials).

NOTE 1 – Due to limitations in the values for ECI_host_id.model_id the limit is 239.

• The CompatibilityDescriptor in the GroupCompatibility field of the GroupInfoIndication

structure (for details see [ETSI TS 102 006]) shall use the following convention:

– The loop shall contain a system hardware descriptor:

• The OUI shall correspond to the Manufacturer of the CPE.

• The model and version fields associated with the system hardware descriptor shall

correspond to CPE's cpe_type and cpe_model, and be equal to the id.cpe_type and

id.cpe_model fields of the ECI Host Certificate in the credential file of the group.

– The loop shall contain a system software descriptor; the model field shall be set to 0, the

version field shall reflect the version of the total ECI Host software in the group (i.e.,

both ECI Host and non ECI Host Images).

CPEs shall use the model and version field in the compatibilityDescriptor to match to its own CPE

model and CPE version and shall use the software version field to check if the group contains an

update and in case of a new version proceed with downloading new images.

The ECI DVB SSU carousel shall use the DII message fields with the following constraints:

• The blockSize shall be set to a value of 2 kbyte (2 048 byte) at minimum.

 Rec. ITU-T J.1012 (04/2020) 39

• The "tDownloadScenario" field shall be given a meaningful value reflecting a download of

all modules with at minimum 4x the slowest message repeat time (carousel turnaround time).

• moduleId bits 7..0 shall be equal to the id.image_model of the image file.

• moduleVersion be equal to the ECI id.image_version of the image file.

CPEs may use the "tDownloadScenario" field to terminate downloads that fail to succeed (e.g., due

to high packet error rates) and report this problem to the User.

The group of a CPE type shall contain the following modules:

• Image files for a CPE type (may be a partial image set).

• The ECI Host Image credential file containing the (latest) credentials for all images of a

ECI Host:

– this module shall have DII moduleId bits 7..0 set to 0xFF; and

– moduleVersion shall increment on every change.

NOTE 2 – Operators are allowed to share common files between downloads for various CPE types by sharing

DownloadDataBlocks between DIIs. However, this implies the need to manage ECI Host Image Ids

coherently between CPE types.

6.4.2.7 ECI Host downloading operation

The ECI Host Image loader shall attempt to check all possible carousels every 30 minutes in power-

on state if network access resources are available and at least every 6 hours in standby state without

disturbing the User, e.g., after switching the CPE to standby and during non-peak viewing hours.

If a network provider makes UNTs available carrying potential downloads for a CPE-type, the

corresponding CPE shall regularly check the UNT for the schedule of a potential new update. The

CPE shall attempt checks using the same frequency-conditions as for the ECI Host image carousels.

It is recommended that the User receives a warning if a broadcast-only mode CPE is prevented from

performing the above checks for more than 2 weeks.

Once the availability of a new download is detected this signifies that the CPE and the User has

provided approval, the CPE shall attempt to perform the download and install the new image

(possibly overwriting a previous version). Any persistent failure to successfully perform a download

shall be reported appropriately to the User. ECI Hosts shall always be able to recover from a failed

host image download and recover to a functional state, e.g., by restoring the previous host image or

by attempting to reload the new host image.

It should be noted that persistent failure to download new ECI Host Images or credentials can lead

to the denial of service by an Operator.

6.4.2.8 Operator carousel schedules

Operators should provide sufficient bandwidth for CPE image data carousels to perform the

download in a reasonable time.

6.4.2.9 User interface aspects

A CPE, able to perform ECI Host Image downloads over the broadcast network, shall:

• have a download scan mode of operation that will automate the checks for the availability of

new images or credentials on a regular basis; e.g., as part of the standby state, and this is

recommended to be the default Manufacturer setting for download checking; and

• have a setting in the CPE menu that will automate any User approval for accepting new ECI

Host Image files or credentials, and it is recommended to be the default Manufacturer

setting for download approval.

40 Rec. ITU-T J.1012 (04/2020)

CPEs shall provide for at least one alternative means for downloading new ECI Host Image files in

order to prevent CPEs operating in broadcast networks that do not provide new ECI Host Image

files for their CPE type experiencing denial of service.

6.4.3 ECI Host Internet Transport Protocol

6.4.3.1 IP Protocol

ECI does not define a specific protocol for the CPE to check for new ECI Host Image files from a

service provided by the Manufacturer. It is however recommended to use HTTP1.1 [IETF RFC

7231] as the file transfer protocol, and the protocol as defined in clause 7.7.3.3 may be used which

defines a standardized download service for ECI Host Image files from a Platform Operation

server.

Typically the ECI Host Image download server is provided for by the CPE Manufacturer. With

specific arrangements in place between CPE Manufacturer and an Operator (or third parties acting

on their behalf) these may also be provided by the Operator or a third party.

6.4.3.2 Online Loader Operation

The ECI online ECI Host Image loader shall attempt to check its online server every 30 minutes

without disturbing the User. It is recommended that the User receives a warning if an online-only

mode CPE is prevented from performing the above checks for a longer period.

Once the availability of a new download is detected, the CPE shall attempt to perform the download

and install the new image (possibly overwriting previous image versions). Any persistent failure of

such download shall be reported appropriately to the User.

It should be noted that failure to download new ECI Host Images or credentials may lead to denial

of service by an Operator.

The CPE online loader shall deliver a set of (new) images and image credentials as defined in

clause 6.3 for verification, storage and activation.

The ECI online Host Image loader shall provide emergency download features with the same effect

as defined in clause 6.4.2.3.2 for broadcast.

6.4.4 Alternative transport protocols

An ECI Host is allowed to use any alternative (proprietary) delivery protocols.

The CPE loader shall process a set of (new) images and image credentials as defined in clause 6.3

for verification, storage and activation.

7 ECI Client Loader

7.1 Introduction

The ECI Host can download, store and activate ECI Client Images and accompanying data. The

ECI Client loading process can be split up in the following steps:

1) Discovery of ECI-based protection of a service/package of services and/or other ways to

identify the need for an ECI Client. This is part of the regular navigation application of the

CPE.

2) Determining the network location (broadcast or online) of the resources needed to install an

ECI Client on the ECI Host.

3) Downloading and storing (in NV memory) the Platform Operation information required to

install the ECI Client and verifying the credentials.

 Rec. ITU-T J.1012 (04/2020) 41

4) Registration of the ECI Host with the security system of the Platform Operation, and

receiving (if required) CPE specific initialization data for the decryption of the ECI Client.

5) Downloading and storing (in NV memory) of the ECI Client Image and associated ECI

Client credentials from the network and verifying the credentials and the image, storing in

NV-memory for future use.

6) Initialization of the ECI Client using the ECI Client Image, the Platform Operation

Certificate, allocation of an ECI Container and required AS resources and starting the

execution of the ECI Client.

All processes can be performed using data from the broadcast stream or from the internet, with the

exception of the registration of the CPE with the Operator, which requires manual assistance in case

only a broadcast connection is available.

Operators can renew the ECI Client resources at any time by publishing the information on

broadcast or online networks. The ECI Host regularly checks for such updates.

ECI requires support data for various functions of a CPE, e.g., revocation data or updated Certificate

Chains required by the ECI Client and/or the ECI Host to be able to support the ECI Client. On

broadcast networks the transport protocol allows selective download of the data needed by a CPE,

based on an "index" (hash) of the identification of the data. The grouping of data by the hash of the

index is called "bucketizing". On online networks, selective downloading is based on passing the

identification of the required data as a parameter to a web services API.

The following data items can be downloaded by the ECI Host:

• ECI Client Images (in bucketized format on broadcast networks).

• ECI Client revocation data (in bucketized format on broadcast networks).

• Platform operation client chain.

• Platform operation revocation data (in bucketized format on broadcast networks).

• ECI Host Image revocation data (in bucketized format on broadcast networks). ECI AS

setup client initialization data for decryption of encrypted client images (in bucketized format

on broadcast networks).

7.2 Discovery of ECI Clients

7.2.1 Introduction

Typically, an ECI compliant CPE (e.g., an iDTV) will have no ECI Client installed when it leaves

the factory, because this device may be sold in any market worldwide. The following clause defines

the available mechanisms allowing an ECI compliant CPE to find ECI Clients which might be

required to descramble services delivered by a network that it is connected to.

For the discovery process two types of networks are distinguished:

1) Transport stream-based networks (broadcast and typical IPTV networks).

2) IP protocol based networks.

ECI supports two modes of provider and client discovery for transport stream-based networks:

1) Manual installation - including basic (broadcast) network setup parameters.

2) Self-discovery (with User choice) - this assumes the CPE can auto-install for the network

autonomously.

Both manual installation and self-discovery protocols on transport stream-based networks use

common signalling.

For IP protocol-based networks ECI supports Manual base-URL entry.

42 Rec. ITU-T J.1012 (04/2020)

7.2.2 Transport stream-based networks

7.2.2.1 Common signalling

In order to reduce manual entry of parameters for the User, ECI provides for online signalling of key

ECI parameters to install a client:

• One or more ECI_ platform_operation_descriptors in the NIT carrying the available clients

(by ID) per Platform_Operation. The descriptor includes the platform provider name and a

short-id (to permit compact representation in the manual installation string).

• A platform provider may specify a base URL for the web API in the

ECI_base_URL_descriptor.

7.2.2.2 ECI_ platform_operation _descriptor

The ECI_ platform_operation_descriptor provides key information about a Platform Operation that

offers access services for a transport stream-based network.

For each Platform_Operation the NITactual (and/or BAT on satellite networks) shall carry the ECI_

platform_operation_descriptor at minimum on the central multiplex and table identified in the

installation string for networks that offer only manual installation, and on all multiplexes, except for

satellite networks, for networks that offer self-discovery. Satellite networks are permitted to carry the

ECI_ platform_operation_descriptor only on the multiplexes on which the provider carries services:

either as part of the NIT or a BAT.

The ECI_ platform_operation _descriptor is a DVB private descriptor, using ECI's private data

specifier in the DVB private_data_specifier_descriptor [ETSI TS 101 162]. It is defined in

Table 7.2.2.2-1.

Table 7.2.2.2-1 – ECI_ platform_operation _descriptor

Syntax No. of bits Mnemonic

ECI_ platform_operation_descriptor(){

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 platform_tag 8 uimsbf

 operator_id 20 uimsbf

 platform_operation_id 20 uimsbf

 platform_name_length 8 uimsbf

 /* platform name loop */

 for (i=0; i<N; i++){

 platform_name_char 8 uimsbf

 }

 for (i=0; i<N; i++){

 extension_byte 8 uimsbf

 }

}

 Rec. ITU-T J.1012 (04/2020) 43

Semantics:
descriptor_tag ECI private tag value for descriptor_tag see [b-ITU-T J Suppl. 7].

platform _tag
This 8-bit field specifies the tag of the Platform_Operation for the purpose of manual
installation. Each NIT and BAT of a network supporting each Platform_Operation shall
have a unique platform_tag value. Each platform_tag shall appear only once in each NIT or
BAT. The platform_tag shall not be used for ordering providers and shall not be presented
in the CPE User interface for Platform_Operation selection.

operator_id
Operator ID as defined in clause 7.5.2 of this Recommendation. This is the identifier of the
Operator of the Platform_Operation.

platform_operation_id
Platform_Operation ID as defined in clause 7.5.3 of this Recommendation.

platform_name_length
Length of the octet sequence of the platform name loop. If the length is 0 the provider does
not support self-discovery, and shall not be listed in any provider selection menu in the
CPE's client installation menu. The maximum value of this field shall be 40.

platform_name_char
sequence of UTF8 characters representing the name of the platform operation.

extension_byte Additional bytes; reserved for future use by this Recommendation.

7.2.2.3 ECI_base_url_descriptor

The ECI_base_url_descriptor allows the Platform_Operation to signal the base URL: of its web-

API (see clause 7.7.3), which can be used to provide client installation related services in case of

online access.

For each Platform_Operation the NITactual (and/or BAT on satellite networks) may carry the

ECI_base_url_descriptor in the same table carrying the ECI_platform_operation_descriptor.

The ECI_base_url_descriptor is a DVB private descriptor, using ECI's private data specifier in the

DVB private_data_specifier_descriptor [ETSI EN 300 468]. It is defined in Table 7.2.2.3-1.

Table 7.2.2.3-1 – ECI_base_url_descriptor

Syntax No. of bits Mnemonic
ECI_base_url_descriptor(){
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 platform_tag 4 uimsbf
 reserved 4
 base_url_length 8 uimsbf
 /* base url loop */
 for (i=0; i<N; i++){
 base_url_char 8 uimsbf
 }
}

Semantics:

descriptor_tag
ECI private tag value for descriptor_tag see [b-ITU-T J Suppl. 7].

platform_tag
This 4-bit field specifies the tag of the provider for the purpose of manual installation. On each
NIT and BAT of a network supporting each Platform_Operation shall have a unique
platform_tag value. Each platform_tag shall appear only once in each NIT or BAT. The
platform_tag shall not be used for ordering Platform_Operations and shall not be presented in
the CPE User interface for Platform_Operation selection.

base_url_length This field shall indicate the number of octets in the base URL loop.

base_url_char
The sequence of UTF8 characters forming the base URL for a platform operation.

44 Rec. ITU-T J.1012 (04/2020)

7.2.2.4 Manual installation

The Platform_Operation can provide an installation string to the User which the User can enter into

a suitable installation menu item of the CPE User interface in order to install an ECI Client. The

installation string shall be defined in accordance with this clause. The installation string is a digit

representation of a binary number of variable lengths. The binary number in a most significant bit

first representation can be constructed by concatenating the 3-bit binary values of the digits in a most

significant bit first representation.

The number is presented to the User in chunks of 4 digits, and the entry on the CPE UI shall equally

represent 4 digit chunks.

The installation string identifies the parameters that are defined in Table 7.2.2.4-1

Table 7.2.2.4-1 – Installation string parameters (in number of bits)

Parameter DVB-T/DVB-T2 DVB-C/DVB-C2 DVB-S/DVB-S2 IPTV Mnemonic

Network type 3 3 3 3 uimsbf

Network ID 16 17 17 16 uimsbf

Platform tag 8 8 8 8 uimsbf

Client tag 4 4 4 4 uimsbf

Padding 0 0 0 0 uimsbf

Checksum 5 5 5 5 uimsbf

Number of bits 36 36 36 36 uimsbf

Number of digits 12 12 12 12 uimsbf

Number of chunks 3 3 3 3 uimsbf

Semantics:

Network type
3-bit field. The values for network type are presented in Table 7.2.2.4-2.

Network ID
The DVB SI Table-id containing the ECI_service_provider_descriptor (see clause 7.2.2.2) that
provides detailed information required to access services as defined in Table 7.2.2.4-3.

Platform tag
4-bit field representing the provider tag of the required service provider in the
ECI_service_provider_descriptor in the NIT or BAT.

Client tag
4-bit field representing the provider tag of the required client in the
ECI_service_provider_descriptor selected by the provider tag in the NIT or BAT.

Padding 0..2 bit field with value 0 that pads the previous string to a multiple of 3 bits.

Checksum
5 bit field formed by adding successive 5-bit chunks of the previous string. The last part of the
string is padded with additional leading zeroes to a length of 5-bits. For example, the checksum
of string 0b01011010 is 0b01011 + 0x00010 = 0b01101. The checksum shall be used by the User
interface of the CPE to reject any erroneous entries by the User.

Table 7.2.2.4-2 – Network type value representation

Network type Value

DVB-T/T2 0

DVB-C/C2 1

DVB-S/S2 2

IPTV 3

Reserved 4..7

 Rec. ITU-T J.1012 (04/2020) 45

Table 7.2.2.4-3 – Network ID representation

Network type Network ID value Number of bits

DVB-C 0b0 followed by Network ID of NIT table or
0b1 followed by BAT ID of BAT table

17

DVB-S/S2 0b0 followed by Network ID of NIT table or
0b1 followed by BAT ID of BAT table

17
17

7.2.2.5 Self-discovery installation

For this installation method the CPE should be able to self-discover the network parameters of the

transport stream-based network and thus be able to access all transport streams on the network.

Each service in each of the multiplexes will be tagged with the ECI Platform_Operations tag that

can provide access to the service. This may be done in the SDT on a per service basis (see

clause 7.2.2.6) or in the NIT or BAT (only for satellite networks) on a per multiplex basis (see

clause 7.2.2.6).

The CPE shall offer the User the option to install any ECI Client of the Platform_Operations as

part of the self-discovery installation process. In case a User decides to install an ECI Client of the

Platform_Operation because he wishes to receive decrypted services via the related access network,

the CPE default behaviour shall be to install all Services tagged to that Platform Operation in the

central service list of the CPE.

7.2.2.6 ECI service tag descriptor

The ECI_service_tag_descriptor is carried in the SDT. It tags each service with the ECI service

providers that offer to descramble this service. The definition is given in Table 7.2.2.6-1.

Table 7.2.2.6-1 – ECI service tag descriptor

Syntax Number of bits Mnemonic
ECI_service_tag_descriptor(){
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 platform_tag 8 uimsbf
}

Semantics:

descriptor_tag
ECI private tag value for descriptor_tag see [b-ITU-T J Suppl. 7].

platform_tag
This is the platform_tag value of ECI Platform_Operation as listed in the
ECI_platform_operation_descriptor carries either in the NIT or the BAT of the
network.

7.2.2.7 ECI platform list descriptor

The ECI platform list descriptor provides the list of ECI Platform_Operations that provide access

to services of the different multiplexes in the network. The ECI_platform_list_descriptor carried in

the NIT and/or BAT. The definition is given in Table 7.2.2.7-1.

46 Rec. ITU-T J.1012 (04/2020)

Table 7.2.2.7-1 – ECI_platform_list_desciptor

Syntax Number of bits Mnemonic

ECI_platform_list_descriptor(){

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 for (i=0;i<N;i++){

 platform_count 8 uimsbf

 /* platform loop */

 for (j=1; j<M; j++){

 platform_tag 8 uimsbf

 }

 service_count 16 uimsbf

 /* service loop */

 for (j=0; j<M; j++){

 service_id 16 uimsbf

 }

 }

}

Semantics:
descriptor_tag ECI private tag value for descriptor_tag see [b-ITU-T J Suppl. 7].
platform_count 8-bit field is the number of provider tags in the following loop.
platform_tag This is the platform_tag value of ECI Platform_Operations as listed in the

ECI_platform_operation_descriptor, which is carried either in the NIT or the BAT of the
network. The services to which the tagged Platform_Operation is associated follow in the
service loop. Platform_tag values are permitted to appear multiple times in the outer loop
of this descriptor.

service_count 16-bit field, representing the number of service_ids in the following loop.
service_id DVB service ID of a service in the multiplex of the NIT or BAT that can be accessed using

the access services of the platforms referred to in the preceding platform loop.

7.2.3 IP network based client discovery

7.2.3.1 Manual installation

A CPE with access to IP networks shall offer a manual URL entry option to permit installation of a

service provider. The URL will serve as the base URL for the web-API.

NOTE – As part of the application functions of a CPE, some of which may be downloaded, the CPE may

offer access to various online services. The CPE may offer a service provider plus client installation API

interface so as to automate the client installation process for the User.

7.2.3.2 Web-page based installation

This type of solution for the installation of an ECI-Client is outside the scope of this

Recommendation and may be subject to supplementary specifications.

7.3 Storage, verification and activation

7.3.1 General update policies

ECI supports frequent renewability of items to enable a high level of integrity. Therefore all

downloaded items are regularly checked for updates. The following download-update policy shall

apply to all ECI Client and Platform Operation data and accompanying revocation data.

ECI Hosts shall attempt to check for updates regularly and inform the User in case any action is

required. Detailed requirements for the update policy are proposed in [b-ITU-T J Suppl. 7].

The ECI Host shall store the Platform OperationClient Chain with the associated ECI Client.

Storage and deletion shall be managed as part of the installing and deletion of ECI Clients.

 Rec. ITU-T J.1012 (04/2020) 47

The ECI Host shall automatically update the platform provider Certificate and overwrite older

versions.

7.3.2 ECI Client Image download and storage

As part of managing ECI Client related resources, the ECI Host shall store an ECI Client Image

needed to access services or content from NV memory only after (implicit) User approval. Any

automatic policy to install ECI Clients shall provide a User transparent method to deal with any

resource limitation to manage ECI Clients in a manner that is transparent to the User and that does

not lead to unexpected loss of access to content or services. In accordance, any ECI Client Image

deletion shall be (implicitly) approved by the User.

The ECI Host shall store downloaded ECI Clients in NV memory with their original credentials on

a Platform Operation basis. New ECI Client versions (including only new credentials) shall

overwrite older versions (on a Platform Operation basis). Example: if two Platform Operations

use the same ECI Client-type but use different versions, both versions shall be stored by the ECI

Host.

The minimum image size a CPE can store per ECI Client slot is proposed in [b-ITU-T J Suppl. 7].

7.3.3 ECI Client validation and activation

The ECI Host shall load the latest (by version number) Platform Operation Client Chain for the

Platform Operation Certificate in the Advanced Security System and attempt to install the

Platform Operation public key, in accordance with the generic rules for processing chains as defined

in clause 5.4.2.

The ECI Host shall load the latest ECI Client in the Advanced Security System. It shall load the

Platform Operation client co-signature in the Advanced Security System. It shall subsequently

validate the ECI Client, in accordance with the generic rules for processing chains in clause 5.5 and

verify the signature and co-signature for the ECI Client Image. If a revocation occurs the ECI Host

shall notify the User.

A new ECI Client shall only be installed and activated if the validation process has been completed

successfully.

7.4 ECI Client Chain structure formats

7.4.1 Introduction to ECI Client Chain structure formats

Figure 7.4.1-1 outlines the structure of the ECI Client Certificate Chain. The chain starts with the

Vendor Revocation List, followed by Security Vendor Certificate, ECI Client Revocation List

and finally the ECI Client Image file. In case of an Image Series an additional ECI Client Image

Certificate is introduced. The ECI Platform Operation Client signature provides a second signature

to the client image ensuring the applicability of the ECI Client to a platform operation. It is defined

in clause 7.5.

48 Rec. ITU-T J.1012 (04/2020)

Figure 7.4.1-1 – Client Authentication Chain

7.4.2 Security Vendor Certificate

Security Vendor Certificates are defined by the ECI_Certificate structure. The Certificate ID for

the Security Vendor Certificate is defined in Table 7.4.2-1.

Table 7.4.2-1 – Security Vendor ID definition

Syntax No. of bits Mnemonic

ECI_Vendor_Id {

 padding(4)

 type /* see Table 5.2-2 */ 4 uimsbf

 vendor_id 20 uimsbf

 vendor_version 8 uimsbf

}

Semantics:

type: integer Value in accordance with Table 5.2-2.

vendor_id: integer Vendor number assigned to Security Vendor, unique in the context of ECI.

vendor_version: integer Id assigned incrementally to the version of the Certificate for the Security Vendor.

Values 0x00 and 0xF0..0xFF are reserved.

7.4.3 ECI Client series Certificate and series target id

ECI Client series Certificates are defined by the ECI_Certificate structure. The certificate ID for

the Security Vendor Certificate is defined in Table 7.4.3-1.

 Rec. ITU-T J.1012 (04/2020) 49

Table 7.4.3-1: Client series ID definition

Syntax No. of bits Mnemonic

ECI_Client_Series_Id {

 padding(4)

 type /* see Table 5.2-2 */ 4 uimsbf

 client_type 12 uimsbf

 client_version_major 8 uimsbf

 client_version_minor 8 uimsbf

}

Semantics:

type: integer Value in accordance with Table 5.2-2.

client_type: integer ECI Client type unique in the context of the ECI Client's Security Vendor id.

client_version_major: integer Major version number of the ECI Client of an ECI Client-type. Versions increment

for new major release (see note).

client_version_minor: integer Minor version number of the ECI Client. ECI Clients can be revoked by minor

version number comparison in ECI Client Revocation Lists, and be automatically

replaced.

NOTE – ECI Client replacement on major release change is not automatic in ECI compliant CPEs as only minor version
updates are triggered automatically.

NOTE – The ECI Client type series Certificates are assigned to ECI Clients that require customized

implementations per CPE that are identical from a security and functionality perspective.

The client target ID is defined in the same way as for ECI Hosts, using the

ECI_Host_Series_Image_Target_Id structure. This binds a client image to a specific ECI Host.

7.4.4 ECI Client Image signature

ECI Client signatures shall use the ECI_Data_Signature structure as defined in clause 5.6.

The ECI Client ID is defined in Table 7.4.4-1, and is identical in structure to the

ECI_Client_Series_Id as defined in Table 7.4.3-1.

Table 7.4.4-1: Client ID definition

Syntax No. of bits Mnemonic

ECI_Client_Id {

 padding(4)

 type /* see Table 5.2-2 */ 4 uimsbf

 client_type 12 uimsbf

 client_version_major 8 uimsbf

 client_version_minor 8 uimsbf

}

Semantics:

type: integer Value in accordance with Table 5.2-2.

client_type: integer Client type, as assigned by ECI TA.

client_version_major: integer
Major version number of the ECI Client of an ECI Client-type. Versions

increment for new major release.

client_version_minor: integer
Minor version number of the ECI Client. ECI Clients can be revoked by minor

version number comparison in ECI Client Revocation Lists.

50 Rec. ITU-T J.1012 (04/2020)

7.5 ECI Platform Operation Chain formats

7.5.1 Overview

In Figure 7.5.1-1 the authentication chain for the Platform Operation Certificate and the Platform

Operation client signatures is presented. It starts with the Operator Revocation List, followed by

the Operator Certificate, Platform Operation Revocation List and finally the Platform

Operation Certificate containing the Platform Operation Public Key. This is used in combination

with the Platform Operation Client Revocation List to validate the ECI Client Images permitted

to operate for the platform.

Figure 7.5.1-1 – Authentication chain for the platform client chain

7.5.2 Operator Certificate

Operator Certificates are defined by the ECI_Certificate structure. The ids for the Operator are

defined in Table 7.5.2-1.

Table 7.5.2-1 – Operator ID definition

Syntax No. of bits Mnemonic

ECI_Operator_Id {

 padding(4)

 type /* see Table 5.2-2 4 uimsbf

 operator_id 20 uimsbf

 operator_version 8 uimsbf

}

Semantics:

type: byte Value in accordance with Table 5.2-2.

operator_id: integer Operator ID assigned to an Operator, unique in the context of the ECI root.

operator_version: integer Version number assigned incrementally to the version of the Certificate for the

Operator. Values 0x00 and 0xF0..0xFF are reserved.

7.5.3 Platform Operation Certificate

Platform Operation Certificates are defined by the ECI_Certificate structure. The secret key for

the Platform Operation is managed by the Platform Operation. The certificate ID for the Platform

Operation Certificate is defined in Table 7.5.3-1.

 Rec. ITU-T J.1012 (04/2020) 51

Table 7.5.3-1 – Platform Operation ID definition

Syntax No. of bits Mnemonic

ECI_Platform_Operation_Id {

 padding(4)

 type /* see Table 5.2-2 4 uimsbf

 platform_operation_id 20 uimsbf

 platform_operation_version 8 uimsbf

}

Semantics:
type: byte Value in accordance with Table 5.2-2.

platform_operation_id: integer Platform Operation number assigned to Security Vendor, unique in the
context of the Operator Certificate.

platform_operation_version: integer Incremented in case the Platform Operation changes its Certificate.

7.5.4 Platform Operation client revocation list

The Platform Operation client revocation list is a defined clause 5.3 using the identifier assignment

as defined in Table 5.2-2. The entity_id fields in the revocation list refer to the cosignature_id field

of the Platform Operation client signature data structure.

The minimum revocation list version number is defined as part of the initialization of the ECI Client

and is validated using the Advances Security System.

7.5.5 Platform Operation client cosignature

The Platform Operation client cosignature provides the Platform Operation signature to verify

that a Client image is permissible for providing access services for a platform. In addition, it provides

the vendor and client ID of the image for easy matching to the associated client image. The Platform

Operation Client signatures have their own identifier enumeration; this permits independent

revocation of previously permitted ECI Client Images using the Platform Operation client

revocation list. The details are given in Table 7.5.5-1.

52 Rec. ITU-T J.1012 (04/2020)

Table 7.5.5-1: Platform Operation Client cosignature definition

Syntax No. of bits Mnemonic
ECI_PO_Cosignature_Id {

 padding(4)

 type 4 uimsbf

 entity_id 20 uimsbf

 version 8 uimsbf

}

ECI_PO_Client_Cosignature_Data {

 ECI_PO_Cosignature_Id cosignature_id 32

 client_tag 4 uimsbf

 reserved 28

 ECI_Vendor_Id vendor_id 32

 if (/* image series cosignature */) {

 ECI_Client_Series_Id client_series_id 32

 format_version 8 uimsbf

 if (format_version == 0x01){

 ECI_Signature_v1 series_cosignature

 }

 }

 if (/* image cosignature */){

 ECI_Client_id client_id 32

 ECI_Data_Signature image_cosignature

 }

}

 Rec. ITU-T J.1012 (04/2020) 53

Semantics:
type: byte Value in accordance with Table 5.2-2.

entity_id: integer Unique identifier assigned to the signature in the context of the
Platform Operation Certificate. In conjunction with
cosignature_version field assigned to only one permitted client
image.

version: integer Increased (e.g., incrementing most significant bits) in case the Platform
Operation changes its public key. This field's lesser significant bits can
be used to represent (part of) the version of the client Image Series or
client image for convenience of the Platform Operation managing
revocation by client version using the version field in the Platform
Operation client revocation list.

cosignature_id: ECI_PO_Cosignature_Id Identification of the identifier of the cosignature on a client image. This
field is included in the cosignature calculation.

client_tag: integer Short form identifier for installation purposes to designate a client_type
in a Platform Operation context. Only clients that can replace each
other from a User's perspective shall have the same client_tag value.
Typically minor versions of a client are equivalent.

vendor_id: ECI_Vendor_Id Id of the vendor Certificate for the ECI Client Image. This field can be
used to locate the client Image Series or client image for which the
cosignature is provided in this data structure.

client_series_id: ECI_Client_series_id Id of the client series Certificate for verifying an image. The type field
of the client_series_id field shall match the Platform Operation
Certificates child-type for client_image_series: see Table 5.2-2, and
thus defines the correct selection of the alternate interpretations of the
data-structure.

format_version Version of the format of the Certificate definition that applies for the
cosignature (see Table 5.2-1). This shall match the client Certificate
version definition. The only valid value of this field that is defined is
0x01.

series_cosignature: ECI_Signature_v1 This is the cosignature by the Platform Operation Secret Key of
client_image_series certificate. The data that is input to the signature
calculation shall be defined as being identical to the
client_image_series certificate, replacing the client_image_series_id by
the cosignature_id of this data structure and replacing the extension
field by a 4-byte extension carrying the original client_image_series_id
field of the Certificate.

client_id: ECI_Client_Id Id of the client image. The type field of the client_id field shall match the
Platform Operation Certificates child-type for client_image: see
Table 5.2-2 and thus defines the correct selection of the alternate
interpretations of the data-structure.

image_cosignature: ECI_Data_Signature This is the cosignature by the Platform Operation Secret Key of the
client image. The data that is input to the signature calculation shall be
defined as: the cosignature_id field followed by the data of client image
file input to the client image signature calculation as defined in clause
7.6.1.

7.6 File formats

7.6.1 ECI Client Image File Format

The ECI Client Credentials contain the data needed to verify the ECI TA authenticity of an ECI

Client. It shall use the format as defined in Table 7.6.1-1.

54 Rec. ITU-T J.1012 (04/2020)

Table 7.6.1-1 – Client credentials definition

Syntax No. of bits Mnemonic
ECI_Client_Credentials {

 ECI_Certificate_Chain client_chain

 if (client_chain.chain_length == 0x1) {

 /* no client series; regular image */

 ECI_RL client_rl

 }

 ECI_Data_Signature client_signature

}

Semantics:
header: ECI_Client_Chain_Header Header of the ECI Client chain file.

client_chain: ECI_Client_Chain
Certificate Chain for validating an ECI Client Image, starting with the
Security Vendor Root Revocation List, ending with the Security Vendor
Certificate for non Image Series based ECI Clients, or ending with the ECI
Client series Certificate for Image Series based ECI Clients.

client_rl: ECI_RL
Revocation List for ECI Client Image Ids.

client_signature: ECI_Data_Signature
Signature to validate the ECI Client Image, the public key provided by the
ECI Client chain.

The ECI Client Image file is defined in Table 7.6.1-2.

Table 7.6.1-2 – ECI Client Image file definition

Syntax No. of bits Mnemonic
ECI_Client_Image_File {

 magic = 'ECI' 24 uimsbf

 image_header_version 8 uimsbf

 ECI_Client_Credentials credentials

 if (image_header_version == 0x01) {

 if (credentials.client_chain.chain_length == 0x1)

 { /* regular image */

 ECI_Client_Id client_id 32 uimsbf

 }

 if (credentials.client_chain..chain_length == 0x2)

 { /* Image Series image*/

 ECI_ Image_Target_Id _Id target _id 64 uimsbf

 ECI_Client_Series_Id client_series_id 32

 }

 vendor_id 20 uimsbf

 image_encrypted_flag 14 uimsbf

 online_flag 1 uimsbf

 Reserved 10

 for (i=0; i<n; i++) {

 client_image_byte 8 uimsbf

 }

 }

}

 Rec. ITU-T J.1012 (04/2020) 55

Semantics:

magic: byte[3]
Magic number used for verification of the format of the following data. It has the
value of the three 8-bit ASCII representations of the characters 'ECI'. The ECI
Host shall check the value of this field to verify if an ECI file has the expected
format for additional data integrity.

image_header_version: byte
Format version of the image header. Value 0x01 is the presently defined
version; all other values are reserved. The ECI Host shall ignore any image
with a version number that is not recognized.

credentials: ECI_Client_Credentials ECI Client Credentials for verifying the authenticity of the ECI Client Image.

series_image: Boolean
Series image is not a field but a function computed from credentials indicating
the presence of an ECI Client type series Certificate.

series_id: ECI_Client_Series_Id
ECI Client series ID of the Image Series of the following image. The ECI Host
shall check the value before loading the ECI Client Image.

series_image_id: ECI_Client-

series_Image_Id

Image ID in Image Series of the following image. The ECI Host shall check the
value before loading the ECI Client Image.

client_id: ECI_Client_Id
ECI Client ID of the ECI Client Image. The ECI Host shall check the value
before loading the ECI Client Image.

vendor_id: ECI_Vendor_Id
Vendor ID of the Security Vendor of the ECI Client Image as defined in the
ECI_Vendor_Id structure in clause 7.4.2. The ECI Host shall check this field
before loading a (new) ECI Client Image.

image_encrypted_flag: integer
This flag signals if the image is encrypted. If the value of this field is 0b0 the
image is not encrypted. If the value of this field is 0b1 the image is encrypted.

online_flag: integer
This flag signals if the protocol to retrieve a key to decrypt the image requires
online interaction with the provisioning server using a nonce. See clause 7.8.3

client_image_byte: byte Sequence of bytes containing the client image.

In Table 7.6.1-2 "ECI Host shall check" means that the ECI Host shall verify that the values which

it expects will match the value in the field.

The ECI Client Image signature shall be computed over all data in the file following the credentials

field.

7.6.2 Platform Operation Chain data

The ECI Client Image file is defined in Table 7.6.2-1.

Table 7.6.2-1 – Platform Operation Chain file definition

Syntax No. of bits Mnemonic

ECI_Operation_Certificate_File {

 magic = 'EPC' 24 uimsbf

 version 8 uimsbf

 if (version == 0x01) {

 ECI_Certificate_Chain operation_chain

 ECI_RL po_client_rl

 client_image_count 16 uimsbf

 for (i=0; i<client_image_count; i++) {

 ECI_PO_Client_Cosignature_Data

 po_client_data

 }

 ECI_RL po_client_rl

 }

}

56 Rec. ITU-T J.1012 (04/2020)

Semantics:

magic: byte[3]
Magic number used for verification of the format of the following data. It has the
value of the three 8-bit ASCII representations of the characters 'EPC'. The ECI
Host shall check the value of this field to verify if an ECI file has the expected
format for additional data integrity.

Image_header_version: byte
Format version of the image header. Value 0x01 is the presently defined version;
all other values are reserved. The ECI Host shall ignore any image with a version
number that is not recognized.

operation_chain: ECI_Client_Chain
Certificate Chain for validating an ECI Client Image, starting with the Operator
Root revocation list, ending with the Platform Operation Certificate.

po_client_rl: ECI_RL
This is the Platform Operation client revocation list used to validate the client
image cosignatures. The ECI Host shall check the cosignature_ids in the
po_client_data as part of the verification of the cosignature.

client_image_count: integer
Number of signature data structures for client images in the following loop.

In Table 7.6.2-1 "ECI Host shall check" means that the ECI Host shall verify that the values which

it expects will match the value in the field.

7.6.3 Revocation data files

On behalf of the ECI Client Loader there are two types of revocation data files. Both files use the

ECI_Revocation_Data_File format defined in Table 5.5-2.

The ECI Client revocation data file uses father_type equal 0x0 (Root Certificate) and sub_type

equal to the Vendor revocation list type. The revocation_data conforms to the constraint that the leaf

revocation list in the trees are ECI Client revocation lists.

The Platform Operation revocation data file uses father_type equal 0x0 (Root Certificate) and

sub_type equal to the Operator revocation list type. The revocation_data conforms to the constraint

that the leaf revocation list in the trees are Platform Operation revocation lists.

7.7. ECI Client resources transport protocols

7.7.1 General and profiling

This clause defines the application of protocols in CPEs and Platform Operations.

The broadcast protocol does not provide for an Image Series option. Series based images are only

foreseen for IP-connected devices.

CPE supporting both broadcast and online access to ECI Client resources shall use broadcast access

with a higher priority (unless indicated otherwise in this Recommendation) so as to offload online

traffic, but may use online access in case of urgency (User waiting), and shall use online access in

case minimum access frequencies cannot be met over the broadcast network.

7.7.2 Broadcast transport protocol

7.7.2.1 Introduction

ECI requires support data for various functions on behalf of the ECI Client and/or the ECI Host to

be able to initialize and support the ECI Client. The same transport protocol is used for all types of

data, and is defined in this clause. It is closely related to the protocol used to download ECI Host

Image files.

For broadcast, delivery data is broken up in buckets using a hash function on the access index used

by the CPE to determine if it needs the data. By using buckets the amount of data that the CPE needs

to download is significantly reduced and the selectivity of monitoring changes in the data that are

actually relevant for the CPE is improved.

The following separate carousel groups are defined (by content type):

• ECI Client Images (per Security Vendor).

 Rec. ITU-T J.1012 (04/2020) 57

• ECI Client revocation data, structured in buckets based on the <client_id,client-

version_major> and vendor_id index.

• Platform operation Certificate Chain.

• Platform Operation revocation data, structured in buckets based on the provider_id and

operator_id index.

• ECI Host Image revocation data, structured in buckets.

• ECI AS_setup ECI Client initialization data, structured inbuckets.

• Carousel groups are defined for import and export data structures (see clause 9.8).

• Carousel groups are defined for Operator proprietary data.

All DSMCC carousel parameters shall comply with [ETSI EN 301 192].

An Operator may use multiple carousels on separate multiplexes to transmit all required data.

However, for any specific ECI Client the ECI Host shall only have to monitor the updates of a single

location DII of a data carousel.

7.7.2.2 Credential and revocation data handover to Operator

The data formats and protocols for transferring credentials and revocation lists to an Operator do not

form part of the ECI specification.

7.7.2.3 Security Vendor to Operator handover

The data formats and protocols for transferring content from Security Vendor to Operator do not

form part of this Recommendation.

7.7.2.4 PSI signalling

The carousels shall use the stream_identifier_descriptor [ETSI EN 300 468] in the PMT to tag the

stream used for transmitting the carousel so as to permit referencing by the data_broadcast descriptor

in the SI.

The carousels shall use a data_broadcast_id_descriptor with data_broadcast_id as defined in

Table 7.7.2.4-1.

Table 7.7.2.4-1 – Data Broadcast ID value for ECI specific carousels

Data_broadcast_id value Meaning

Allocated by DVB project office, see broadcast-id value defined in
[ETSI TS 101 162].

ECI Operator specific client support data carousel

The selector bytes of the data_broadcast_id_descriptor shall follow the structure as defined in

Table 7.7.2.4-2.

Table 7.7.2.4-2 – Carousel ID structure for ECI DVB DSMCC data carousels

Syntax No. of bits Mnemonic
ECI_carousel_id_structure {

 version 8 uimsbf

 if (version == 0x01){

 operator_id 20 uimsbf

 platform_operation_id 20 uimsbf

 }

}

58 Rec. ITU-T J.1012 (04/2020)

Semantics:

version: integer
Version of the structure; at present only 0x01 is defined. All other values
are reserved. CPEs encountering a version other that 0x01 shall ignore
this descriptor.

operator_id: ECI_Operator_Id
ECI ID of Operator (which is defined for any Operator Certificate) of the
Platform Operation of the carousel.

platform_operation_id:

ECI_Platform_Operation-Id

As per Platform Operation Certificate: ID of the Platform Operation.

7.7.2.5 SI signalling

7.7.2.5.1 Data Carousel location Signalling via Data Location Linkage Descriptor

The ECI Client data location linkage descriptor is an ECI private DVB linkage descriptor [ETSI TS

101 162]. This linkage descriptor assists a CPE with the location of the multiplex carrying an ECI

Client data carousel for a specific Platform Operation. This linkage descriptor is carried in the NIT

or BAT. The ECI Client Data location linkage descriptor shall always be preceded in the table section

by a DVB private data specifier descriptor [ETSI TS 101 162] with private_data_specifier field value

equal to "ECI" as defined in [ETSI TS 101 162]. This descriptor may appear in the NIT or BAT

multiple times. This linkage descriptor shall be carried in networks and bouquets with more than 4

multiplexes.

With reference to the definition of the linkage descriptor as defined in [ETSI EN 300 468] and [ETSI

TS 101 211] the fields of the ECI Client data location linkage descriptor have the following specific

application:

• service_id: may be set to 0x0000 to signal no specific service_id is signalled.

• linkage_type: value 0x80 signalling an ECI Client Data location linkage descriptor.

The private data byte field of the ECI Client Data location linkage descriptor shall carry the structure

defined in Table 7.7.2.5.1-1.

Table 7.7.2.5.1-1 – Private data structure for ECI Client Data carousel location linkage

descriptor

Syntax No. of bits Mnemonic
ECI_client_data_location {

 version 8 uimsbf

 if (version==0x01){

 for (i=0;i<n; i++){

 operator_id 20 uimsbf

 platform_operation_id 20 uimsbf

 }

 }

}

Semantics:

version: integer
Version of the structure; at present only 0x01 is defined. All other values
are reserved. CPEs encountering a version other that 0x01 shall ignore
this descriptor.

operator_id: ECI_Operator_Id
ECI ID of Operator (which is defined for any Operator Certificate) of the
Platform Operation of the carousel. The value 0x00000 signals any
Operator.

platform_operation_id:
ECI_Platform_Operation-Id

As per Platform Operation Certificate: ID of the Platform Operation.
The value 0x0000 signals any Platform Operation.

 Rec. ITU-T J.1012 (04/2020) 59

Network and bouquet operators may use wildcard specifiers (value 0x00000) for operator_id or

platform_operation_id to link to a multiplex carrying one or more ECI Client data carousels. For

efficiency reasons it is recommended that such signalling is constrained to assist CPEs to inspect as

few multiplexes as required in order to locate a specific Platform Operation carousel.

It is recommended that only a single ECI Client data carousel location linkage descriptor to a

multiplex is used in a NIT or BAT, and that all applicable carousels located in that multiplex are listed

in one ECI_Client_data_location structure.

7.7.2.5.2 ECI Client emergency download descriptor

In order to indicate the need to urgently replace an ECI Client Image, one or more

ECI_client_emergency_download descriptors can be placed in NIT, BAT or in one of the SDT entries

for a service for which the flagged ECI Client can provide access. The ECI Host shall be able to

retrieve this descriptor from any of the tables in which it appears in any of the currently tuned

multiplexes and perform the associated processing and use any spare tuner to access relevant

multiplexes to acquire this descriptor with a worst case 30 minutes interval period.

The ECI_client_emergency_download_descriptor permits targeting specific operation platforms and

specific host types in order to minimize the disturbance caused by emergency updates.

When the ECI Host finds a new ECI_client_emergency_download descriptor (verified by table-

origin and emergency_id field) it shall match its Host and Client configuration against the targeting

information in the descriptor. If a target match is found and the version of the currently installed client

image requires an update, the Host shall perform this update in accordance with the

emergency_indicator. This can cause a disruption for ongoing User activities in the CPE in case of

resource conflicts.

The ECI operation descriptor is a DVB private descriptor and shall always be preceded in the table

it appears in by the DVB private_data_specifier_descriptor using the ECI

private_data_specifier_field (see [ETSI EN 300 468]). The syntax of the descriptor is defined in Table

7.7.2.5.2-1.

60 Rec. ITU-T J.1012 (04/2020)

Table 7.7.2.5.2-1 – ECI_Client_Emergency_Download_Descriptor

Syntax No. of bits Mnemonic
ECI_client_emergency_download_descriptor{

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 /* main loop */

 main_loop_nr 8 uimsbf

 for (i=0; i<main_loop_nr; i++){

 /* target platform */

 platform_operation_tag 8 uimsbf

 /* host target loop */

 host_nr 8 uimsbf

 /* host id target loop */

 for (j=0; j<host_nr; j++){

 manufacturer_id 20 uimsbf

 cpe_type_id 20 uimsbf

 host_version 8 uimsbf

 }

 /* client image loop */

 client_nr

 for (j=0; j<client_nr; j++){

 emergency_indicator 4 uimsbf

 client_tag 4 uimsbf

 min_client_version_major 8 uimsbf

 min_client_version_minor 8 uimsbf

 }

 }

 /* private data till end of descriptor*/

 for (i=0; i<n; i++){

 private_data_byte 8

 }

}

Semantics:
descriptor_tag ECI private tag value for descriptor_tag: see [b-ITU-T J Suppl. 7].

descriptor_length See [ETSI EN 300 468].

main_loop_nr
Number of entries in the main loop. The separate main loop entries shall be evaluated
separately by the ECI Host, i.e., have OR semantics. The various elements in one loop
entry shall have AND semantics.

platform_operation_tag
Tag value for the ECI platform as listed in the ECI_platform_operation_descriptor in the
NIT/BAT. The ECI Host shall consider an emergency update if the platform_operation
matches the platform_operation of one of the installed ECI Clients.

host_nr
Number of entries in the host target loop; value 0 means all ECI Hosts are targeted. The
loop entries shall have OR semantics; i.e., if any host target specification matches the
target condition in the main loop has a matching state.

manufacturer_id
Manufacturer_id of the host targeted by an emergency update. The host shall consider
an emergency update if the value of this field matches the manufacturer_id of the ECI
Host.

cpe_type_id
Value as defined by ECI_CPE_Type_ID in Table 6.2.2.1-2. The ECI Host shall consider
an emergency update if the cpe_type_id of the Host matches the value of this field.
Cpe_type_id.cpe_type equal 0x000 shall mean any ECI Host cpe_types that is a match
(and cpe_model and host-version shall be ignored). cpe_type_id.cpe_model equal 0x00
shall mean any ECI Host cpe_model that is a match (and host version shall be ignored).

host_version
The ECI Host shall consider an emergency update if and only if its host version is less or
equal to the value in this field. See Note.

client_nr
Number of entries in the client image loop. The loop entries shall have OR semantics and
all client images that match shall be considered for an emergency update.

emergency_indicator
The ECI Host shall use the value of this field to select the appropriate behaviour for
starting the download and the subsequent update of the client as defined in
Table 7.7.2.5.2-2.

 Rec. ITU-T J.1012 (04/2020) 61

client_tag
Tag value identifying the ECI Client as listed in the ECI_platform_operation_descriptor in
the NIT/BAT that matches the platform_operation_tag field in the same main loop. The
ECI Host shall consider an emergency update if the referred vendor_id and client_id
match with one of the installed clients in the ECI Host.

min_client_version_major
This field represents the minimally acceptable major version number for the client image.
The ECI Host consider to perform an emergency update if a Client is installed matching
with client_tag that has a major version less than the value of this field.

min_client_version_minor
This field represents the minimally acceptable minor version number for the client image.
The ECI Host shall consider to perform an emergency update if an ECI Client is installed
matching with client_tag that has a minor version less than the value of this field and the
major version equal to min_client_version_major.

client_id
Client identifier of an ECI Client that provides decryption services for services with
platform_operation_tag, as defined in Table 7.4.4-1.

private_data_byte
Private data: the content may be defined by the Operator managing the broadcast of this
descriptor.

NOTE – Field value equal 0xFF implies all host versions match.

Table 7.7.2.5.2-1 defines a number of conditions in the main loop (having AND semantics) that shall

be met in order for the ECI Host to consider performing an emergency update. If all these conditions

are met the ECI Host shall perform an emergency download and installation of one or more client

images in accordance with the emergency_indicator field for that client.

Table 7.7.2.5.2-2 – ECI_Client_emergency_download_descriptor emergency_indicator field

values

Name Value Description

System emergency 0x01 The ECI Host shall download the new client image and install it as quickly as possible
interrupting ongoing User instigated activities if so required (see Note 1).

Client emergency 0x02 The ECI Host shall download the new client image and install it before any media-
handle session for that Client is opened. Any ongoing media-handle sessions for this
Client shall first be terminated (see Note 2).

Client urgency 0x03 The ECI Host shall download the new client image and install it on the first occasion
that does not cause any disruption to any User instigated activity. The ECI Host shall
download the new host image at the latest during the next power-up event (see Note
3).

RFU other Reserved for future use.

NOTE 1 – Operators can use this for instance if the present ECI Client can cause harm to the ECI Host and/or other
ECI Clients and has to be replaced immediately.

NOTE 2 – Operators can use this for instance if the present ECI Client has very poor performance for decrypting
services.

NOTE 3 – Operators can use this for instance if the present ECI Client has serious deficiencies for decrypting services
but can perform reasonably for regular use cases.

7.7.2.6 Carousel compatibility descriptor

The compatibilityDescriptor used in DVB DSMCC data carousels [ETSI EN 301 192] shall be used

in the DSI DII messages.

The compatibilityDescriptor provides the information on the type of data transported in a carousel

group. The specifierData() shall contain the ECI OUI. Table 7.7.2.6-1 defines the applicable fields

of the compatibilityDescriptor in ECI Client data carousels.

62 Rec. ITU-T J.1012 (04/2020)

Table 7.7.2.6-1 – ECI Data Carousel content types

Descriptor
type field

Group Purpose Model field Version field Bucket Index to compute the
module ID

0xA0 ECI Client Images and
credentials files for one
Vendor

Vendor_id of the Security Vendor
of the images

Freely assigned

0xA2 ECI Client revocation
data files (as buckets)

platform_operation_id = Vendor_id + <Client_type,
client_version_major>
(see note)

0xA3 Platform Operation
chain file

platform_operation_id,
platform_operation_version

Freely assigned

0xA4 Platform Operation
revocation data files (as
buckets)

platform_operation_id = Operator_id + provider_id

0xA5 ECI Host revocation
data files (as buckets)

platform_operation_id = Manufacturer_id + cpe_type_id

0xA6 AS_setup files (as
buckets)

platform_operation_id target_id for CPE

0xA7-0xAA UI Application
container (see
clause 9.4.3.4.2

Defined by Operator Freely assigned

0xB0 Export tree file platform_operation_id (of exporting
ECI Client)

Freely assigned

0xB1 Import chains file platform_operation_id (of importing
ECI Client)

Freely assigned

0xB2 Import authentication
chains file

platform_operation_id (of importing
ECI Client)

Freely assigned

0xB8-0xBF Operator proprietary
format

Defined by Operator Defined by Operator

Other values reserved

NOTE – Concatenation of the two fields, with most significant one as first argument, making up a 20-bit number.

The bucket index computation shall use 32 bit modular integer arithmetic and is defined in clause

7.7.2.7.

7.7.2.7 Carousel DSI

In case the carousel is a two layer carousel, the DSI shall contain a complete index of the groups in

the carousel (i.e., one loop entry per DII).

The compatibilityDescriptor is defined in Table 7.7.2.6-1. The DII non-loop fields shall meet the

following constrains:

• block Size: at least 512 bytes, for groups with larger modules at least 2 kbyte is

recommended;

• tCDownloadScenario: shall be at least 4-times the slowest DDB repeat message in the group.

TCDownload shall also meet the maximum constraints in Table B.4-1;

• numberOfModules: reflects the number of modules for regular carousels and the number of

buckets (each mapped onto one module) for bucketized data. For a Platform Operation

Certificate Chain data the value shall be 1.

The values for tCDownloadScenario below reflect the timeout period for acquisition of a full data

item by a CPE. It shall be at minimum four times the slowest DDB repeat time of any of the modules

of the group. The values for the various items are defined in clause B.4.

The following module loop fields shall meet the following constraints:

• moduleId: bit 15 to 8 shall be the same as the LSB of the groupId in the corresponding

groupInfo structure in the DSI. Bits 7 to 0 are assigned in accordance with Table 7.7.2.7-1.

• moduleVersion: application depends on carousel type, shall be in accordance with

Table 7.7.2.7-1.

 Rec. ITU-T J.1012 (04/2020) 63

• moduleInfoLength: 0 for all ECI carousels.

Table 7.7.2.7-1 – ECI Carousel group parameters

Group type ModuleId bit 7..0 ModuleVersion ModuleInfo

Client Images client_type client_version None

Client Revocation Data bucket_number Incremented on every update None

Platform Operation client chain Assigned by Operator Incremented on every update None

Platform Operation Revocation Data bucket_number Incremented on every update None

ECI Host Revocation Data bucket_number Incremented on every update None

ECI AS_setup data bucket_number Incremented on every update None

For bucketized number, the bucket number (equal to module_id bit [7..0]) shall be computed from

the index with a simple modulo operation:

 bucket_number = bucket Index % numberOfModules

7.7.2.8 Carousel DDB

No specific requirements.

7.7.2.9 Dynamic carousel behaviour

The carousel version numbering and DSI, DII updating shall be in accordance with

[ETSI TR 101 202]. This implies that any update of a module shall be reflected in the version number

of the module, its DII and cascading upwards to the DSI (if present).

CPE implementation can monitor changes in their target modules so as to follow any dynamic update

during normal operation.

7.7.3 Web transport protocols

7.7.3.1 Introduction

The various required data items can be retrieved by the ECI Host from a server to be appointed by

the Operator.

The interface shall use direct HTTPS requests as specified in clause 9.4.4.6 and follows RESTfull

design principles [b-Richardson] with the request encoded as a combination of URL extension and

query parameters, and the response encoded as a binary file.

The HTTP server shall respond with one of the following status codes:

• 200: OK (file requested is returned).

• 302 FOUND: redirects to defer the request to another server; http request to be repeated on

the URL returned.

• 404: Item not present on server.

• 500 .. 599: Server error.

The specification of the URLs used for the requests uses a 'Bachus Naur' style specification. The

names of the symbols that correspond to fields in ECI data structures shall be represented as the

hexadecimal representation (string of charachters '0' .. '9' , 'A' .. 'F') of its value with twice the number

of digits as bytes used to represent the number in ECI internal binary data structures. The server shall

ignore any additional query parameters it does not recognize.

7.7.3.2 ECI Web API overview

The Operator shall support an online server that responds to the following HTTP1.1

[IETF RFC 7231] Get request according to the following URL syntax and semantics:

URL ::= base-url '/' 'eci' major '_' minor '/' tail.

64 Rec. ITU-T J.1012 (04/2020)

major and minor shall reflect major and minor number of the protocol version in decimal

representation without leading zeros. The current version is 1.0. The definition of tail is given in Table

7.7.3.2-1.

Table 7.7.3.2-1 – Definition of tail

tail ::= host_version |

 host_images |

 host_image_version |

 host_image |

 po_check |

 po_client_check po_certchain |

 po_revocation |

 client_version |

 client_credential_version |

 client_image |

 client_revocation |

 as_request |

 tail_extension*.

The tail_extension indicates various extension options to the ECI Web API as defined in this

Recommendation.

7.7.3.3 Web API ECI Host related requests

The following ECI Host related web API requests are defined:

• host_version ::= 'host-version ' '?target-id=' target_id.

This shall return the latest version of the ECI Host Image set for the CPE identified by

target_id.

• host_images ::= 'hi-images' ' ?target-id=' target_id.

This shall return the latest number of images for an ECI Host for the CPE identified by

target_id.

• host_image_version ::= 'hi-version' ' ?target-id=' target_id '&image-id=' image_id .

This shall return the latest version of the ECI Host Image file image_id for the CPE

identified by target_id.

• host_image ::= 'host-image' ' ?target-id=' target_id '&image-id=' image_id.

This shall return the latest ECI Host Image image_number for the CPE identified by

target_id. image_number=="FF" shall return the ECI Host credential file for the ECI

Host Images, including the latest revocation data.

For ECI Host related requests, the server for a Platform Operation can support ECI Hosts for any

CPE type it desires. If it supports a CPE type it shall support the complete latest set of ECI Host

Images and the corresponding host_image_version, host_images and host_revocation queries. The

format of the file returned is the ECI_Host_Version_File as defined in Table 7.7.3.3-1.

Table 7.7.3.3-1 – ECI Host version file definition

Syntax No. of bits Mnemonic
ECI_Host_Version_File {

 magic = 'RHVE' 32 uimsbf

 host_version 8 uimsbf

}

 Rec. ITU-T J.1012 (04/2020) 65

Semantics:
magic: byte[4] 8-bit ASCII representation of the string 'RHIM'.

host_version: integer Version number of the ECI Host Certificate.

The format of the file returned is the ECI_Host_Images_File as defined in Table 7.7.3.3-2.

Table 7.7.3.3-2 – Host Images file definition

Syntax No. of bits Mnemonic
ECI_Host_Images_File {

 magic = 'RHIM' 32 uimsbf

 host_images 8 uimsbf

}

Semantics:
magic: byte[4] 8-bit ASCII representation of the string 'RHIM'.

host_images: integer Number of ECI Host Images supported by the CPE type identified in the request.

The format of the file returned is the ECI_Host_Image_Version_File as defined in Table 7.7.3.3-3

Table 7.7.3.3-3 – Host Image Version File Syntax

Syntax No. of bits Mnemonic

ECI_Host_Image_Version_File {

 magic = 'RHIV' 32 uimsbf

 host_image_version 16 uimsbf

}

Semantics:
magic: byte[4] 8-bit ASCII representation of the string 'RHIV'.

host_image_version: integer ECI Host Image version of the ECI Host Image identified by the request.

7.7.3.4 Web API Platform Operation related requests

The server of the Platform Operation shall support the following requests on behalf of the Platform

Operation id's it supports:

po_check ::= 'po_check' '/' operator_id '/'

platform_operation_id .

This shall return the revocation status of the Certificate issued for operator_id,

platform_operation_id in the file format defined in Table 7.7.3.4-1. The server for a Platform

Operation shall at minimum support its own Platform Operation Certificates in operation through

this interface.

po_client_check ::= 'po-client-check' '/' operator_id '/'

 platform_operation_id '?cosignature-id='

cosignature_id .

66 Rec. ITU-T J.1012 (04/2020)

This shall return the platform revocation status of the ECI Client Image for cosignature_id according

to the latest platform operation client revocation list. See Table 7.7.3.4-2.

po_certchain ::= 'po-chain' '/' operator_id '/'

platform_operation_id .

This shall return the latest ECI Client chain for the Platform Operation identified by operator_id,

platform_operation_id as defined in Table 7.6.2-1. The server for a Platform Operation shall at

minimum support its own Platform Operation Certificates in operation through this interface.

po_revocation_ ::= 'po-revoc' '/'

operator_id .

This shall return the latest Platform Operation revocation data file containing the revocation list for

the Operator identified by operator_id. The server shall at least support the latest revocation data

for the Operator of its own Platform Operation. ECI Hosts shall use this API to attempt to acquire

the latest revocation data of all stored ECI Clients.

Table 7.7.3.4-1 – Platform Operation Check File Syntax

Syntax No. of bits Mnemonic

ECI_PO_Check_File {

 magic = 'RPCH' 32 uimsbf

 non_revoked_certificate_flag 8 uimsbf

}

Semantics:
magic: byte[4] 8-bit ASCII representation of the string 'RHIV'.

non_revoked_certificate_flag: byte Value 0x00 in case the Certificate of the Platform Operation ID identified by
the request was revoked, 0x01 otherwise.

Table 7.7.3.4-2 – Platform Operation Client Check File syntax

Syntax No. of bits Mnemonic

ECI_PO_Client_Check_File {

 magic = 'RPCC' 32 uimsbf

 non_revoked_certificate_flag 8 uimsbf

}

Semantics:

magic: byte[4]
8-bit ASCII representation of the string 'RHIV'.

non_revoked_certificate_flag: byte
Value 0x00 in case the client image associated with cosignature_id field of
the request was revoked according to the latest Platform Operation Client
Revocation list of the Platform Operation, 0x01 otherwise.

 Rec. ITU-T J.1012 (04/2020) 67

7.7.3.5 Web API client requests

The Operator's server shall support the following requests on behalf of the clients required by its

Platform Operation's id:
client_version ::= 'client-ver' '/' vendor_id '/'

 client_type '/' client_version_major .

• This shall return a Client Version File (see Table 7.7.3.5-1) containing the latest version of

ECI Client Image for a client identified by vendor_id, client_type. The server shall at

minimum support the clients used to operate its own Platform Operation services.
client_credential_version ::= 'client-ver' '/' vendor_id '/'

 client_type '/' client_version_major .

• This shall return a Client Credential Version File (see Table 7.7.3.5-2) containing the latest

version of ECI Client Credentials for a client identified by vendor_id, client_type. The

server shall at minimum support the clients used to operate its own Platform Operation

services.
client_image ::= 'client-img' '/' vendor_id '/'

 client_type '/'client_version_major

 ['? &target-id=' image_target_id] .

• This shall return the latest ECI Client Image file for a client identified by <vendor_id,

client_type, client_version_major>. In case of an Image of type image_target_id,

ECI_Image_Target_Id is provided as a query parameter. The server shall at least support the

Vendors of ECI Clients used to operate their own Platform Operation services. ECI Hosts

shall use this API to attempt to acquire the latest revocation data of all stored ECI Clients.
client_revocation_data ::= 'client-revoc' '/' vendor_id .

• This shall return the latest ECI Client revocation data file for a client identified by

vendor_id. The server shall at minimum support the clients used to operate its own Platform

Operation services.

Table 7.7.3.5-1 – Client Version File syntax

Syntax No. of bits Mnemonic
ECI_Client_Version_File {

 magic = 'RCVE' 32 uimsbf

 client_version 16 uimsbf

 emergency_download_descriptor

}

Semantics:

magic: byte[4]
8-bit ASCII representation of the string 'RCVE'.

client_version: integer
Latest client version of the client type identified in the request.

emergency_download_descriptor
An ECI_client_emergency_download_descriptor in which the ECI Host shall
assume platform_operation_tag shall match the Platform Operation of the
provider of the web-api of the client and the client_tag shall match the client
image as requested in the web api parameters.

68 Rec. ITU-T J.1012 (04/2020)

Table 7.7.3.5-2: Client Credential Version File syntax

Syntax No. Of bits Mnemonic

ECI_Client_Credential_Version_File {

 magic = 'RCCV'
32 uimsbf

 root_version
8 uimsbf

 vendor_rl_version
24 uimsbf

 eci_vendor_id
32 uimsbf

 padding(4)

 client_rl_version
24 uimsbf

 eci_client_id
32 uimsbf

}

Semantics:
magic: byte[4] 8-bit ASCII representation of the string 'RCCV'.

root_version: integer Root version (as defined in Table 5.3-1) of latest ECI Client credentials.

vendor_rl_version: integer Security Vendor revocation list version number of latest ECI Client credentials.

eci_vendor_id: ECI_Vendor_Id ECI_Vendor_Id (as defined in Table 7.6.1-2) of the latest ECI Client
credentials.

client_rl_version: integer Client revocation list version number of latest ECI Client credentials.

eci_client_id: ECI_Client_Series-Id ECI_Client_Series_Id (as defined in Table 7.6.1-2) of the latest ECI Client
credentials.

7.7.3.6 Web API AS_setup requests

In case the Operator supports online registration of encrypted-mode ECI Clients the following

request shall be supported:
as_request ::= 'as_request' '/' vendor_id '/' eci_client_id

 '?&image-target-id=' target_id '&nonce=' nonce].

The request returns the as_setup file for the specified client (<vendor_id,eci_client_id>) and the CPE

specified by ECI_Image_Target_Id target_id. The type of eci_client_id can be ECI_Client_Id or

ECI_Client_Series_Id. Nonce is the value for the nonce as specified by the ECI Client Image

decryption protocol. See clause 7.8.4.2 for more details.

7.8 Platform Operation ECI Client installation

7.8.1 Scope and Profiling

The Platform Operation can select the security options for ECI Client installations and signal this

using the image_encrypted_flag and the online flag in the ECI Client Image file (see Table 7.6.1-2):

• "ECI Client installation mode with unencrypted ECI Client Image file", in which the (latest

version of the) ECI Client, as proposed by the signalling defined in clause 7.2, is downloaded

and ECI Client initiation takes place.

• "ECI Client installation mode with encrypted ECI Client Image file ", which in addition to

the first mode permits the Platform Operation to encrypt the ECI Client Image and

authenticate as defined in [ITU-T J.1014]. ECI Client decryption is ECI Host specific and

encompasses the ECI Host version verification, thus further ensuring that the confidentiality

of the ECI Client after decryption is guaranteed by not permitting decryption on unknown

or compromised ECI Hosts. An ECI_Image_Target_Id is required in case a CPE is not

 Rec. ITU-T J.1012 (04/2020) 69

connected to an online network. In this use case the ECI_Image_Target_Id needs to be sent

to the security headend manually.

The protocol for both versions of ECI Client initiation is defined in the rest of this clause.

Platform Operations operating online CPEs in installation mode with encryption can force the use

of the latest ECI Client by using an AS generated nonce in the decryption protocol with the Platform

Operation server for the ECI Client (see clause 7.7.3.6).

Profiling rules:

• In case online registration is offered by the Platform Operation (the signalling is defined in

clause 7.2) and the CPE is able to access online services the CPE shall use the online

registration protocol.

• Broadcast-reception capable CPEs shall be able to perform the broadcast registration

protocol. Broadcast mode requires registration of the CPE on initial Platform Operation

registration.

• Platform Operations supporting broadcast networks supporting CPEs without simultaneous

online connectivity shall support broadcast mode registration. The details for the User

entering the registration information for a CPE shall obey the applicable formatting rules.

7.8.2 ECI Client installation mode with unencrypted ECI Client Image file

At the start of ECI Client initialization the ECI Host reserves an AS slot for the Platform

Operation, resets the AS-slot and loads the Platform Operation public key into the AS slot as

defined in [ITU-T J.1014].

If required the ECI Host downloads the ECI Client, stores it in NV RAM for future retrieval and

starts it up. The ECI Client will further guide the User through installation. Installation may involve

the User manually sending the CPE ECI_Image_Target_Id value target_id to the headend in case the

CPE does not have an online connection for broadcast system security registration.

On any subsequent reboot the ECI Host will re-initialize t the ECI Client.

7.8.3 ECI Client installation mode with encrypted ECI Client Image file

This mode of operation uses an encrypted download of the ECI Client Image using an Operator

selected key. This Operator selected key is encrypted and carried in an as_setup structure.

At the start of ECI Client initiation the ECI Host reserves an AS slot for the Platform Operation,

resets the AS-slot and loads the Platform Operation public key into the AS slot:

• The ECI Host shall distinguish two modes for as_setup retrieval: Registration mode: this

mode is entered if the ECI Client is initiated for the first time or the POPK or the ECI Client

version has changed or the client operates in online re-registration mode using a unique nonce

for every re-registration. The as_setup structure for the CPE shall be retrieved from the

Platform Operation network.

• Registered mode: the previous as_setup structure is retrieved from NV memory. In case of

any pending ECI Client or ECI Host version change the ECI Client should warn the User

to initiate or unblock such a download (under default download settings these should

normally take place automatically within a reasonable time frame). Downloading of a new

ECI Client will also require a new as_setup structure.

In the registration mode the ECI Host shall perform the following actions for retrieving a new

as_setup structure:

1) The ECI Host initializes the AS-slot and retrieves:

– The CPE's ECI_Image_Target_Id value target_id;

70 Rec. ITU-T J.1012 (04/2020)

– A nonce (128 bit) retrieved from the AS slot through application of the getAsSlotRk

function (see [ITU-T J.1014]) in case of online registration.

2) The ECI Host shall send the above information to retrieve an as_setup message from the

Platform Operation:

– In case of a broadcast registration the ECI Host shall present the target_id on the screen

with the Platform Operation registration dialogue box. The ECI Host shall retrieve the

as_setup structure from the AS setup carousel (see clause 7.7.2).

 NOTE 1 – In case a platform provides multiple ECI Client types the Platform Operation

may request the User to also provide some additional information in order to provide the

as_setup for the appropriate ECI Client type.

 NOTE 2 – The Platform Operation may assume the CPE has downloaded the latest ECI

Client Image version, and provide the as_setup structure only for that ECI Client Image.

 – In case of an online registration the CPE shall register the client identification, the CPE's

target_id and nonce using the web-API in clause 7.3.3.

 NOTE 3 – The Platform operation can decide to apply the nonce to ensure renewed

registration on every ECI Host re-initialization event.

Following the as_setup acquisition sequence in registration mode, or having recovered the as_setup

structure from NV-memory in registered mode, the ECI Host shall initialize the AS and attempt to

load the encrypted ECI Client:

1) Load the as_setup structure in the AS using the reqAsClientImageDecrKey message. Load

the ECI Client certificate client chain into the AS. Load the Platform Operation Client

Revocation list and the Platform Operation client co-signature. The following failure cases

shall at least be reported to the User in an intelligible way or be handled automatically:

a) Old ECI Host version - the ECI Host or its credentials need to be updated.

b) Old ECI Client version - the ECI Client or its credentials need to be updated.

2) Decrypt the image using the AS computed Client Image Key if required and authenticate the

ECI Client Image using the ECI Client Signature and Platform Operation co-signatures.

3) Fail in case of validation error.

The as_setup structure and as_setup_file format shall comply with the definition in Table 7.8.3-1.

Table 7.8.3-1 – AS-Set-up structure, file and Bucket file

Syntax No. of bits Mnemonic
ECI_As_Setup {

 as_version 8 uimsbf

 if (as_setup_version == 0x01) {

 vendor_id 20 uimsbf

 if (/* client image regular */){

 ECI_Client_id client_id

 }

 if (/* client image series */){

 ECI_Client_Series_Id series_id

 }

 ECI_Image_Target_Id target_id

 as_tag 16 uimsbf

 online 1 uimsbf

 padding(4)

 EciRootState min_root_state 32

 InputV inputV

 Rec. ITU-T J.1012 (04/2020) 71

Table 7.8.3-1 – AS-Set-up structure, file and Bucket file

Syntax No. of bits Mnemonic
 symKey eKey

 Extension extension

 }

}

ECI_As_Setup_File {

 magic file = 'AES' 24 uimsbf

 as_setup_file_version 8 uimsbf

 if (as_setup_version == 0x01){

 ECI_As_Setup as_setup

 }

}

ECI_As_Setup_Bucket_File {

 magic_bucket_file = 'AEB' 24 uimsbf

 as_setup_bucket_version 8 uimsbf

 if (as_setup_version == 0x01){

 for (i=0; i<n; i++) {

 ECI_As_Setup as_setup_item

 }

 }

}

72 Rec. ITU-T J.1012 (04/2020)

Semantics:
vendor_id: integer Security Vendor of the ECI Client for which this as_setup is intended.

client_id: ECI_Client_Id ID of the ECI Client for which this as_setup is intended. The preceeding if
statement uses the type-field client_id: it should correspond to "regular client
image".

series_id: ECI_Client_Series_Id ID of the ECI Client Series for which this as_setup is intended. The preceeding
if statement uses the type-field client_id: it should correspond to "client image
series".

target_id: ECI_Image_Target_id ECI_Image_Target_Id identifying the CPE for which this message is intended.

as_tag: integer Tag to indicate the version of the as_setup structure for the above target. The
value should change on any change of the as_setup structure for this target;
e.g., increment.

online: bool If true this message requires the slot-nonce to be used in the AK mechanism; if
false no nonce is required.
Note –: This bit shall only be set in case of a working online connection.

min_root_state: minEciRootState Minimum Root state (minimum root version number, minimum root revocation
list number) to be applied for validating loaded ECI Host and ECI Clients. The
field is encoded as a byte sequence as defined in [ITU-T J.1014].

inputV: InputV InputV message for the AS system. The field is encoded as a byte sequence as
defined in [ITU-T J.1014].

eKey: SymKey Encrypted symmetrical key for decrypting the image. The field is encoded as a
byte sequence as defined in [ITU-T J.1014].

extension: Extension Extension data, backward compatible. Should not exceed 256 bytes for
broadcast applications in order to keep broadcast carousels compact. No
application is defined for this data.

magic_file: byte[3] 8-bit ASCII representation of the string 'AES'.

as_setup_file_version: integer Version of the ECI_AS_Setup_File format. Values 0 and 0x2..0xff are reserved.
Value 0x01 is used for the format defined here.

as_setup: ECI_As_Setup The Platform Operation's as_setup structure to load a specific encrypted ECI
Client on a specific ECI Host.

magic_bucket_file: byte[3] 8-bit ASCII representation of the string 'AEB'.

as_setup_item: ECI_As_Setup The as_setup structures in this bucket. Any new as_setup structures shall be
added at the top of the bucket; so the ordering is oldest as_setup structure at
the bottom of the bucket. as_setup structures shall only be deleted, if necessary,
from the bottom of the bucket. This permits quicker inspection of updates by
CPEs. That is, after a first check, only as_setup structures need to be checked
top down until the first one of the previous check series is encountered.

The minimum checking frequency for updates of the as_setup structure shall be the same as for other

ECI Client data as defined in clause 7.3.1. Note that an update typically implies an update of the ECI

Client and/or the ECI Host software for the CPE; and therefore any updates of these shall also be

downloaded to ensure that a coherent ECI Client initialization sequence can be completed. If such a

coherent new set is not available, the previous coherent set can be used.

When the ECI Host is in a state trying to complete the broadcast mode (manual) registration of a new

or updated ECI Client, the ECI Host shall check for an as_setup file carousel update with the highest

possible frequency.

7.8.4 Transport protocol

7.8.4.1 Broadcast protocol

The broadcast protocol for as_setup structures shall be in accordance with clause 7.7.2.

The amount of as_setup structures that need to be updated on an ECI Client version change may be

very substantial. In order to limit the number of new online as_setup messages on a ECI Client

version change in a large broadcast-only operation, the Platform Operation may make a new ECI

Client available, and stage the playout of new credentials, thereby replacing groups of ECI Clients

on CPEs; and may repeat this a number of times to catch as many CPEs as possible before using the

security system to enforce the use of the new ECI Client.

 Rec. ITU-T J.1012 (04/2020) 73

7.4.8.2 Online protocol

The online protocol relies on a straightforward request-response protocol between the CPE and the

ECI Client as defined in clause 7.7.3, passing the CPE target_id and the nonce as part of the request,

returning the ECI_As_Setup_File.

7.8.5 Target ID presentation to user

Both ECI Host and ECI Client have to be able to present the CPE's target_id to the User on

broadcast networks in case no online connection is available. They permit the generation of CPE

specific information required to decrypt the ECI Client Image if required and permit the ECI

Client's AS system InitV messages to be generated (the transport protocol for these messages is

defined by the ECI Client). Also the target_id may be readable as a printed item on the CPE's exterior

or in accompanying documentation. This clause defines the presentation of the target_id to the User.

The target_id is a 64 bit integer. It shall be presented to the User following the rules thereto in clause

6.2.2. using a 9-bit checksum and adding 9-bit substrings instead of 5-bit substrings. The target_id

thus is represented as sequence of six 4-digit numbers with digits between 0 and 7.

CPEs and ECI Clients are permitted to use customized representations in their User interface (e.g.,

based on a private CPE numbering scheme) but shall always offer ECI Client registration functions

on the basis of the above presentation format.

8 Revocation

8.1 Introduction

All parties and the items with which they contribute to the ECI Ecosystem will be certified by the

ECI TA. Through this certification it will be possible to provide a suitable base quality for both

functionality as well as robustness of implementations, and appropriate renewal measures by the

contributing parties. This certification process also prevents hacking and piracy operations using

ECI's ecosystem.

ECI provides functionality to selectively exclude delivery of services to CPEs based on the ECI TA

status of the CPE hardware, the ECI Host, other Platform Operations and ECI Clients loaded.

The ECI TA can revoke a Platform Operation if these do not follow commonly agreed rules, among

others on non-interference with other Platform Operations on shared CPEs, or on delivery of pirate

services through ECI. Similarly, the ECI TA can revoke ECI Clients if these do not follow

commonly agreed rules, among others non-interference with other ECI Clients on shared CPEs or

hacking practices. The ECI TA can further revoke ECI Host software versions if these have

significant inadequacies exposing ECI Clients secrets or permitting manipulation.

In all of the above cases the organizations responsible for the revoked item can repair the deficiency,

typically replacing the revoked item by a new item. A Security Vendor can replace an ECI Client

with a new version, a CPE Manufacturer can provide security patches for an ECI Host and an

Operator can improve its operations effectuated through a new version of its Platform Operation

Certificate. All these operations have a collaborative nature and are suggested to take place following

contractual agreements between the parties affected and the ECI TA.

In case parties engaged in ECI cause systematic violations of ECI TA agreements which adversely

affect other parties or the Users, all of their contributed items may be revoked from ECI TA.

In case certain CPEs no longer possess a valid ECI Host and are not foreseen to receive an update

from their CPE Manufacturer, they may be revoked as such. This also occurs in case a CPE's boot

loader is compromised and permits loading of non-compliant ECI Host software.

74 Rec. ITU-T J.1012 (04/2020)

The CPEs shall attempt to automatically replace a revoked version with an updated version if

available. However, new downloads and Revocation Lists can be blocked. In this case a Platform

Operation can deny delivering services or deny rendering of locally stored content on such a CPE.

8.2 CPE revocation

ECI permits Platform Operations to exclude providing services to specific CPEs by using the

selective rights delivery functionality of CA or DRM system. The Platform Operation can examine

the latest ECI TA state of a CPE from the ECI TA. In case the ECI TA deems it necessary to revoke

a CPE, the Platform Operation can disable providing services to a CPE on the basis of its registered

chipset ID with the CA or DRM system delivering services.

This Recommendation also facilitates Platform Operations to exclude providing services to CPEs

running revoked ECI Hosts. The Platform Operation can use the advanced security system to

require a minimum version number for the ECI Host in accordance with a recent ECI Host

revocation list as defined in clause 8.3.

The ECI Host revocation mechanism can also be used for CPE revocation if deemed appropriate, by

specifying a minimum ECI Host version higher than that which has been issued so far.

8.3 Generic revocation process

This clause refers to the combination of minimum Root version and minimum Root revocation list

version as "minimum Revocation List version".

The ultimate revocation enforcement mechanism for an ECI Host is service starvation: in case a

revoked item is present on the ECI Host despite application of (presumably old) Revocation Lists,

the Platform Operation may decide to stop providing services to that ECI Host. The delivery of the

minimum acceptable revocation list required by a Platform Operation is protected by the AS

System: its manipulation will itself cause service starvation. A Platform Operation can thus force a

check on the version of the credentials used to install the ECI Host and all other Platform

Operations and ECI Clients.

The Platform Operation shall provide a download service of the Revocation List for any of the

above items. (ECI Hosts, ECI Clients and Platform Operations). This ensures that the latest

revocation lists for all ECI Clients and Platform Operations loaded on the ECI Host is available.

The AS System initialization [ITU-T J.1014] allows the ECI Host to specify this minimum expected

Revocation List version for all items. It is used to validate the revocation list version used by the

ECI Host retrospectively. The ECI Host shall use the minimum Root Revocation list value of the

ECI Client items it wishes to load and the ECI Host Image it has loaded.

NOTE – An ECI Host is suggested not to load items that would cause revocation to take effect, and notify the

User instead.

Preventing undue service starvation requires the latest credentials (and if necessary the latest versions)

for all items to be loaded to be available in an ECI Host. To prevent that ECI Clients are unable to

function properly due to security hazards caused by the presence of revoked ECI Hosts Platform

Operation Certificates or ECI Clients, the ECI Host shall provide the following functionality to

ensure the latest credentials and (if necessary) items are available to prevent undue service starvation

to take effect:

• It shall keep the latest ECI TA Revocation List chain of each item that is verified in its

present ECI Host, Platform Operation and ECI Client configuration using the credential

and Revocation List download services of the CPE Manufacturer and of the Platform

Operation of its ECI Clients.

 Rec. ITU-T J.1012 (04/2020) 75

• The default settings for all relevant CPE modes shall enable such downloading.

 The CPE shall have no mode of operation that permanently prevents downloading other than

the power not being connected or download network access being inhibited (not due to a

CPE state or mode of operation).

• It shall be possible to restore the default settings regarding downloading and default

revocation of ECI Clients and Platform Operations with a simple User action.

This Recommendation permits Users to override the default Host behaviour to revoke items causing

service starvation of others. In case Users do this (e.g, keeping an old Client running) they may

experience increasing difficulty rendering contemporary services.

8.4 Revocation Lists based ECI Host Revocation

A CPE not being maintained properly can have a revoked ECI Host. The CPE Manufacturers are

to provide updated credentials including the latest applicable ECI Revocation List. In addition, a

Platform Operation that wishes to operate an ECI Client on an ECI Host is able to provide a

download service for a Revocation List pertaining to the ECI Host's credentials and can provide a

download service for selected ECI Hosts. The ECI Host shall apply the Revocation Lists for the

ECI Host credentials (Root Certificate and Manufacturer Certificate) in accordance with the

generic Revocation List processing rules as defined in [ITU-T J.1014].

The format of the ECI Host revocation data file is defined in clause 5.3.

8.5 ECI Platform Operation Revocation

A Platform Operation that wishes to operate an ECI Client on an ECI Host can provide a download

service for a Revocation List pertaining to other Platform Operation credentials. The ECI Host

shall apply the Revocation Lists to all installed Platform Operation credentials in accordance with

the generic Revocation List processing rules as defined in [ITU-T J.1014].

The format of the ECI Platform Operation revocation file is defined in clause 7.6.3.

8.6 ECI Client Revocation

A Platform Operation that wishes to operate an ECI Client on an ECI Host can provide a download

service for a Revocation List pertaining to other ECI Clients. The ECI Host shall apply the

Revocation Lists to all installed ECI Client credentials in accordance with the generic Revocation

List processing rules as defined in [ITU-T J.1014].

The format of the ECI Client revocation file is defined in clause 7.6.3.

76 Rec. ITU-T J.1012 (04/2020)

9 ECI Client interfaces

9.1 Introduction

9.1.1 Architecture of the ECI Client interfaces

Figure 9.1.1-1 – Structure of the APIs defined in clause 9

Figure 9.1.1-1 gives an overview of the structure of the APIs of the ECI System. It shows 6 blocks

of APIs that the ECI Client can use. Those blocks of APIs are specified in clauses 9.4 to 9.9.

Table 9.1.1-1 lists the APIs defined in clause 9 of this Recommendation; refer also to [b-ETSI GS

ECI 002].

Table 9.1.1-1 – List of APIs defined in this Recommendation

Clause No. API category Description
9.4 APIs for general ECI Host resources APIs supporting general functionalities of the ECI Client
9.5 APIs for ECI specific ECI Host resources APIs supporting ECI specific functionalities of the ECI Client

9.6
APIs for access to the ECI Host decryption
resources

APIs allowing the ECI Client to utilize the decryption
resources of the ECI Host

9.7
APIs for access to the ECI Host
re-encryption resources

APIs allowing the ECI Client to utilize the re-encryption
resources of the ECI Host

9.8 APIs for content property related resources
APIs supporting content protection functionalities of the ECI
Client

9.9
APIs for ECI Client to ECI Client
communication

APIs supporting the direct communication between ECI
Clients

9.1.2 Media Handle

A Media Handle is an identifier of an object in the host environment that provides the context for all

ECI Host interfaces provided to the ECI Client in terms of controlling the process of decryption of

a content item. The Media Handle also permits the ECI Client to specify the data it requires from

the content container in order to be able to descramble the content. In case of broadcast network

delivery, it also provides control over the selection of the program to be decoded and the stream

selection from the delivery network (tuning function). An ECI Client can also request a Media

Handle with access to a tuner in order to access data required for the operation of the ECI Client

from network streams not accessed by the application/host for content acquisition purposes. For file

 Rec. ITU-T J.1012 (04/2020) 77

and OTT-stream based delivery the Media Handle provides a means for the ECI Client to access

security data in the file/stream not specified in a standardized location.

Media session descrambling operates directly under the control of the ECI Client. The

synchronization of the CW application with the TS is based on scrambling control information in the

TS. The synchronization of CW (commonly called keys in this context) to an ISOBMFF CENC file

[ISO/IEC 23001-7] shall be based on CENC KeyID identifiers.

Sessions making use of a Media Handle are listed in Table 9.1.2-1.

Table 9.1.2-1 – Media Handle types

Name Value Description

MhDvbTs 0x01 TS shall comply with [ISO/IEC 13818-1-1]

MhIsobmffCenc 0x10 ISO BMFF file shall comply with [ISO/IEC 23001-9] and [ISO/IEC 14496-

12]

RFU other Reserved for future use

9.2 ECI virtual machine interface

9.2.1 Principles

A separate virtual machine instance shall be created for each ECI Client. Loading of the data and

instructions for an ECI Client into a virtual machine (VM) is defined in clause 7.

The operation of the virtual machine is defined in [ITU-T J.1013]; refer also to

[b-ETSI GS ECI 001-4].

All interaction of the ECI Client with the outside world shall be conducted using the message

interface as defined in clause 9.2.3.

9.2.2 Instructions and data (static resources)

The VM will execute the instructions provided to it by the ECI Client Loader as part of the code

segment(s) of the ECI Client Image.

The instructions are non-self-modifying, which is ensured by the VM. Any code which easily leads

to non-desirable and/or easy to manipulate behaviour of an ECI Client (e.g., interpreters) is

considered inappropriate and has to be ensured as part of the certification process of ECI Clients.

The maximum code and the static data space required by an ECI Client are proposed in [b-ITU-T

J Suppl. 7].

9.2.3 Interaction with ECI Host

All interactions of the ECI Client with the ECI Host are defined on the basis of the message model

in this clause. There is no shared data between the ECI Client and the ECI Host other than:

• The data contained in messages;

• Any data stored in NV memory of the ECI Host on behalf of the ECI Client; or

• Any data in messages in communication channels to or from other ECI Clients.

Note that this data is also exchanged through messages.

The message model is based on three different types of exchanges from ECI Client to ECI Host:

1) Synchronous Client initiated exchange: the ECI Client calls an ECI Host Function which

reacts within a very short time. The ECI Client's thread (execution flow) is blocked while

the ECI Host processes the message and provides a return message.

2) Asynchronous Client initiated exchange: the ECI Client sends the ECI Host a Client

Request message that will be queued and processed in due course by the ECI Host. The

78 Rec. ITU-T J.1012 (04/2020)

asynchronous call will provide an immediate Return with only a basic result (message

identifier or error). The ECI Host will later provide a Host Response message reporting

back with the status and results of the operation of the ECI Host initiated by the ECI Client.

3) Asynchronous Host initiated xchange: the ECI Host sends the ECI Client a message that

will be queued and processed in due course by the ECI Client. The asynchronous call will

provide an immediate return message with only a basic (standard) result. Type and format of

this message, as it is represented in the ECI Host, is outside the scope for this

Recommendation as this is an ECI Host internal issue:

 Note that only the representation for the ECI Client is defined. The ECI Client will later provide a

Response message reporting back with the status and results of the operation of the ECI Client

initiated by the ECI Host.

The different types of message exchanges between ECI Host and ECI Client are shown in

Figure 9.2.3-1.

Figure 9.2.3-1 – Message exchanges between Client and Host

The ECI Client has to ensure that the payload is protected as needed, e.g., control words and content

properties. Furthermore the interface is not designed and intended for content exchanges.

The ECI Client shall implement Reponses to the ECI Host Requests it supports in accordance with

the API definitions as presented in clause 9 using the identifier of the Requests in the Response.

The ECI Host shall implement Reponses to the ECI Client Requests it supports in accordance with

the API definitions as presented in clause 9 using the identifier of the Requests in the Response.

An asynchronous Request may optionally indicate that no Response is required. For example, when

many data items are moved the initiator requires only a Response on the last Request, assuming that

all intermediate data items are processed correctly.

All Asynchronous ECI Host Requests and ECI Host Reponses are queued "in the order they occur".

9.2.4 Dynamic resources provided for ECI Client's

Technical parameters of the minimum required dynamic resources of an ECI Client are proposed in

[b-ITU-T J Suppl. 7]. The following items are covered: Threads, stack space, heap space, execution

time, NV storage and inter-client communication.

 Rec. ITU-T J.1012 (04/2020) 79

9.2.5 API version management

APIs defined in this Recommendation are allowed to have multiple versions, e.g., for the purpose of

offering enhanced functionality that replaces previous functionality or for resolving specification

deficiencies. At initialization ECI Clients and their ECI Host need to establish which APIs are

supported by their counterpart and select which is the version of each available API of the counterpart

that will be used during the remainder of the ECI Client's lifecycle. ECI Clients cannot use APIs

other than the discovery API during the initialization phase since the message versions (i.e., their

availability, length and syntax) are not defined until the discovery process is complete.

API versions are self-contained in their semantics: i.e., the message interaction between ECI Client

and ECI Host via an API version is neither dependent on the support for other versions of that API

in the ECI Host nor on interactions of the ECI Host with other ECI Clients using other versions of

that API.

NOTE 1 – For practical reasons, the text in clauses defining new API versions can refer to text defining older

API versions in this Recommendation.

APIs are either mandatory, optional or conditional (i.e., mandatory subject to a condition). An

example of conditionality is that PVR related API requires support on a CPE that supports PVR

functionality. Future versions of this Recommendation can define profiles of APIs to be supported by

ECI Hosts and ECI Clients referencing profile name and specification version number.

For compliance to this Recommendation and to ensure backward compatibility, an ECI Host or ECI

Client that support an API shall support all versions of that API (including the latest) unless older

versions are explicitly deprecated in (future versions of) the this Recommendation or explicitly stated

otherwise.

NOTE 2 – The creation of a future version of this Recommendation does not imply that deployed or new ECI

Clients and ECI Hosts have to be compliant. Any policies of the field upgrade of ECI Hosts and ECI Clients

to new specification versions or rules that mandate new specification versions, which apply to new ECI Hosts

and ECI Clients, are outside the scope of this Recommendation.

ECI Clients should select the highest version number of an available APIs in ECI Hosts that they

are able to handle, and vice versa ECI Hosts select the highest available version number of an API

in ECI Clients that they are able to handle. This encourages forward version migration towards more

mature APIs and stimulates avoidance of legacy issues in case of deprecating (older) API versions.

In view of the typically longer lifecycle of ECI Hosts and the relative ease of updating ECI Clients,

ECI Clients should be able to support older ECI Host API versions reflecting the installed base

situation (which can be subject to further agreements thereto outside the scope of this

Recommendation). Vice versa, new ECI Hosts should support older ECI Clients reflecting the ECI

Client deployment (which can be subject to further agreements thereto, outside the scope of this

Recommendation).

The ECI Client-ECI Host discovery API is defined in clause 9.4.2.

9.2.6 Responsiveness monitoring

The ECI Host shall deploy some basic automatic ECI Client restart functions in order to provide

additional robustness of the overall CPE functionality. The ECI Host shall detect fatal error

conditions in the ECI Client and shall re-initialize the ECI Client automatically on such events. All

resources used by the ECI Client will be released before re-initialization, including Media Handles,

mmi sessions, files, IP connections, etc.

The following error conditions are defined:

• The ECI Host shall monitor the execution of any illegal instruction by the ECI Client code,

like undefined instructions opcode, addressing illegal data or addressing non-existing code,

overflowing or under flowing register stack, etc.

80 Rec. ITU-T J.1012 (04/2020)

• The ECI Host shall use a timeout on the acceptance of a new message by the ECI Client. A

proposed figure for this parameter is given in [b-ITU-T J Suppl. 7].

In case of repeated re-initialization, the ECI Host may use a policy, possibly involving User settings

or User input, to decode and to exclude the repeatedly failing ECI Client on a more permanent basis.

NOTE – Any execution of a sys_exit syscall (see [ITU-T J.1013]) by an ECI Client will be understood as a

regular termination of the ECI Client. Typically, this implies the ECI Client can be removed or is replaced

by a later version. The ECI Host does not automatically remove the ECI Client on the basis of such an event,

but wait until an appropriate replacement or removal procedure is invoked through other management policies

for ECI Clients.

9.3 Mechanism for ECI Client APIs

9.3.1 Asynchronous message syntax

All messages structures are defined in terms of their appearance in the ECI VM. In Table 9.3-1 the

message buffer structure for all asynchronous messages is presented in terms of their appearance in

the VM memory map. Note that all message buffers are 32-bit aligned.

Table 9.3-1 – Asynchronous message syntax

C-style Syntax No. of bits

struct messageBuffer {

 uint32 msgTag;

 uint16 msgld

32

16

 uint16 payloadLen; 16

 uint32 payload[]; n*32

} MessageBuffer;

msgTag:

This field represents the following values:

• Bits 0-15: msgApiTag. API identification for the message (for definition see Annex C).

• Bits 16-23: msgCallTag. API call identification, to be interpreted by the receiver in the

context of the msgTag value and the agreed API version.

• Bits 24-31: msgFlags: Additional flags to qualify a message. The following definitions

apply:

– Bit 24: msgNoResFlag: for Request and invoke messages: if 0b1 no Response or

answer is required; if 0b0 a Response or answer is required. This bit has no meaning in

answer and response messages.

– Bit 25-31 are reserved for future use; these bits shall be set to 0b0 by the initiator of the

message.

The message tag shall be identical for Responses to Request messages and answers to invoke

messages.

msgld:

• The value of the message identifier of the message as assigned by the ECI Host. For a

response message this shall correspond to the value of the original request message. This

field can be left uninitialized by an ECI Client sending a request (the value will be assigned

by the ECI Host and returned as a result value of the SYS_PUTMSG syscall.).

payloadLen:

• The payload length field represents the size the payload buffer in bytes. The actually allocated

size of the payload field shall be this value rounded up to the next multiple of 4 or more. ECI

 Rec. ITU-T J.1012 (04/2020) 81

Hosts shall verify when interpreting the payload field of a received message that data does

not extend beyond the payloadLen; otherwise an error shall be returned. ECI Clients can

assume that ECI Hosts provide properly dimensioned message buffers.

payload field:

• The payload field is used to carry message parameters. The structure of a payload is defined

using the c-syntax for function call signature used with specific mapping rules defined in

clause 9.3.2.3.

9.3.2 Asynchronous message layout definition convention

9.3.2.1 Syntax of message definitions

Asynchronous messages are defined using a c-style function signature declaration. This notation

corresponds to the layout of the messages through rules defined in this clause. Below is an example

of a function signature declaration:
 reqSetTimer(uint32 time, uchar priority)

9.3.2.2 Basic message parameter types

The syntax shall use the basic types for parameter definitions as specified in Table 9.3.2.2-1.

Table 9.3.2.2-1 – Basic types used for message parameter definitions

Basic types Represent

uint8, uchar, byte: 8-bit unsigned integer

int8, char, bool: 8-bit signed integer

uint16, ushort: 16-bit unsigned integer

int16, short: 16-bit signed integer

uint32, uint: 32-bit unsigned integer

int32, int: 32-bit signed integer

uint64, ulong: 64-bit unsigned integer

int64, long: 64-bit signed integer

char *, … ,long * (client memory) 32-bit ; only permitted for synchronous messages

For parameters of type bool the symbolic values True and False are used. As per the c-language

definition False is represented by 0x00, True by any value other than 0x00.

9.3.2.3 Message payload to message parameter mapping

The payload field contains all parameters for the message. The msgId message identifier parameter

and the msgResult result parameters are implied in that sense that they are not exposed in the function

signature declarative syntax description. Their presence is implicitly defined by the message type.

The ECI Host shall associate an msgId to ECI Host and ECI Client Request messages in order to

associate Request with the corresponding reply. The type of msgId is uint32. Management of msgId

values is in the responsibility of the ECI Host. msgId values shall not be reissued until the Response

message is transferred.

The Response shall contain an msgResult parameter of type int32.

These implied parameters are the first parameters in the payload field of a message buffer.

Table 9.3.2.3-1 presents the payload field parameter sequence for each message type from the ECI

Client perspective (the ECI Host perspective is outside the scope of ECI).

82 Rec. ITU-T J.1012 (04/2020)

Table 9.3.2.3-1 – Message types and "hidden" parameters (Client perspective)

Message type Implied Parameters Payload field

Client Request, C→H None p1, .. , pn

Host Response, H→C msgId, result msgId, result, p1, .. , pn

Host Request, H→C msgId msgId, p1, .. , pn

Client Response, C→H msgId, result msgId, result, p1, .. , pn

The following rules shall be used to convert parameters (be it structures, byte and short arrays, etc.)

to the layout of the payload of the message buffer in the ECI Client memory space:

• Parameters are mapped into memory with their lowest address first, with the exception of the

data fields of variable length arrays.

• Any 8 or 16-bit data type is extended to 32-bit using the extension appropriate to its type

(signed or unsigned).

• Structures (not including bit-fields): all fields shall be mapped in the order they are defined,

field-size aligned (for 16 and 32 bit entities) first field on the lowest address, padding field

preceding a larger field following it. The structure is always padded to the next 32-bit

boundary. Union structures shall be padded to the largest size of the alternatives.

• Byte (8-bit), short (16-bit) and int (32-bit) arrays: shall be included in the message buffer (not

as pointers to the memory of the ECI Client). Fixed length arrays shall use the following

notation <type>, <array_identifier>, '[' <constant> ']'. These shall be mapped in the order they

occur in the parameter list. Variable length arrays shall use the notation <type>,

<array_identifier>, '[' ']'. All variable length arrays shall be mapped to two 32-bit fields. The

first field contains the offset in the message buffer where the first element of the array is

located. The second field contains the length of the array (in bytes).

• 64-bit entities shall be stored with most significant 32-bit first (following typical conventions

for mapping 64-bit entities in 32-bit little endian machines).

• All 32-bit and 16-bit entities shall have natural (unknown - defined by the underlying CPU

architecture) endianness representation in memory.

• Any (char *) pointing to printable characters shall use UTF-8 representation [ISO/IEC 21320]

for the actual "code points" unless explicitly defined otherwise. Character representation may

be 1 to 4 bytes (depending on the code-point). This specification does not define which code-

points shall be printable in a CPE (which may have different implementations for different

regions).

NOTE – The ECI Host is responsible for interpreting message tag in combination with the API-version agreed

with the ECI Client during discovery. Similarly the ECI Client is responsible for interpreting message tag in

combination with the API-version agreed with the ECI Host during discovery.

9.3.2.4 Naming convention for asynchronous messages

Convention for function names:

All function names shall start with a three-letter indication reflecting the message type. The <name>

of the function shall start with a capital. The following defines the name convention of messages by

their type:
req<name>(): request message; res<name>(): response message;

EXAMPLE 1: reqIpTcpSend().

Convention for message pair notation:

Request and Response messages are defined as a pair, and similarly for invoke and answer messages.

The following notation is used to refer to such message pairs:
<requestMessage> → <responseMessage>

 Rec. ITU-T J.1012 (04/2020) 83

EXAMPLE 2: reqIpTcpSend(socket,buffer) → resIpTcpSend(socket).

Function signatures may appear in these and other notations without parameter typing for brevity

purposes.

Table 9.3.2.4-1 provides some examples of practical message name mapping to possible c-functions

in using a procedure-style, javascript-like event subscription/callback type programming approaches

or dispatch loops. The subscr function permits a function call on receiving a message with tag. Two

examples are provided: one that is selective on msgId identifier and including a cntxt structure to the

function. The second example does not filter on msgId and does not provide a cntxt structure at

callback/dispatch.

Table 9.3.2.4-1 – Parameters in payload field per message type with parameters p1, .. ,pn

Message Procedure like notation Client Event callback
Subscription

Client Callback/Dispatch
notation or Invocation

Req, C→H id = reqName([tag],p1,..pn)

Res, H→C res = resName([tag],id,p1,..pn) subscr(tag,id,resName,cntxt)
subscr(tag,resName)

resName(cntxt,res,p1,..pn)
resName(id,p1,..pn)

Req, H→C [tag =] reqName([id],p1,..pn) subscr(tag,invName) invName(id,p1,..pn)

Res, C→H resName([tag],id,res,p1..pn)

9.3.3 Synchronous messages

Synchronous messages adopt the same notational convention using function names as asynchronous

messages. Synchronous message parameters shall not be serialized to fit into message buffers, but

shall use general c-conventions for function calls and use the VM application binary interface

definition for procedure mapping to the VM memory and register state. This permits synchronous

messages to map directly onto regular c-functions as part of an ECI Client library.

There are three predefined types: get to read a variable in the ECI Host domain, set to write a variable

in the ECI Host domain and a general purpose function call with a negative error code or non-

negative function value return as shown in Table 9.3.3-1.

Table 9.3.3-1 – Synchronous function types

Type Applies to Notation Result Semantics

Get Host variable getVariable((i1..in) variable
type

Read a variable indexed by parameters i1..in in the
ECI Host domain (for this ECI Client) (see Note).

Set Host variable setVariable((i1..in, value) void Assign value to variable indexed by parameters i1..in
in ECI Host domain (for this ECI Client) (see Note).

Call Host callFunc(p1..pn) int or
void

Make a (general purpose) synchronous call to a
function in the ECI Host domain. The return value is
of the same type as the result value for asynchronous
messages: i.e., negative values represent an error
occurred. Some functions may have a void type -
permitting no error signalling.

NOTE – The ECI Host may be triggered in performing actions in addition to returning the requested object as a
consequence of as Get function invocation.

84 Rec. ITU-T J.1012 (04/2020)

Examples of synchronous message definition:
 uint getClock();

 void setPwrWakeup (int timeout);

 void memcpy(char *p1, char *p2; int len) ;

Examples of use:
 uint clock = getClock() ; /* read clock */

 setPwrWakeup (1000); /* set wakeup timer; triggers invocations

*/

 (void) memcpy(ptr1,ptr2,100*1000) /* copy client memory efficiently */

9.3.4 Error codes in Return

The Return code parameter of Responses, Answers and (if applicable) Calls shall contain a single

32-bit signed integer. If the value returned is zero or positive, the execution of the code was

successful. A negative value is returned in case of an error. Errors are generic (see Table 9.3.4-1) or

Request specific (see specific error codes per Request).

Table 9.3.4-1 – Error Codes for return messages

Name/Constant Value Description

 1..MaxInt Successful Request, value defined by message definitions.

ErrReqOkNoId 0 Successful Request.

ErrReqApiErr -1 API designated by msgApiTag not supported.

ErrReqCallErr -2 Call within API designated by msgApiTag not supported.

ReqQueueErr -3 Problem queuing the message, ECI buffer queue overflow.

ReqResource -4 Resource problem occurred when processing the Request
(e.g., memory problem due to excessive messaging).

RFU -5..-15 Reserved for future use (generic error types).

ReqParam<N>Err -16..-48 Error in parameter N = -Result-15.

Reserved for VM
errors

-49..-64 Error codes are reserved for VM specific errors as defined in [ITU-T
J.1013].

RFU -65 .. -256 Reserved for Future Use.

API specific error -256 .. -511 API specific error defined by API Error Code table.

RFU -512.. MinInt Reserved for future use.

NOTE – Typically, an ECI Client can rely on the ECI Host to support a specific profile of APIs as defined

in clause 9.2.5 and queuing buffers of messages to be liberal. Therefore, intelligent error processing is typically

not required; the error code typically serves only ECI Client debugging scenarios.

The API specific error codes or the ReqParamNErr cannot be returned as part of a Return but such

error shall be signalled as part of a Response instead.

9.3.5 Secure Authenticated Channel

Tools for the establishment of a Secure Authenticated Channel (SAC) between an ECI Client and

any other appropriate device are available with the Advanced Security APIs (see clause 9.5.2). In

case An ECI-Client needs a secure authenticated communication with another ECI Client or any

external device, it needs to define a proprietary mechanism, which can utilize the available APIs,

especially the advanced security APIs.

9.3.6 Message verification by ECI Host

In order to avoid error conditions or inappropriate actions as a consequence of inappropriate Requests

or Responses ECI Hosts shall perform full checking of any message received from an ECI Client.

The following checks shall be performed:

• Support of the msgApiTag.

 Rec. ITU-T J.1012 (04/2020) 85

• Support of the msgCallId within the API message space (in the context of the API version

established at discovery).

• Verify whether the constraints on the payload and specifically msgLength match with the

syntax rules for the message and that the message buffer (for asynchronous messages) and

any memory of the ECI Client's address space to be read or written to by the ECI Host is

constrained to defined portions of the ECI Client's address space.

• Verify whether any message-specific Pre condition fails (in the sense of the Pre condition

being essential to the integrity of the Request or Response).

• Verify whether any pointer or memory implicated in the message is memory allocated to the

ECI Client.

9.3.7 Message processing by ECI Clients

Any memory allocated for sending a Request can be reused upon return, unless explicitly indicated

otherwise (typically large messages for which the avoidance of copying is important). Similarly, any

memory allocated for sending a Response can be reused immediately following the send event.

ECI Clients shall not rely on ECI Hosts to return a Response for every Request.

ECI Clients may verify the correct syntax of any ECI Host Request or Response. There is no

obligation on the ECI Client to respond to provide any feedback to the ECI Host in case of a badly

formatted Request or Response.

9.4 APIs for general ECI Host resources

9.4.1 List of APIs defined in clause 9.4

Figure 9.4.1-1 – Block diagram of the APIs defined in clause 9.4

86 Rec. ITU-T J.1012 (04/2020)

Table 9.4.1-1 – List of APIs defined in clause 9.4

Clause API name Description

9.4.2 Host interface discovery
Allowing an ECI Client to identify the interfaces the ECI Host is
providing

9.4.3 User interface Allowing the ECI Client to establish a communication with the User

9.4.4 IP stack Allowing the host to establish an IP-Link to an external IP device

9.4.5 File system
Allowing the ECI Client to store data in the RAM memory of the ECI
Host

9.4.6 Time/Clock
Allowing the ECI Client to access time and date information from the
ECI Host

9.4.7 Power management
Allowing the ECI Client to communicate with the ECI Host power
management system

9.4.8 Country and language setting
Allowing the ECI Client to read the country and language settings in
the ECI Host

Table 9.4.1-1 shows the APIs defined in clause 9.4 and Figure 9.4.1-1, which illustrates the location

of the APIs defined in clause 9.4 with the ECI architecture.

An overview of the presentation Messages related to the different APIs is given per API in tables with

the structure shown in Table 9.4.1-2.

Table 9.4.1-2 – Structure of the table summarizing the functions of the

individual API messages

Message Type Direction Tag Description

Name of the Message See Table 9.4.1-3 C→H or H→C Tag value Short description of the function of
the Message

The column Type in Table 9.4.1-2 gives the type of related Message, which can be either synchronous

or asynchronous. More details are given in Table 9.4.1-3. A complete list of all API messages

available for an ECI Client is given in Appendix I.

Table 9.4.1-3 – Possible values for the Type column in

Category of Message Notation in the Type column Comment
Asynchronous Message A Possible message types: see Table 9.3.2.3-1

Synchronous Message

A

Possible message types: see Table 9.3.3-1
Set
Get
Call

9.4.2 API for the access to the ECI Host interface discovery resource

9.4.2.1 Introduction

This clause defines the API that can be used by an ECI Client to discover the APIs and the API

versions that are supported by the ECI Host and select the most appropriate version for the duration

of the ECI Client's session with the ECI Host. The API version management mechanism permits

API selection on an API by API basis. Once an API version has been selected it will remain in use

until the next ECI Client initialization event with the ECI Host.

Policies concerning the availability of APIs are discussed in clause 9.2.5. Mandatory APIs are defined

in clause 10.

The ECI Client shall initiate version management as soon as it is initialized: no API can be used

without a (mutually) established version.

 Rec. ITU-T J.1012 (04/2020) 87

The version of an API shall be represented by 16-bit number. API version numbering starts at 0x0000.

Regular assignment of new versions is incremental (by 1).

Table 9.4.2.1-1 lists the API messages.

Table 9.4.2.1-1 – ECI Host interface Discovery API

Message Type Dir. Tag Description

getApis Get C→H 0x0 Get available Host APIs

getApiVersions Get C→H 0x1 Get available versions of a host API

setApiVersion Set C→H 0x2 Set the version of the Host API to be used

9.4.2.2 getApis Message

C→H uint[] getApis (uint maxNrApis)

• This request returns a bit-array of maxNrApis that indicates the APIs supported by the ECI

Host.

Property Definition:

• The Host API availability of API with tag a with (a< maxNrApis) is found as

((result[a/32]>>(a%32))&0b1 == 0b1).

Parameter definition:
maxNrApis: ushort Highest APIs number for which to return the result plus one.

9.4.2.3 getApiVersions() Message

C→H uint[] getApiVersions (uhort api, ushort maxNrVersions)

• This request returns a bit-array of maxNrVersions that indicates the versions of api

supported by the ECI Host.

Property Definition:

• The version availability of API with tag api for version v with (v< maxNrVersions) is found

as ((result[v/32]>>(v%32))&0b1 == 0b1).

Parameter definition:
maxNrVersions: ushort Highest version number for which to return in the result plus one.

9.4.2.4 setApiVersion() Message

C→H setApiVersion (ushort api, ushort version)

• This message sets the version of the API to be used between ECI Client and ECI Host for

api to version. Should be called once only (subsequent calls have no effect).

Parameter definition:
api: ushort Tag of the API for which the version shall be set.

version: ushort Version number of api to be used in the subsequent session between
Client and Host.

Detailed semantics:

• If version is not an existing API version supported by api then the API version shall be set

to the first higher API version supported by the API if available or the highest API version

otherwise.

• ECI Clients shall check the availability of an API version before performing initialization to

that API version.

NOTE – Without checking explicitly unexpected API behaviour or error conditions may occur.

88 Rec. ITU-T J.1012 (04/2020)

9.4.3 API for the access to the ECI Host User interface resource

9.4.3.1 Introduction

This clause defines the application environment for ECI applications, allowing the ECI Client to

establish an interaction interface with the User. ECI applications are hosted by ECI Clients, and

executed on an ECI Host. The applications use an HTML browser, which is available in TV devices

for a number of platforms from device vendors and broadcasters.

Figure 9.4.3.1-1 depicts the individual entities in the ECI application environment. The ECI Client

does not control and communicate directly with an ECI application it launched; it makes use of a

proxy provided by the ECI Host. The proxy implements the API defined in clause 9.4.3.4 that allows

ECI Clients to launch and stop ECI applications, and to communicate with running ECI

applications, e.g., to process User input. Communication of the ECI application with the ECI Client

is handled by the proxy by transcoding a browser HTTP Get request into either a resource from the

application container or into an reqUiClientQuery API request to the ECI Client as defined in clause

9.4.3.4.8. The latter may provide the ECI Client with the User's input and permit the ECI Client to

provide a response with dynamic content. The application container provides the (larger) static

resources to build the UI screens; the ECI Client provides customized input to the UI screen and

receives the User input.

Figure 9.4.3.1-1 – Block diagram of the User Interface API

9.4.3.2 User Interface environment

9.4.3.2.1 Browser Profile

The ECI Host shall provide an HTML browser that implements the Web Standards TV Profile as

defined in [IEC 62766-5-2] complying to constraints and extensions as defined in this

Recommendation. This profile is also adopted by the HbbTV system [b-HbbTV].

 Rec. ITU-T J.1012 (04/2020) 89

9.4.3.2.2 Constraints

The ECI Host shall deny HTTP requests to any resource of an ECI Application session that does

not originate from this ECI Application session.

The URLs used to load the ECI Application resources into the browser shall be the concatenation of

a base URL unique to the session and a relative URL to address either the ECI Client or the

application container. E.g., if the session base URL is:
http://localhost:3000/session-x/

and a resource in the application container is:
main/pincode.html

then the browser URL is:
http://localhost:3000/session-x/main/pincode.html

When serving requests from the HTML browser the ECI Host should infer the content type of ECI

Application resources from their file name extensions and should support at least:

• text/html – .html and .htm

• text/javascript – .js

• text/css – .css

• image/png – .png

• image/gif – .gif

• image/jpeg – .jpg and .jpeg

9.4.3.2.3 Browser capabilities

9.4.3.2.3.1 Display model

The browser window shall be full screen. The dimension of the browser window shall be at least 1

280 x 720 pixels. An ECI application should be authored such that it properly scales with larger

dimensions.

The graphics plane that displays ECI applications shall be placed behind the graphics plane for

terminal applications and it should be in front of any other graphics plane including those for video,

subtitles and broadcast applications.

The plane for ECI applications fully covers any graphics plane except the terminal one. The

background of the browser window should be transparent, i.e., if an area is not covered by any HTML

element of the ECI application; the graphics planes below (one of which usually contains the

broadcast video) should be visible. If the CSS property background-colour of the body element is set

to transparent the background window of the browser shall be transparent.

When the terminal needs to temporarily overlay the ECI application, e.g., to show the system menu

or channel info banner on a User action, the ECI application shall lose input focus. If the ECI

application loses the input focus a blur event shall be sent with the Window object as target.

When the terminal closes its UI and the ECI application is still running it shall regain input focus. If

the ECI application gains input, a focus event shall be sent with the Window object as target. The

browser shall support RGBA32 as colour format.

90 Rec. ITU-T J.1012 (04/2020)

9.4.3.2.3.2 Text and fonts

The browser shall include an embedded proportional font. ECI applications can select the font using

'sans-serif' or 'default' as generic font family names to select the embedded font. The character set

that is supported by the embedded font should be suitable for the region where the device is deployed.

ECI applications may use the CSS3 Web Fonts as defined in [IEC 62766-5-2] to use alternative fonts

and character sets. The browser shall support at least one downloadable web font for each ECI

application.

The browser shall support UTF-8 encoding for all text resources of an ECI application, i.e., HTML

documents, scripts and style sheets.

9.4.3.2.3.3 Graphic formats

The browser shall support graphics using the following formats: GIF [W3C GIF V89a], JPEG

[ITU-T T.871] and PNG [W3C PNG].

9.4.3.2.3.4 User input

The browser shall support User input by remote control using DOM3 KeyboardEvents. When an ECI

application is running and it has the input focus, the ECI Host shall allow the User to initiate the

following events:

• Numerical keys: 0-9

• Cursor keys: Left, Right, Up, Down, Enter and BrowserBack

Support for legacy attributes keyCode and charCode is not required.

9.4.3.2.3.5 Persistence

The browser shall support session storage for the WebStorage API and session cookies. An ECI

Client should use its internal memory to keep information across browser sessions.

9.4.3.2.3.6 ECI Application access to static HTML resources

The proxy receiving the HTTP requests from the ECI Application shall map the relative URL (i.e.,

the extension from the base URL of the session) to a relative path in the application container mounted

by the ECI Client. The mapping from relative URL to file is direct: relative URL

directoryname1/directoryname2/.. / directorynameN/filename is mapped to file filename in directory

directorynameN contained in ... contained in director directoryname2 contained in directory

directoryname1.

The application container directory structure and files shall comply with the following constraints:

• All file names and directories shall consist of alphanumerical characters and the characters '.'

(dot) and '_' (underscore) and shall be no more than 40 characters.

More resource or performance requirements for the application container are proposed in [b-ITU-T

J Suppl. 7].

9.4.3.2.3.7 Communication between the ECI Client and ECI Applications

The browser supports XmlHttpRequest as required by clause 9.4.3.2.1 of this Recommendation.

Communication between ECI applications and ECI Clients is routed via the proxy of the ECI Host.

The ECI application can perform an HTTP Get request using the XMLHttpRequest API as defined

in this clause. The URL for the HTTP request shall be constructed from the base URL of the ECI

Application session as defined in clause 9.4.3.2.2 and the relative URL '/client'. Any parameters shall

be part of the query string as key - value pairs. Keys and values shall consist of ASCII characters

only. Keys shall have a maximum length of 31 characters and values shall have a maximum length

of 255 characters.
EXAMPLE: http://localhost:3000/ session-20170303-163100-01/client?id=e4f0&p2=v2.

 Rec. ITU-T J.1012 (04/2020) 91

When receiving the HTTP request proxy, the ECI Host shall send a reqUiClientQuery message to

the ECI Client of the ECI application as defined in clause 9.4.3.4.5 with the parsed query string as

key value pairs. The response from the ECI Client to the host shall include the following parameter:

• type: a string conforming to media types as defined by relevant standards and documented in

the IANA database of media types [b-IANA], e.g., application/json defined by [b-IETF

RFC 8259]

• status code: an integer used in the response of the Get request, i.e., success should be 200

• body: a string of maximum 64 kByte

The ECI Host shall therefrom construct the HTTP Get response to the browser by setting the Content-

Type header to the type parameter, the HTTP status to the error value and the response body to the

value of the body parameter.

Communication with HTML applications not originating from the ECI Client is outside the scope of

this version of the present Recommendation.

9.4.3.3 Application lifecycle

9.4.3.3.1 Launch of an ECI Application

The TV screen is a shared resource that is populated by terminal, broadcast, Operator and third-party

applications. This version of the present Recommendation defines an application environment for

basic User interfaces required to operate an ECI module, e.g., PIN entry, subscription information,

etc.

Launching requests from ECI Clients on ECI Hosts shall be restricted to the following cases:

• The ECI Host is about to start the presentation of media (e.g., after tuning to a broadcast

channel) that is being processed by the ECI Client.

• The ECI Host is presenting media that is processed by the ECI Client.

• The ECI Host requested the ECI Client to show its Application Menu.

• The ECI Client indicates its wishes to launch a non-content stream related ECI Application,

and the ECI Host can ensure the dialogue is on User request or does not conflict with content

on the screen: i.e., there is no removal/blackout or screen overlay of third party content

selected for viewing by the User.

For the above, a launch request for performing a delegated parental authentication interaction as

defined in clause 9.8.2.11 with the User is regarded as a launch request initiated by the ECI Client

that issued the original parental authentication request as defined in clause 9.8.2.10.

A Screen Conflict is defined as a situation where the ECI Client requests the ECI Host to launch

an ECI Application (open a UI session) but the above conditions for launching are not met.

In case the ECI Host has the ability to run interactive applications, the ECI Host shall be able to

launch at least one ECI Application while running such interactive content related to media

presented on the screen. Such ECI Application shall be directly related to the media presented on

the screen. Launching the ECI Application shall not terminate the interactive content presented on

the screen, and this content shall be able to resume interaction with the User when the ECI

Application stops.

The ECI Host shall convey the desire of an ECI Client to launch a non-content stream related ECI

Application to the attention of the User or permit the ECI Client to launch such ECI Application

without a Screen Conflict on a regular basis. This can be done, for instance, by launching such ECI

Applications at power-up or standby entry, or using some User action in response to an attention

icon in a banner or a ECI Host menu screen that is displayed regularly. ECI Clients should not

assume the ability to frequently launch such ECI Applications and should restrain the purposes to

matters that are important to the ECI Client's continued operation.

92 Rec. ITU-T J.1012 (04/2020)

When launched by the ECI Client the ECI Application shall be loaded in browsing contexts that is

not accessible from browsing contexts of broadcast or any other third-party application.

The browser window shall be visible within one second, and should have fully loaded the ECI

Application.

Future versions of this Recommendation might provide extended lifecycle models and conflict

resolution mechanisms as well as permit communication with externally launched HTML

applications.

9.4.3.3.2 Termination of an ECI Application

To stop an ECI Application the ECI Client sends a reqUISessionStop message to the ECI Host.

The request includes a uiSessionId that was returned by the ECI Host in the resUISessionOpen

response. The ECI application shall be stopped. How this is achieved is implementation dependent,

e.g., by stopping or minimizing the browser. In any case, the ECI application shall lose the input

focus and the browser shall not send further KeyboardEvents to the ECI application.

An ECI application shall also be stopped if any User action (like pressing P+/P-) brings the terminal

into a state where an ECI application launch is prohibited. The ECI Host shall send a

reqUiSessionCancel message to the ECI Client.

9.4.3.4 APIs related to the User communication

9.4.3.4.1 List of User communication API messages

The User interface API permits the ECI Client to mount a downloaded UI application container file

to provide the bulk of the static HTML resources required for generating the User interface. The

proxy automatically resolves all non client directed HTTP requests from the browser to the

application container file.

The ECI Host can suggest that the ECI Client start an application, either in response to the User

requesting access to the ECI Client Application Menu or by indicating to the ECI Client that there

are no conflicts in preventing it to present a non Media Handle related ECI Application to the User

with the reqUiSessionCommence message. The ECI Client can indicate its interest to launch such a

non Media Handle related dialogue via the setUiClientAttention message. Effectively this permits

lower priority communication from the ECI Client to the User when there is no Screen Conflict.

All User interface sessions are opened by the ECI Client using the reqUiSessionOpen message. The

relative URL to render the first UI screen is provided as a parameter. Both ECI Client and ECI Host

can terminate the User interface session using the reqUiSessionClose and reqUiSessionCancel

messages respectively.

The reqUiClientQuery message allows the ECI Application in the browser to send requests with

parameters via the proxy to the ECI Client which can then respond with data for the HTML

application. This communication permits the ECI Application to present data specific to the ECI

Client and to provide the ECI Client with User input in the same way as an HTML application

communicating with a dynamic HTTP server.

Table 9.4.3.4.1-1 lists all APIs defined in this clause.

 Rec. ITU-T J.1012 (04/2020) 93

Table 9.4.3.4.1-1 – User Interface API Messages

Message Type Dir. Tag Description

reqUiContainerMount A C→H 0x0 Mounts a UI Application container with HTML resources to
support UI sessions.

setUiClientAttention S C→H 0x1 ECI Client indicates a desire to start a UI session without
association to a Media Handle.

reqUiSessionCommence A H→C 0x2 ECI Host suggests the ECI Client to open a UI session.

reqUiSessionOpen A C→H 0x3 The ECI Client requests to open a User interface session with
the User and present content on the screen.

reqUiSessionClose A C→H 0x4 The ECI Client ends a User interface session.

reqUiSessionCancel A H→C 0x5 The ECI Host cancels a User interface session.

reqUiClientQuery A H→C 0x6 The ECI Client receives request from the HTML application in the
browser and provides a (dynamic) response.

9.4.3.4.2 reqUiContainerMount Message

C→H reqUiContainerMount(fileName filename, PubKey pk) → H→C resUiContainerMount

(uint indexFileLen, uchar indexFile)

• This message permits the ECI Client to direct the ECI Host to appoint a file as the ECI

Client's application container containing the HTML resources for its ECI Application. If

successful it returns the content of the "EciIndex.txt" file in the main directory of the

application container.

Request parameter definitions:
filename: fileName Filename in the ECI Client file system that will be the designated application container.

pk: PubKey Public key for verifying the signature of the application container.

Response parameter definitions:
indexFileLen: uint Length of index file.

indexFile: uchar Content of the index file.

Detailed semantics:

• The square brackets [and] with verbose text in between as used below signify the

demarcation of fields and structures in ZIP file containers.

• The signature for verification of the container file is found in the [.ZIP file comment] field

of the [end of central directory record] structure (see Zip File Format Specification version

6.3.3 of PKWARE® Inc. as referred in [ISO/IEC 21320].

• The [.ZIP Comment Field] is defined ending in the following string comprised of all ASCII

characters:

'ECI_SIGNATURE="' followed by the value of the ECI_Data_Signature structure as defined

in Table 5.6-1 encoded as a hex string using capitals, followed by a "" (a closing parentheses).
EXAMPLE:

ECI_SIGNATURE="01000000FCB1F60456719035FCB1F60456719035FCB1F60456719035FC

B1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719

035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60

456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FC

B1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719

035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60

456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FCB1F60456719035FC

B1F60456719035"

 The length of the encoded data signature string for an ECI_Data_Signature of type-1 is 520 characters.

• The ECI Host shall verify the signature as computed over the container file up until the [.Zip

comment field] in the [end of central directory record] structure and setting the [.Zip

94 Rec. ITU-T J.1012 (04/2020)

comment length field] to 0x0000 using public key parameter pk and the process of clause 5.6

defined for computing signatures.

• The index file is defined as the file with the name "EciIndex.txt" in the main directory of the

container file.

• The ECI Client shall mount a valid UI application container if this is required for UI sessions.

• The ECI Client shall be able to display a basic distress message to the User in case of failure

to load and mount the UI application container.

Application remarks:

• Clients can load application container files to their file system from an online server using

the HTTP(S) API (see clause 9.4.4.6) or from a broadcast transport stream using the Data

Carousel API.

• The "EciIndex.txt" file can contain version information for the UI, verified by the public key

signature.

Error codes regarding the reqUiContainerMount message are defined in Table 9.4.3.4.2-1.

Table 9.4.3.4.2-1 – reqUiContainerMount Error Codes

Name Description

ErrUiContainerFileNot

See Table 9.4.3.4.9-1
ErrUiContainerNot

ErrUiContainerSignature

ErrUiContainerIndexTxtNot

9.4.3.4.3 setUiClientAttention Message

C→H setUiClientAttention(uint clientAttention)

• This message indicates the desire of the ECI Client to open a UI session with the User

without relation to a Media Handle (UI Session type equal EciUiSessionDiaReq, see clause

9.4.3.4.4).

Property definition:
clientAttention: uint Defined values are:

0x0: no attention from the User is desirable.
0x1: attention from the User is desirable.
All other values are reserved.

Post Conditions:

• If clientAttention=0x0 no

reqUiClientSessionCommence(uiSessionType=EciUiSessionDiaReq) messages will be

issued by the ECI Host.

• If clientAttention=0x1 a

reqUiClientSessionCommence(uiSessionType=EciUiSessionDiaReq) message will be

issued by the ECI Host if there is no pending message of this type.

9.4.3.4.4 reqUiSessionCommence Message

H→C reqUiSessionCommence (uint uiSessionType) →

C→H resUiSessionCommence ()

• This message permits the ECI Host to suggest the ECI Client to open a UI session of a

specific type.

 Rec. ITU-T J.1012 (04/2020) 95

Request parameter definitions:
uiSessionType: uint Filename in the ECI Client file system that will be the designated application container.

The values are defined in Table 9.4.3.4.4-1. Only the values EciUiSessionAppMenu and
EciUiSessionDiaReq are permitted.

Table 9.4.3.4.4-1 – ECI UI Session Types

Name Value Description

EciUiSessionDiaReq 0x00 ECI Client requested UI session with the end User through the
setUiClientAttention message (not in association with a specific Media Handle)
and the ECI Host can grant a reqUISessionOpen from the ECI Client thereto.

EciUiSessionAppMenu 0x01 Application Menu of the ECI Client. This permits User initiated access to all
relevant settings, information and functions that can be initiated by the User.

EciUiSessionMh 0x02 ECI Client requested UI session in association with operations for a Media
Handle.

EciUiSessionParAuthDel 0x03 ECI Client requested UI Session to perform a delegated parental authentication
dialogue on behalf of processing content on a Media Handle.

RFU Other Reserved for future use.

NOTE – The values in Table 9.4.3.4.4-1are defined in a suggested priority order. This order can provide

suggestions on resolving UI focus conflicts in ECI Host design.

Detailed semantics:
• An ECI Client shall be able to present an Application Menu. The Application Menu should at minimum

permit the User to inspect the version of the ECI Client, a Platform Operation reference and the ECI Client's

operational state.

Preconditions Request:
• There shall be no previously issued pending reqUiSessionCommence message to the ECI Client for a UI

session.

Postconditions Response:
• The ECI Client shall issue a reqUiSessionOpen message with the corresponding UI Session type or an error

shall be reported.

Error codes regarding the reqUiSessionCommence message are defined in Table 9.4.3.4.4-2.

Table 9.4.3.4.4-2 – reqUiClientSessionCommence Error Codes

Name Description

ErrUiResourceError
See Table 9.4.3.4.9-1.

ErrUiClientError

9.4.3.4.5 reqUiSessionOpen Message

C→H reqUiSessionOpen(uint uiSessionType, ushort mH, uint relUrlLen, char relUrl[]) →

H→C resUiSessionOpen(ushort uiSessionId)

• This message permits the ECI Client to requests a new UI session from the ECI Host.

Request parameter definitions:
uiSessionType: uint Type of UI session as defined in Table 9.4.3.4.4-1. If the value is EciUiSessionMh or

EciUiSessionParAuthDel the mH parameter shall have relevance, otherwise it shall be
irrelevant.

mH: ushort Media handle of the content processing session the MMI is associated with.

relUrlLen: uint Length of relUrl in bytes.

relUrl: char[] Relative URL, null character terminated. Appended to the session base URL will form
the URL for the browser to start the UI session. See clause 9.4.3.2.2.

96 Rec. ITU-T J.1012 (04/2020)

Response parameter definitions:

uiSessionId: ushort ID of the new UI session.

Detailed semantics:

• An ECI Client shall be capable of handling multiple UI sessions at once. However, only one

simultaneous session of UI session type EciUiSessionAppMenu or EciUiSessionAppMenu is

required to be supported and at most one UI session with UI Session type EciUiSessionMh

is required per open Media Handle.

• An ECI Client shall be able to open UI sessions of a UI session of type EciUiSessionMh

simultaneously.

• The ECI Client shall be capable of opening simultaneous UI sessions of UI session type

EciUiSessionParAuthDel if the ECI Client supports the Parental Authentication Delegation

API. Such UI sessions shall be able to proceed in parallel to other UI sessions of the ECI

Client.

• An ECI Host can support one or more simultaneous UI sessions as suitable to its CPEs

application modes.

Pre conditions Request:

1) If the uiSessionType value is EciUiSessionAppMenu or EciUiSessionDiaReq this message

shall have been preceded by a reqUiClientCommence message with the same uiSessionType

parameter.

2) If the uiSessionType value is EciUiSessionParAuthDel this message shall have been

preceded by a reqParAuthDel message for media handle mH from the ECI Host to the ECI

Client.

3) If the uiSessionType value is EciUiSessionMh, Mh shall be an open media handle session.

Pre condition Response:

1) If the uiSessionType value is EciUiSessionAppMenu or EciUiSessionDiaReq or

EciUiSessionParAuthDel the ECI Host shall only accept the UI session request in case it

previously requested it, the cause for the request has not been mitigated, and it is in a state

that would not cause a Screen Conflict.

2) If the uiSessionType value is EciUiSessionMh the ECI Host shall grant the UI session

request if it can establish a meaningful interaction with the User without initiating a screen

priority conflict.

3) ECI Hosts shall not reject a second session from an ECI Client when the second session has

a uiSessionType equal EciUiSessionParAuthDel. The ECI Host is permitted to cancel the

first session.

Application notes:

1) If a Media Handle session is used for recording and there is no opportunity to initiate a

dialogue with the User since this would cause a Screen Conflict or there is no active screen,

the ECI Host shall refuse the session.

2) ECI Host applications are recommended to accommodate parental authentication UI

sessions when, e.g., programming future recordings that may require parental authentication

using the reqParAuthCid message of the Parental Authentication API (see clause 9.8.2.10).

3) ECI Hosts can cancel a UI session with an ECI Client to permit a new session with

uiSessionType equal EciUiSessionParAuthDel or EciUiSessionMh.

Error codes regarding the reqUiSessionOpen message are defined in Table 9.4.3.4.5-1.

 Rec. ITU-T J.1012 (04/2020) 97

Table 9.4.3.4.5-1 – reqUiClientSessionStart error codes

Name Description

ErrUiScreenConflict
See Table 9.4.3.4.9-1

ErrUiNoScreen

9.4.3.4.6 reqUiSessionClose message

C→H reqUiSessionClose(ushort uiSessionId) →

H→C resUiSessionClose(ushort uiSessionId)

• This message permits the ECI Client to close an existing UI session.

Request parameter definitions:

uiSessionId: ushort ID of the UI session to close.

Response parameter definitions:

uiSessionId: ushort ID of the UI session that was closed.

Pre conditions Request:

1) A UI session with uiSessionId shall be open.

2) No further messages referring to uiSessionId shall be sent to the ECI Host.

Pre condition Response:

1) No further messages referring to uiSessionId shall be sent to the ECI Client.

9.4.3.4.7 reqUiSessionCancel Message

H→C reqUiSessionCancel (ushort uiSessionId, uint reason) →

C→H resUiSessionCancel (ushort uiSessionId)

• This message permits the ECI Host to close an existing UI session to an ECI Client. This

message is intended to be used by the ECI Host in cases where the conditions for showing

an ECI Application are no longer met, e.g., if a User switches to a different channel

belonging to a different ECI Client causing a Screen Conflict.

Request parameter definitions:

uiSessionId: ushort ID of the UI session to be cancelled.

reason: uint Reason for cancelling the session. The values are defined in Table 9.4.3.4.9-1.

Response parameter definitions:

uiSessionId: ushort ID of the UI session that was cancelled.

Pre conditions Request:

1) The session with uiSessionId shall be open.

2) No further messages shall be sent referring to uiSessionId.

Pre condition Response:

1) No further messages shall be sent referring to uiSessionId.

98 Rec. ITU-T J.1012 (04/2020)

9.4.3.4.8 reqUIClientQuery mMessage

H→C reqUIClientQuery(ushort uiSessionId, uint queryLen, KeyValPair query[]) →

C→H resUIClientQuery(ushort uiSessionId, uint statusCode, uint typeLen, char type[], uint

bodyLen, uchar body[])

• This message conveys a HTTP request by the ECI Application running in the ECI Host

Browser as described in clause 9.4.3.2.3.7 and permits the ECI Client to send a HTTP

response back to the ECI Application.

Request parameter definitions:

uiSessionId: ushort Id of the UI session from which the request is issued.

queryLen: uint Length of the query parameter in bytes.

query[]: KeyValPair Contains key value pairs of the query parameters of the HTTP request issued by the
browser.

Type definitions for KeyValPair
#define MaxKeyLen 32

#define MaxValLen 256

typedef struct KeyValPair {

 char key[MaxKeyLen]; /* Key of the key value pair, null terminated*/

 char val[MaxValLen]; /* Value of the key value pair, null terminated */

} KeyValPair;

Response parameter definitions:

uiSessionId: ushort Id of the UI session.

statusCode: uint HTTP status code as defined in [IETF RFC 7231].

typeLen: uint Length of type parameter in bytes.

type[]: char Type of the response as a null terminated ASCII character string.

bodyLen: uint Length of body parameter in bytes.

body[]: uchar HTTP response-message.

Pre conditions Request:

1) The uiSessionId is open.

Detailed semantics:

• In case of a poorly formatted query string from the ECI Application the ECI Host may return

HTTP status code 400 and not initiate a request to the ECI Client.

• The message parameter relation to the HTTP request and response from the browser are

defined in clause 9.4.3.2.3.7.

9.4.3.4.9 Error codes for the User communication API

The error codes related to the User interface communication are listed in Table 9.4.3.4.9-1.

 Rec. ITU-T J.1012 (04/2020) 99

Table 9.4.3.4.9-1 – User communication API Error Codes

Name Value Description

ErrUiContainerFileNot -256 No UI application container file found.

ErrUiContainerNot -257 File not a valid UI application container file.

ErrUiContainerSignature -258 Signature check failure on application container file.

ErrUiContainerIndexTxtNot -259 No "EciIndex.txt" file in application container top directory.

ErrUiResourceError -260 ECI Client cannot mount the UI application container resource.

ErrUiClientError -261 ECI Client is not in an operational state where it can present a UI.

ErrUiDiaNoMore -262 The dialogue request from the ECI Client is no longer valid.

ErrUiScreenConflict -263 The ECI Host has a Screen Conflict and cannot accommodate or sustain
a session.

ErrUiNoScreen -264 The ECI Host does not have or no longer has access to a screen for the
UI session presentation.

RFU Other Reserved for future use.

9.4.4 API for the access to the ECI Host IP stack resource

9.4.4.1 Introduction

In CPEs equipped with an IP-stack the ECI Host provides an internet access service on behalf of

ECI Clients. ECI Clients can send messages using UDP/IP and open TCP/IP connections to peers

in both ECI Client and server mode using the ECI Hosts. ECI Host names can be resolved to IP

addresses using the available DNS services in the ECI Host.

The services provided are not secured beyond the generic software security of the CPE itself. That

is, if the CPE software outside the ECI Host is compromised, any IP traffic might be tampered with.

The ECI Client API for IP connectivity is based on the BSD socket paradigm as used in many

contemporary Operating Systems.

The definition of the API is split into four parts:

1) Basic ECI IP Sockets and DNS functionality (clause 9.4.4.3).

2) UDP/IP communication using an ECI IP Socket (clause 9.4.4.4).

3) TCP/IP communication using an ECI IP Socket (clause 9.4.4.5).

4) HTTP(S) communication using the ECI Host HTTP services (clause 9.4.4.6).

9.4.4.2 Basic specifications

An ECI Host that has an IP connection capability shall implement the IP protocol [IETF RFC 791]

including IPv6 [IETF RFC 8200] and applicable updates thereof. It shall provide a means to perform

ECI Host name resolution to IP addresses using DNS in accordance with [IETF RFC 1034], [IETF

RFC 1035] and applicable updates thereof.

To provide a simple short unreliable message protocol, the ECI Host shall support UDP over IP in

accordance with [IETF RFC 768] including applicable updates. To provide reliable connection-

oriented message exchange with flow control the ECI Host shall support TCP over IP in accordance

with [IETF RFC 793] and applicable updates.

The ECI Host does not have to provide support for UDP multicasting in either transmit or receive

mode.

100 Rec. ITU-T J.1012 (04/2020)

9.4.4.3 ECI IP sockets

9.4.4.3.1 General

ECI Clients can open an ECI IP socket for the purpose of sending and receiving communication

using TCP and IP.

NOTE – The term "socket" suggests a resemblance to the original BSD sockets as used in many operating

systems. As a concept, ECI IP sockets are similar but have specific properties that deviate from BSD sockets.

Specifically the behaviour is fully asynchronous.

ECI IP sockets are endpoints for IP communication. ECI Clients can open a socket by identifying

the local port number and the willingness to accept incoming connection Requests (operate as a

TCP/IP server). The sockets can be closed in which case any associated connection or server

behaviour is closed. The IP address of a peer host-name can be resolved using the DNS services of

the ECI Host.

The available messages are listed in Table 9.4.4.3.1-1.

Table 9.4.4.3.1-1 – IP socket messages

Message Type Dir. Tag Description

reqIpSocket A C→H 0x0 Opens an ECI IP Socket

reqIpClose A C→H 0x1 Closes ECI IP Socket

reqIpAddrinfo A C→H 0x2 Gets address of (remote) ECI Host

The structure type definitions for these APIs are defined in clause 9.3.

Type definitions for IP socket API:
typedef struct Addrinfo {

 ushort addressType; /* IPv4 or IPv6 address*/

 uchar ipAddress[16]; /* the IP address itself */

 ushort port; /* port number - if relevant */

} Addrinfo;

Field definitions:
addressTyp: ushort. See Table 9.4.4.3.4-1, only values ProtPrefIPv4 or ProtPrefIPv6 are permitted. This

field defines the length of the hostAddress as 4 or 16 bytes (see Note).

ipAddress: uchar[16] 4 or 16 bytes representing the byte wise representation (in network order) of an IPv4
or IPv6 address respectively. IPv4 addresses shall use the first 4 bytes of this
parameter.

port: ushort Port number of socket to connect to (field may be unused).

NOTE – ProtPrefIPv4 or ProtPrefIPv6 are defined in Table 9.4.4.3.4-1.

9.4.4.3.2 reqIpSocket message

C→H reqIpSocket(uchar source, ushort sourcePort, ushort protocol) →

H→C resIpSocket(uchar socketId)

• The message opens a socket for TCP or UDP based communication on a local IP address

and port.

 Rec. ITU-T J.1012 (04/2020) 101

Request parameter definitions:
source: uchar See Table 9.4.4.3.2-1: It specifies the ECI Host IP address to be used for the local socket

(a preference in case multiple IP addresses are assigned). In case the specific IP
address is not identifiable a suitable alternative shall be selected by the ECI Host.

sourcePort: ushort. Port address of the local IP connection endpoint. Value equal 0x0000 shall mean that
the ECI Host shall allocate a free port address for the socket. Other values below 1024
are not permitted.

Protocol: ushort See Table 9.4.4.3.2-2: It specifies the protocol used for the socket. The choice for IPv4
or IPv6 shall be specific.

Table 9.4.4.3.2-1 – IP Source parameter

Name Value Description

IpSourceAny 0x00 Default IP address of ECI Host.

IpSourceWan 0x01 ECI Host IP address used for WAN (internet) communication.

IpSourcePriv 0x02 ECI Host IP address used for private IP traffic on a proprietary IP protocol
channel.

IpSourceLan 0x03 ECI Host IP address used for local network communication.

RFU Other Reserved for future use.

Table 9.4.4.3.2-2 – IP protocol parameter

Name Value Description

SockProtUdpIPv4 0x0001 UDP/IP using Ipv4.

SockProtUdpIPv6 0x0002 UDP/IP using Ipv6.

SockProtUdpIPany 0x0003 UDP/IP using IPv4 or v6.

SockProtTcpClientIpv4 0x0005 TCP/IP using Ipv4, client mode (only for initiating connections).

SockProtTcpClientIpv6 0x0006 TCP/IP using Ipv6, client mode (only for initiating connections).

SockProtTcpClientIpany 0x0007 TCP/IP using Ipv4 or v6, client mode (only for initiating connections).

SockProtTcpServerIpv4 0x0009 TCP/IP using Ipv4, server mode (for accepting incoming connections).

SockProtTcpServerIpv6 0x000A TCP/IP using Ipv6, server mode (for accepting incoming connections).

SockProtTcpServerIpany 0x000B TCP/IP using Ipv4 or v6, server mode (for accepting incoming
connections).

RFU other Reserved for future use.

Response Parameter definitions:
SocketId: uchar. Socket ID of opened socket.

Semantical description:

• Just after initialization, the Response is allowed to be stalled until such time that the ECI

Host IP address initialization has been completed successfully. Performance figures are

proposed in [b-ITU-T J Suppl. 7].

Pre conditions Request:

1) The maximum number of sockets that the ECI Client is allowed to request shall not be

exceeded.

2) The source, sourcePort and protocol is a valid parameter configuration.

Post conditions Response:

1) Socket is opened or an error is returned in the Response.

Error codes regarding the opening of the sockets are listed in Table 9.4.4.3.2-3.

102 Rec. ITU-T J.1012 (04/2020)

Table 9.4.4.3.2-3 – resIpSocket Error Codes

Name Description

ErrIpSourceProt

See Table 9.4.4.7-1.
ErrIpNoSockets

ErrIpProtNotAvail

ErrIpPortNotAvail

9.4.4.3.3 reqIpClose Message

C→H reqIpClose(uchar socketId) →

H→C resIpClose(uchar socketId)

• Closes IP socket and any associated connection; all pending communication to and from the

socket can be lost.

Request parameter definitions:
socketId: uchar ID of socket to be closed.

Response parameter definitions:
socketId: uchar. ID of socket that was closed.

Semantical description:

• This Request closes the socket and any IP connection associated with it. It will leave it to

the ECI Host to send the proper disconnect messages to any communication peer if

applicable. The successful completion of the latter is not required for sending the Response.

A socket that has no associated connection will also be closed.

Pre conditions:

1) Socket exists and is in an opened state.

Post conditions:

2) Socket is closed and can no longer be used for any communication (unless reassigned on

reqIpSocket).

Error codes regarding the closing of the socket are listed in Table 9.4.4.3.3-1.

Table 9.4.4.3.3-1 – resIpClose Error Codes

Name Description

ErrIpSocketNotOpen See Table 9.4.4.7-1.

9.4.4.3.4 reqIpAddrInfo message

C→H reqIpAddrinfo(uint hostnameLenth, char hostname[], uchar protPref) →

H→C resIpAddrinfo(Addrinfo ipaddress)

• This message provides the IP address information for addressing ECI Host using preferred

protocol (protPref), returning the ECI Host address. The protocol shall use the DNS services

of the ECI Host when required to resolve the Request.

 Rec. ITU-T J.1012 (04/2020) 103

Request parameter definitions:
hostNameLength: uint Length of the name field (in bytes).

hostname: char[] The name of the IP host to be resolved; be it in IPv4 dod notation [IETF RFC 952], IPv6
colon notation [IETF RFC 8200] or actual host name [IETF RFC 1123].

protPref: uchar Indicates the IP protocol preference as defined in Table 9.4.4.3.4-1.

Table 9.4.4.3.4-1 – IP Protocol Preference parameter

Name Value Description

ProtPrefIpv4 0x1 An IPv4 address shall be returned.

ProtPrefIPv6 0x2 An IPv6 address shall be returned.

ProtPrefAny 0x3 Either an IPv4 or IPv6 address shall be returned.

RFU other Reserved for future use.

Response parameter definitions:
Ipaddress: Addrinfo IP address of ECI Host. The port field is undefined.

Semantical description:

• This Request uses the ECI Host DNS services to translate the provided host name into a

binary host address representation. Delays can occur due to temporary absence of DNS

service access (e.g., during CPE start up); the ECI Host shall ensure that an appropriate

timeout is observed (i.e., the Response is always received by the ECI Client).

Post conditions Response:

1) Resolved host address or error.

Error codes regarding the closing of the socket are listed in Table 9.4.4.3.4-2.

Table 9.4.4.3.4-2 – resIpAddrInfo error codes

Name Description

ErrIpHostUnknown

See Table 9.4.4.7-1. ErrIpHost

ErrDnsOffline

9.4.4.4 ECI UDP/IP

9.4.4.4.1 General

ECI Clients shall send and receive UDP datagrams using an open ECI UDP/IP socket. The related

messages are defined in Table 9.4.4.4.1-1.

Table 9.4.4.4.1-1 – UDP/IP socket messages

Message Type Dir. Tag Description

reqIpUdpSendMsg A C→H 0x3 Sends message to peer UDP port.

reqIpUdpRecvMsg A C→H 0x4 Receives a message from peer UDP port.

104 Rec. ITU-T J.1012 (04/2020)

9.4.4.4.2 reqIpUdpSendMsg message

C→H reqIpUdpSendMsg(uchar socketId, Addrinfo peer, uint datagramLength, byte

datagram[]) →

H→C resIpUpdSendMsg(uchar socketId)

• This message sends a UDP datagram to a peer (IP address, IP port).

Request parameter definitions:
socketId: uchar Length of the name field (in bytes).

peer: Addrinfo Peer (IP address, IP port number) destination for the datagram.

datagramLength: uint Length (in bytes) of the datagram.

datagram: byte[] Datagram content (bytes in network order).

Response parameter definitions:
socketId: uchar Socket on which the matching Request was issued.

Semantical description:

• The datagram is sent using UDP protocol and the socket's IP host address and port to the

peer.

Pre conditions Request:

1) Socket had been opened for UDP using the same address structure as the peer's.

Post conditions:

2) Datagram is sent (but can be lost).

Error codes regarding the sending of UDP datagrams are listed in Table 9.4.4.4.2-1.

Table 9.4.4.4.2-1 – resIpUdpSendMsg error codes

Name Description

ErrIpUdpProtMismatch

See Table 9.4.4.7-1.
ErrIpUdpSocketNot

ErrIpUdpTooLong

ErrIpUdpIpOffline

9.4.4.4.3 reqIpUdpRecvMsg message

C→H reqIpUdpRecvMsg(uchar socketId) →

H→C resIpUdpRecvMsg(uchar socketId, Addrinfo peer, uint datagramLength, byte datagram[])

• This message allows the ECI Client to request the ECI Host to receive a UDP datagram

from a peer (i.e., hostname, port) sent to the socket with SocketId.

Request parameter definitions:
socketId: uchar Socket (implying port number and host address) on which a UDP datagram is

anticipated to be received.

 Rec. ITU-T J.1012 (04/2020) 105

Response parameter definitions:
socketId: uchar Length of the name field (in bytes).

peer: Addrinfo IP address + port number of datagram source (peer).

datagramLength: uint Length (in bytes) of the datagram.

datagram: byte[] Datagram content (bytes in network order).

Semantical description:

• A datagram can be received on the socket in which case a Response is returned.

NOTE 1 – Socket close will terminate any pending reqIpUdpRecvMsg Requests.

NOTE 2 – Issuing multiple reqIpUdpRecvMsg before receiving corresponding Responses on the same socket

is permitted, but the ECI Host has no obligation to support queuing of more than five of such Requests.

Pre conditions Request:

• Socket has been opened for UDP.

Post conditions Response:

• Datagram is sent (but can be lost).

Error codes regarding the receiving of UDP datagrams are listed in Table 9.4.4.4.3-1.

Table 9.4.4.4.3-1 – resIpUdpRecvMsg error codes

Name Description

ErrIpUdpSocketNot See Table 9.4.4.7-1.

9.4.4.5 ECI TCP/IP

9.4.4.5.1 General

ECI Clients can send and receive messages over a TCP/IP connection opened on the creation of a

socket creating an effective error-free bidirectional byte-stream sequence from the local ECI Client

to a remote peer service, or vice versa. This allows the ECI Client to act as a server to Requests for

channels from other parties (typically for LAN applications). The messages are listed in Table

9.4.4.5.1-1.

Table 9.4.4.5.1-1 – TCP/IP socket messages

Message Type Dir. Tag Description

reqIpTcpConnect A C→H 0x5 TCP client connects to TCP server peer.

reqIpTcpSend A C→H 0x6 Sends data to connected peer.

reqIpTcpRecv A C→H 0x7 Receives data from connected peer.

reqIpTcpAccept A C→H 0x8 TCP server peer accepts connection from TPC client peer.

9.4.4.5.2 reqIpTcpConnect message

C→H reqIpTcpConnect(uchar socketId, Addrinfo peer) →

H→C resIpTcpConnect(uchar socketId)

• This message requests the ECI Host to open a connection from an open TCP socket to the

peer using the protocol of the socket.

106 Rec. ITU-T J.1012 (04/2020)

Request parameter definitions:
socketId: uchar Socket (inplying port number and host address) from which a TCP connection is to be

established.

peer: Addrinfo Peer IP address, IP port to which the connection is to be opened.

Response parameter definitions:
socketId: uchar Socket ID of the socket of the Request.

Semantical description:

• The local host will attempt to open a TCP connection from the local socket to the peer (IP

address, IP port).

Pre conditions:

• Socket has been opened for TCP using the same IP address type (IPv4 or IPv6) as

peerAddressType.

Post conditions:

• A TCP connection is established or an error condition is returned.

Error codes regarding the connection via TCP and IP are listed in Table 9.4.4.5.2-1.

Table 9.4.4.5.2-1 – resIpTcpConnect error codes

Name Description

ErrIpTcpProtMismatch

See Table 9.4.4.7-1.

ErrIpTcpSockNot

ErrIpTcpIpOffline

ErrIpTcpConnRefused

ErrIpTcpConnTimeout

9.4.4.5.3 reqIpTCPSend message

C→H reqIpTcpSend(uchar socketId, bool more, uint dataLen, byte data[]) →

H→C resIpTcpSend(uchar socketId, uint actLen)

• This message sends data using TCP on a TCP connected socket.

Request parameter definitions:

socketId: uchar Socket (implying port number and host address) used for sending the data to the peer.

more: bool Indicatesif the data and preceding data is to be forwarded to
the peer immediately (more=False) or if more data follows in subsequent reqipTcpSend
Requests (more=True).

dataLen: uint Amount of data to be sent.

data: byte[] Data to be sent.

Response parameter definitions:
socketId: uchar Socket ID of the socket on which the send was issued.

actLen: uint The actual number of bytes successfully sent.

Semantical description:

• The local host shall send the data to the peer over a connected TCP/IP socket with socketID

to the connected peer.

 Rec. ITU-T J.1012 (04/2020) 107

Pre conditions Request:

1) Socket is in a connected TCP/IP mode.

Post conditions Response:

2) In case actLen is not equal to dataLen an error condition shall hold.

Error codes regarding the sending of TCP packets are listed in Table 9.4.4.5.3-1.

Table 9.4.4.5.3-1 – resIpTcpSend error codes

Name Description

ErrIpTcpSockNot

See Table 9.4.4.7-1.
ErrIpTcpIpOffline

ErrIpTcpClosed

ErrIpTcpConnTimeout

9.4.4.5.4 reqIpTCPRecv message

C→H reqIpTcpRecv(uchar socketId, uint maxDataLen) →

H→C resIpTcpRecv(uchar socketId, uint dataLength, byte data[])

• This message receives data using TCP on a TCP connected socket

Request parameter definitions:

socketId: uchar Socket (implying port number and host address) used for receiving the data to the peer.

maxDataLen: uint Maximum amount of data to be received.

Response parameter definitions:

socketId: uchar Socket ID of the socket on which the receive message was issued.

dataLength: uint Number of bytes of data received from peer.

data: byte[] Data as received from peer.

Semantical description:

• The local host receives data from the peer over a connected TCP/IP socket with socketID.

Pre conditions Request:

1) Socket is a TCP socket.

Post conditions Response:

2) All available data up to length is returned up to the maxDataLen field in the Request. If no

data is available the Response shall stall until the connection is closed, the TCP connection

is deemed temporarily unavailable or the local connection to the IP network is lost.

Error codes regarding the receiving of TCP packets are listed in Table 9.4.4.5.4-1.

108 Rec. ITU-T J.1012 (04/2020)

Table 9.4.4.5.4-1 – resIpTcpRecv error codes

Name Description

ErrIpTcpSockNot

See Table 9.4.4.7-1.
ErrIpTcpIpOffline

ErrIpTcpClosed

ErrIpTcpConnTimeout

9.4.4.5.5 reqIpTCPAccept message

C→H reqIpTcpAccept(uchar socketId) →

H→C resIpTcpAccept(uchar socketId, uchar newSocketId, Addrinfo peer)

• This message accepts an incoming connection Request on a TCP Server socket. Pending

connection Requests shall be served with a maximum as defined by the ECI Host

implementation. Performance requirements for the TCP server are proposed in [b-ITU-T J

Suppl. 7].

Request parameter definitions:

socketId: uchar Socket (implying port number and host address) used for receiving

connection Requests.

Message field definitions:

socketId: uchar Socket ID of the socket on which the request was issued.

newSocketId: uchar Socket ID for the newly opened connection to the peer that issued a
connection Request. The host address and port are inherited from
the socket with socketId.

peer: Addrinfo IP address + IP port of peer on the connection.

Semantical description:

• The local ECI Host waits for incoming TCP connection Requests on the IP-address/port as

specified in the socket creation and opens a newly connected socket serving the incoming (or

pending) connection Request. No Response can follow if there is no incoming Request or

in case the server socket is closed.

Pre conditions Request:

1) Socket is a TCP server socket.

Post conditions Response:

2) A new socket with an opened TCP/IP connection is returned on any available connection

Request to the server socket or an error is produced.

Error codes regarding the acceptance of TCP connections are listed in Table 9.4.4.5.5-1.

Table 9.4.4.5.5-1 – resIpTcpAccept error codes

Name Description

ErrIpTcpListSockNot
See Table 9.4.4.7-1.

ErrIpTcpNoMoreSockets

9.4.4.6 API for HTTP(S) get services

9.4.4.6.1 General

The ECI Host shall provide basic HTTP(S) Get requests to retrieve resources from an IP based

HTTP server on behalf of the client. This permits the ECI Client to retrieve web based resources

 Rec. ITU-T J.1012 (04/2020) 109

(files) from internet servers. HTTPS may among others be used to retrieve Web-API based resources

like import or export data as defined in clause 9.7.2 and clause 7.8.4.2.

The security is provided by HTTPS (TLS) of the underlying CPE's TLS implementation.

NOTE – This security should, in general, not be used to ensure content protection integrity for ECI Clients,

but may be used to ensure that DDOS and other opportunistic attempts to manipulate ECI Clients are

hampered.

The ECI Host shall support an ECI Client with a minimum amount of resources to issue HTTP Get

requests. Values are proposed in [b-ITU-T J Suppl. 7].

The API messages for the HTTP(S) Get API are listed in Table 9.4.4.6.1-1.

Table 9.4.4.6.1-1 – HTTP Get API messages

Message Type Dir. Tag Description

reqHttpGetFile A C→H 0x0 Performs an HTTP Get request on a URL and stores the result in a file.

reqHttpGetData A C→H 0x1 Performs an HTTP Get request on a URL and passes the result as data
to the Client.

9.4.4.6.2 Applicable specifications

NOTE – the specifications hereunder are not an essential part of ECI security as stated in clause 9.4.4.6.1.

The HTTP and HTTPS protocol implementation for implementing the ECI Client API shall be

compliant to HTTP1.1 [IETF RFC 7230] and [IETF RFC 7231].

The Transport Layer Security (TLS) implementation used for providing HTTP services to the ECI

Client shall comply with TLS 1.3 [IETF RFC 8446]. For backward compatibility TLS1.2 should be

supported in accordance with TLS1.3 constraints and the following rules:

1) TLS 1.2, see [IETF RFC 5246].

2) TLS AES-GCM, see [IETF RFC 5288].

3) TLS Extensions, see [IETF RFC 6066].

4) PKIX/X.509 [IETF RFC 5280] + Updates [IETF RFC 6818].

All TLS1.2 implementations shall support the following cipher suites as defined in [IETF RFC 5246]:

1) TLS_RSA_WITH_AES_128_CBC_SHA256.

2) TLS_DHE_RSA_WITH_AES_128_GCM_SHA256.

Additional cipher suites for TLS 1.2 may be supported following TLS1.3 constraints.

Selection of TLS1.2 cipher suits has the following rules:

1) TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 should be the default cipher suit.

2) AEAD cipher suites should be prioritized.

3) DHE based key exchange should be prioritized.

4) Keys longer than 128 bits should not be prioritized.

5) 3DES should not be used.

6) RC4 shall not be used (as specified in [W3C PNG]).

7) MD5 shall not be used (as specified in [IETF RFC 6151]).

The following processing rules apply:

1) TLS 1.2 shall be the minimum version required by all ECI entities.

2) SSL 2.0 and 3.0 shall not be used.

110 Rec. ITU-T J.1012 (04/2020)

3) Renegotiation shall not be used.

4) Compression should not be used (acceptable with GCM).

5) Primes for DH/DHE shall be at least 1 024 bit and shall be verified during TLS handshake.

6) Verification of Certificates and hosts shall comply with PKIX requirements [IETF RFC

5280] and [IETF RFC 6125].

The root certificates used for authenticating the TLS connection counterpart should be based on an

up to date list, e.g. https://cabforum.org/browser-os-info/ .

CPEs shall support a means by which the CPE manufacturer can remove or distrust root certificates

after manufacture. This may be handled either via a firmware upgrade mechanism or preferably via

a specific root certificate update mechanism that could allow more timely updates. A CPE

manufacturer may choose to remove or distrust a mandatory root certificate in the CPE in response

to a security threat. CPEs should support a means of securely adding new root certificates after

manufacture in order to maintain interoperability with servers over time.

Additional guidance for implementations can be found in the processing rules outlined by the

CA/Browser Forum [b-CA Browser] and [b-NIST SP 800-52r2].

NOTE – In order to ensure interoperability, HTTP servers targeted to support ECI Clients with HTTP based

services should support compatible modes and options and applicable recommendations as defined here for

the HTTP client.

9.4.4.6.3 The reqHttpGetFile and reqHttpGetData message

C→H reqHttpGetFile(filename fname ;char url[], char userAgent[]; uint redirs, uint timeout) →

H→C resHttpGetFile(uint httpStatus)

C→H reqHttpGetData(char url[], userAgent[]; uint redirs, uint timeout) →

H→C resHttpGetData(uint httpStatus, byte data[])

• This message requests the ECI Host to perform a HTTP request to retrieve a file and return

the HTTP status on completion.

• resHttpGetFile returns the resource as a file in the file system of the Client.

• resHttpGetData returns the resource as message data with a limited size.

Request parameter definition:
fname: fileName Filename of the file where the result (post data) of the request is stored by the ECI Host. Any

existing data is overwritten.

url: char[] URL in UTF-8 encoding [IETF RFC 7230]. Non-standard port numbers may be specified as
part of the URL. TLS shall be used for URLs conforming to the "https URI Scheme" in [IETF
RFC 7230].

userAgent: char[] Specifies the User-Agent header field to be used as the HTTP header. ECI Clients may
specify a specific value anticipated by the HTTP server of the url (see Note).

redirs: unit Maximum number of redirects that is permitted to complete the request. Minimum
performance figures for redirs are proposed in [b-ITU-T J Suppl. 7].

timeout: unit Timeout in milliseconds for the HTTP request to complete. In case of a timeout the request
will be aborted and a timeout error will be returned in the Response.

NOTE –: It is not recommended to use the User-Agent as an access control or selection mechanism for the resource

and follow the intended use as defined in [IETF RFC 7231].

Response parameter definition:
httpStatus: uint Value of the HTTP status.

data: byte[] Data of the HTTP Get result in network order. The maximum size is limited by the message
buffer size.

https://cabforum.org/browser-os-info/

 Rec. ITU-T J.1012 (04/2020) 111

Detailed semantics:

• The ECI Host shall ensure that the HTTP requests support a wide range of common file and

media types. It is recommended not to include the Accept header field in the HTTP request

header. In case an Accept header is added the following Content-Encoding MIME types shall

be acceptable for retrieving the resource: application/octet-stream, application/json,

image/jpeg, image/png, image/gif, text/plain, text/html, text/css, text/xml and text/javascript.

• The ECI Host shall ensure that the HTTP request header Accept-Encoding signals that the

following Content-Encodings are acceptable: gzip.

Post conditions Response:

1) The resource at url was retrieved and stored in a file names fname (for resHttpGetFile)or

returned as data (for rerHttpGetData) or an error occurred.

The resHttpGetFile and resHttpGetData related error codes are listed in Table 9.4.4.6.3-1.

Table 9.4.4.6.3-1 – resHttpGetFile and resHttpGetData error codes

Name Description

ErrHttpGetNoSockets

See Table 9.4.4.6.4-1.

ErrHttpGetProtNotAvail

ErrHttpGetPortNotAvail

ErrHttpHostUnknown

ErrHttpDnsOffline

ErrHttpIpOffline

ErrHttpTimeout

ErrHttpGetFSFailure

ErrHttpGetFSExceeded

ErrHttpGetTlsAuth

ErrHttpGetRedir

ErrHttpGetData

9.4.4.6.4 Error codes for the HTTP Get API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.4.4.6.4-1.

112 Rec. ITU-T J.1012 (04/2020)

Table 9.4.4.6.4-1 – Error codes for the HTTP Get APIs

Name Value Description

ErrHttpGetNoSockets -257

See corresponding value for error codes in Table 9.4.4.7-1 for the
IP Socket API.

ErrHttpGetProtNotAvail -258

ErrHttpGetPortNotAvail -259

ErrHttpHostUnknown -261

ErrHttpDnsOffline -263

ErrHttpIpOffline -267

ErrHttpTimeout -270 The HTTP request could not finish within the timeout set in the
request

ErrHttpGetFSFailure -512 Value+256 corresponds to value of error codes in Table 9.4.5.5-1
for the file system API. ErrHttpGetFSExceeded -514

ErrHttpGetTlsAuth -768 Server or data could not be successfully authenticated by the TLS
protocol.

ErrHttpGetRedir -784 Number of redirects exceeded.

ErrHttpError -785 The resource could not be retrieved from the server; the HTTP error
code indicates the reason.

ErrHttpGetData -786 Data of resource exceeded maximum length data field.

9.4.4.7 Error codes for the IP Socket API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.4.4.7-1.

Table 9.4.4.7-1 – Error codes for IP socket APIs

Name Value Description

ErrIpSourceProt -256 Invalid combination of source and protocol.

ErrIpNoSockets -257 No more sockets available.

ErrIpProtNotAvail -258 Protocol not available.

ErrIpPortNotAvail -259 Requested port is not available.

ErrIpSocketNotOpen -260 Socket was not open.

ErrIpHostUnknown -261 ECI Host unknown.

ErrIpHost -262 ECI Host known but no address available (for the specified IP address
type).

ErrDnsOffline -263 DNS service is offline, possibly temporarily.

ErrIpUdpProtMismatch -264 Peer address does not match socket protocol.

ErrIpUdpSockNot -265 Socket is not a UDP socket.

ErrIpUdpTooLong -266 Datagram to long for single UDP message.

ErrIpUdpIpOffline -267 IP connection offline (peer cannot be reached).

ErrIpTcpProtMismatch -268 Peer address does not match socket protocol.

ErrIpTcpSockNot -269 Socket is not a TCP socket.

ErrIpTcpIpOffline -258 No local IP internet connection at this time.

ErrIpTcpConnRefused -259 Connection not accepted by peer host on this port.

ErrIpTcpConnTimeout -260 Not able to get Response from peer ECI Host.

ErrIpTcpClosed -261 TCP connection not or no longer available.

ErrIpTcpListSockNot -262 Socket is not a TCP server socket.

ErrIpTcpNoMoreSockets -263 Incoming connection Request was received but host out of sockets.

RFU Other Reserved for future use.

9.4.5 API for access to the file system

9.4.5.1 Introduction

The ECI Client has access to a private file system to store a limited amount of data that shall survive

ECI Client lifecycles, CPE power cycles, system crashes, etc., under normal operating conditions.

The reliability should at least be equal to the regular CPE file system; i.e., failures can occur under

somewhat exceptional circumstances which can result in User discomfort. It is up to the security

 Rec. ITU-T J.1012 (04/2020) 113

system managing the ECI Client to ensure that no undue loss of rights to content access occurs for

the User. The file system is not secure. Manipulation by entities other than the designated ECI Client

and its supporting ECI Host under regular conditions (i.e., uncompromised CPE and ECI Host)

shall not be possible.

The file system abstraction is that of a single flat directory. A basic directory service is available. The

file system access functions are analogous to Unix/Linux/Posix file system calls, like open, close,

write, read, lseek, opendir, readdir and lstat.

A minimum amount of file system storage shall be available to each ECI Client if it is stored by the

User. This amount is proposed in [b-ITU-T J Suppl. 7].

The file system API is partitioned in three subparts:

1) File opening and closing.

2) Reading and writing a file, random access and deleting selected data from a file.

3) Directory services.

Filenames shall consist of 8-bit ASCII character sequence of minimum 1 and maximum 8 of the

following characters (comma separated): A-Z, a-z, 0-9, _ and shall be terminated with a NULL

character. The filename definition is shown in Table 9.4.5.1-1.

Table 9.4.5.1-1 – FileName structure

typedef char fileName[9];

Log files provide functionality permitting ECI Clients to write limited amounts of data in a buffered

fashion, i.e., without halting execution. The number of log files per ECI Client is defined in xxx (min

2 per client). This makes such files suitable for application level logging, tracing and postmortem

analysis.

9.4.5.2 File opening and closing

9.4.5.2.1 General

ECI Clients can open a file for reading and/or writing which delivers a fileHandle through which the

subsequent read and write accesses can be performed. If a file does not exist it can be created. The

file has a property "file location" which points to the present location for accessing the file.

FileHandles shall be managed by the ECI Host. A file handle that was closed shall not be reused

immediately afterwards to ensure that unsynchronized accesses to the file by an ECI Client will not

result in accesses to the wrong file.

Table 9.4.5.2.1-1 outlines File Open and File Close messages:

Table 9.4.5.2.1-1 – File Open and Close messages

Message Type Dir. Tag Description

reqFileOpen A C→H 0x0 Opens an ECI Client private file.

reqFileClose A C→H 0x1 Closes an open file.

9.4.5.2.2 reqFileOpen message

C→H reqFileOpen(fileName fname, uint fileOpenOptions) →

H→C resFileOpen(uchar fileHandle)
• This message allows the ECI Client to request the ECI Host to open a file with certain permissions for access.

114 Rec. ITU-T J.1012 (04/2020)

Request parameter definitions:
fname: filename Name of file to be opened.

fileOpenOptions: unit Access mode in which to open file. The permitted values and their
meaning are defined in Table 9.4.5.2.2-1.

Table 9.4.5.2.2-1 – File opening options

Name Bits Value Description

FileRead 0,1 0b00 File is opened for reading. The file location is set at the start of
the file.

FileWriteAppend 0,1 0b01 File is opened for writing; subsequent writes are appended to
existing file. The file location is set at the end of the file.

FileWriteOver 0,1 b11 File is opened for writing at any location. The file location is set
at the end of the file.

Not in use 0,1 0b10 Not permitted.

LogFileNo 2 0b0 Regular file

LogFileYes 2 0b1 Special log file permitting synchronous writes.

Bits32-2 Other Reserved for future use.

Response parameter definitions:
fileHandle: uchar Reference (handle) to opened file.

Post conditions Request:

1) File opened in the desired access mode or an error will be returned. Error codes are listed in

Table 9.4.5.2.2-2.

Table 9.4.5.2.2-2 – resfileOpen error codes

Name Description

ErrFileNameNotExist

See Table 9.4.5.5-1. ErrFileQuotaExceeded

ErrFileSystemFailure

9.4.5.2.3 reqFileClose message

C→H reqFileClose(uchar fileHandle) →

H→C resFileClose()

• This message closes the access to the file opened with fileHandle. Error codes regarding the

closing of a file are listed in Table 9.4.5.2.3-1.

Request parameter definitions:
fileHandle: uchar Handle of file to be closed.

Pre conditions Request:

1) fileHandle is in opened state.

Post conditions Request:

1) Subsequent accesses to fileHandle will fail with ErrFileNotOpen.

2) Any pending writes will be committed (unless an error occurs).

 Rec. ITU-T J.1012 (04/2020) 115

Table 9.4.5.2.3-1 – resfileClose error codes

Name Description

ErrFileHandleNotExist
See Table 9.4.5.5-1.

ErrFileSystemFailure

9.4.5.3 File access

9.4.5.3.1 General

The file access messages permit read and write to a file accessed through a file handle, and reposition

the present location in the file for reading/writing. The primitives defined have a direct

correspondence to Linux/Unix conventions. The defined messages are listed in Table 9.4.5.3.1-1.

NOTE – reqFileWrite and reqFileRead have strong resemblance to reqTcpSend and reqTcpRecv.

Table 9.4.5.3.1-1 – File Access messages

Message Type Dir. Tag Description

reqFileWrite A C→H 0x2 Writes consecutive bytes starting from the present file location.

reqFileRead A C→H 0x3 Reads consecutive bytes starting from the present file location.

reqFileSeek A C→H 0x4 Repositions the present file location.

reqFileRemoveData A C→H 0x5 Deletes data from a file at current location.

callFileDataLog S C→H 0x6 Appends data at the end of a buffered file.

9.4.5.3.2 reqFileWrite message

C→H reqFileWrite(uchar fileHandle, bool sync, uint dataLen, byte data[]) →

H→C resFileWrite(uchar fileHandle)

• This message writes dataLen bytes to the file starting at the present file location.

Request parameter definitions:

fileHandle: uchar Handle of file to be written to

sync: bool If True, write Response ensures that the state of the file system is up to date with this
and all preceding writes. If False, the ECI Host can buffer write Requests (which can
still be lost on a system failure).

dataLen: uint Number of bytes to be written to the file.

data: byte[] Data to be written to the file.

Response parameter definitions:
fileHandle: uchar Handle of file that was written to.

Pre conditions Request:

1) File opened in write mode (FileWriteOver or FileWriteAppend mode).

2) File location can be written to: if file opened in FileWriteAppend mode the file location shall

be at the end.

3) Amount of data to be written does not cause a file system quota problem.

Post conditions Request:

1) File state will be updated, and the file location will be advanced from present (pending other

buffered operations on the file) to present+dataLen, unless an error occurs.

2) In case of a successful write and sync the data is committed in NV state in the ECI Host file

system.

116 Rec. ITU-T J.1012 (04/2020)

Error codes are listed in Table 9.4.5.3.2-1.

Table 9.4.5.3.2-1 – resFileWrite error codes

Name Description

ErrFileHandleNotExist

See Table 9.4.5.5-1.
ErrFileQuotaExceeded

ErrFileSystemFailure

ErrFileWriteNot

9.4.5.3.3 reqFileRead message

C→H reqFileRead(uchar fileHandle, uint dataLen) →

H→C resFileRead(uchar fileHandle, uint dataRead, byte data[])

• This message reads the maximum dataLen bytes from the file starting at the present file

location. Error codes regarding the reading of data from a file are listed in Table 9.4.5.3.3-1.

Request parameter definitions:
fileHandle: uchar Handle of file to be read from.

dataLen: uint Maximum number of bytes to be read.

Response parameter definitions:
fileHandle: uchar Handle of file that was read from.

dataRead: uint Number of bytes that was read and is stored in data.

data: byte [] Data that was read.

Pre conditions Request:

1) File is opened.

Post conditions Request:

1) An error occurred; or

2) Minimum of dataLen or remaining bytes in file from last file location is read from file; and

3) File location has been incremented with dataRead;

4) Unless an error occurs, file location will be advanced by dataLen or be located at the end of

the file.

Table 9.4.5.3.3-1 – resFileReade error codes

Name Description

ErrFileHandleNotExist
See Table 9.4.5.5-1.

ErrFileSystemFailure

9.4.5.3.4 reqFileSeek message

C→H reqFileSeek(uchar fileHandle, int offset, uchar seekPos) →

H→C resFileSeek(uchar fileHandle, int remOffset)

• This message positions a pointer at a certain position within an opened file and returns parts

of the file content.

Request parameter definitions:

 Rec. ITU-T J.1012 (04/2020) 117

fileHandle: uchar Handle of file of which the file location is to be changed.

offset: int Offset from seek reference location as specified by seekPos that the file location shall
assume.

seekPos: uchar
See Table 9.4.5.3.4-1.

Table 9.4.5.3.4-1 – File Seek reference location

Name Value Description

FileSeekSet 0x00 File reference location is at the start of the file.

FileSeekCur 0x01 File reference location is at the present file location.

FileSeekEnd 0x02 File reference location is at the end of the file.

RFU Other Reserved for future use.

Response parameter definitions:
fileHandle: uchar Handle of file of which the file location was changed.

remOffset: int Difference between the offset specified and the offset to which the file location is set.

Detailed semantics:

• The file location is repositioned and is defined in the parameter description of the Request.

The file location will never be positioned beyond the end of the file or before the start of the

file. The difference between the requested offset and the actual offset from the file reference

location is returned in the remOffset result parameter. Error codes are listed in Table

9.4.5.3.4-2.

Pre conditions Request:

1) File is opened.

Post conditions Request:

1) An error occurred; or

2) The file location will be set as defined above; and

3) remOffset will reflect the difference between offset and actual file location is defined above.

Table 9.4.5.3.4-2 – resFileReade error codes

Name Description

ErrFileHandleNotExist
See Table 9.4.5.5-1.

ErrFileSystemFailure

9.4.5.3.5 reqFileRemoveData Message

C→H reqFileRemoveData(uchar fileHandle, bool sync, uint dataLen) →

H→C resFileRemoveData(uchar fileHandle)

• This message removes dataLen bytes from the file starting at the present file location.

Request parameter definitions:

118 Rec. ITU-T J.1012 (04/2020)

fileHandle: uchar Handle of file.

sync: bool If True, write Response ensures the state of the file system is up to date with this and
all preceding writes. If False, the ECI Host can buffer write Requests (which can still
be lost on a system failure).

dataLen: uint Number of bytes to be removed from the file. If this exceeds the end of the file only the
bytes until the end of the file are removed.

Response parameter definitions:
fileHandle: uchar Handle of file that was written to.

Pre conditions Request:

1) File opened in write mode (FileWriteOver mode).

Post conditions Request:

1) File state will be updated. The file location will remain the same.

2) In case of a successful removal and sync the data is committed in NV state in the ECI Host

file system.

Error codes are listed in Table 9.4.5.3.5-1.

Table 9.4.5.3.5-1 – resFileWrite error codes

Name Description

ErrFileHandleNotExist

See Table 9.4.5.5-1. ErrFileSystemFailure

ErrFileWriteNot

9.4.5.3.6 callFileDataLog message

C→H callFileDataLog(uchar fileHandle, uint dataLen, byte data[])

• This message appends dataLen bytes (in data) at the end of the file using a system buffer.

Call parameter definitions:

fileHandle: uchar Handle of file.

dataLen: uint Number of bytes to be appended to the logfile.

data[]: byte Data to be written.

Pre conditions call:

1) File opened in write mode (FileWriteOver or FileWriteAppend mode).

2) File location is set at the end of the file.

3) Amount of data to be written does not cause a file system quota problem.

Post conditions call:

1) File state is updated and the file location is advanced from present to present+dataLen, unless

an error occurs.

2) The result will be committed to the ECI Host file system unless a system failure occurs.

Detailed Semantics:

1) The ECI Host shall buffer the data and append it to the end of the file as soon as expedient.

2) The maximum buffer space provided for a log for this purpose is proposed in [b-ITU-T J

Suppl. 7].

 Rec. ITU-T J.1012 (04/2020) 119

Error codes are listed in Table 9.4.5.3.6-1.

Table 9.4.5.3.6-1 – resFileLog error codes

Name Description

ErrFileHandleNotExist

For definition, see Table 9.4.5.5-1.

ErrFileQuotaExceeded

ErrFileSystemFailure

ErrFileWriteNot

ErrFileLogNot

9.4.5.4 Directory services

9.4.5.4.1 General

The directory services offer functions to scan the available ECI Client files. Files are characterized

by their unique name, and have size and last modified time attributes. The available messages are

listed in Table 9.4.5.4.1-1.

NOTE – The time attribute has the same degree of integrity as the file system and file content itself.

Table 9.4.5.4.1-1 – File directory service messages

Message Type Dir. Tag Description

reqFileStat A C→H 0x07 Return size and modification time of file.

reqFileCreate A C→H 0x08 Create a new file.

reqFileDelete A C→H 0x09 Delete a file.

reqFileDir A C→H 0x0A Lists file names of files available in ECI Clients file system.

9.4.5.4.2 reqFileStat Message

C→H reqFileStat(fileName filename) →

H→C resFileStat(uint size; long mtime)

• This message allows the ECI Client to request the ECI Host to retrieve the file size and the

last modification time of a stored file.

Request parameter definitions:
filename: filename Name of the file for which the properties shall be retrieved.

Response parameter definitions:
size: uint Size of file (in bytes).

mtime: long Clock time of last synchronized file modification.

Pre condition Request:

1) Filename is an existing file in the file system.

Post conditions Request:
1) size and mtime reflect the properties of the file with name filename or an error occurred.

Error codes are listed in Table 9.4.5.4.2-1.

120 Rec. ITU-T J.1012 (04/2020)

Table 9.4.5.4.2-1 – resFileStat error codes

Name Description

ErrFileNameNotExist
See Table 9.4.5.5-1.

ErrFileSystemFailure

9.4.5.4.3 reqFileCreate Message

C→H reqFileCreate(fileName filename) →

H→C resFileCreate()

• This message allows the ECI Client to request the ECI Host to create a new empty file. Any

existing file with the same name is deleted.

Request parameter definitions:

filename: filename Name of the new empty file that shall be created.

Detailed semantics:

• The created file shall exist after a system failure unless the file system has been corrupted.

Post conditions Request:

1) Empty file with name filename exists in ECI Client file system with modification timestamp

set to the current time or when an error occurred.

Error codes are listed in Table 9.4.5.4.3-1.

Table 9.4.5.4.3-1 – resFileCreate error codes

Name Description

ErrFileQuotaExceeded
See Table 9.4.5.5-1.

ErrFileSystemFailure

9.4.5.4.4 reqFileDelete Message

C→H reqFileDelete(fileName filename) →

H→C resFileDelete()

• This Message deletes a file with name filename.

Request parameter definitions:
filename: fileName Name of the new empty file that shall be created.

Detailed semantics:

• The deleted file shall not exist after a system failure unless the file system has been corrupted.

Post conditions Request:

1) File with name filename does not exist in the file system.

Error codes are listed in Table 9.4.5.4.4-1.

Table 9.4.5.4.4-1 – resFileDelete error codes

Name Description

ErrFileNameNotExist
See Table 9.4.5.5-1.

ErrFileSystemFailure

 Rec. ITU-T J.1012 (04/2020) 121

9.4.5.4.5 reqFileDir message

C→H reqFileDir(ushort maxNr) →

H→C resFileDir(uint listLen; fileName dirList[])

• This message provides a list of filenames max. maxNr items. The list order is undefined.

Request parameter definitions:
maxNr: ushort Maximum number of filenames that will be retrieved.

Response parameter definitions:
listLen: uint Length of list in bytes.

dirList: filename [] Array of filenames of files available to the ECI Client.

Error codes are listed in Table 9.4.5.4.5-1.

Table 9.4.5.4.5-1 – resFileDelete error codes

Name Description

ErrFileSystemFailure See Table 9.4.4.7-1.

9.4.5.5 Error codes for the file system API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.4.5.5-1.

Table 9.4.5.5-1 – File System API error codes

Name Value Description

ErrFileSystemFailuret -256 Corrupt or dismounted file system.

ErrFileNameNotExist -257 File name does not exist in file system.

ErrFileQuotaExceeded -258 File system resources for ECI Client have been exceeded.

ErrFileNameNotExists -259 Filename does not exist in ECI Client's file system.

ErrFileHandleNotExists -260 File handle does not exist (might have been closed previously).

ErrFileAppendNot -261 Attempt to write to file was not at the end of the file.

RFU Other Reserved for future use.

9.4.6 API for access to the Time/Clock resource

9.4.6.1 Introduction

The ECI Client has access to timer events and the time of day through a simple API.

The robustness of the clock should be defined by a robustness regime suitable to fit all applications

in an ECI Ecosystem. .

• In case the ECI Ecosystem is required to support anti-rollback of the file storage system or

time dependent rights expressions in offline situations the clock should be robust so that

operations on local storage tagged with a time stamp derived from this clock are adequately

protected from manipulation.

The timer permits a message to be generated at some (delay) time in the future. The timer event can

be cancelled.

NOTE – Using a combination of clock and timer API, regularly occurring timer events can be created.

The Timer and Clock APIs are split into two parts:

1) Timer API.

2) Clock API.

122 Rec. ITU-T J.1012 (04/2020)

9.4.6.2 Timer API

9.4.6.2.1 General

The timer API permits an ECI Client to set a timer that will send a Response at the set time. If

required, the event can be cancelled by the ECI Client. The number of outstanding timers at one time

can be limited by implementation constraints. The minimum number of outstanding timers an ECI

Host shall support for each ECI Client is proposed in [b-ITU-T J Suppl. 7]. The messages for the

timer API are listed in Table 9.4.6.2.1-1.

Table 9.4.6.2.1-1 – Timer API messages

Message Type Dir. Tag Description

reqTimerEvent A C→H 0x0 Sets a timer event in the future.

reqTimerCancel A C→H 0x1 Cancels a previously set timer event.

9.4.6.2.2 reqTimerEvent message

C→H reqTimerEvent(uint timeInterval) →

H→C resTimerEvent()

• This message sets timer in the future and receives a Response when the timer expires.

Request parameter definitions:
timeInterval: uint Time in milliseconds in the future.

Post condition Request:

• After timeInterval milliseconds the resTimerEvent will be sent to the ECI Client unless

reqTimerCancel is received first.

Pre conditions Response:

• The timer expired and no reqTimerCancel for the timer was received.

Error codes are listed in Table 9.4.6.2.2-1.

Table 9.4.6.2.2-1 – resTimerEvent Error Codes

Name Description

ErrTimerMaxExceeded See Table 9.4.6.4-1.

9.4.6.2.3 reqTimerCancel message

C→H reqTimerCancel(msgId id) →

H→C resTimerCancel()

• This message cancels previously set timer per message identifier of the original Request.

Request parameter definitions:
id: msgId Cancel the timer which was set with an asynchronous message with message id.

Pre conditions Request:

1) Id was returned as a result of a reqTimerEvent and timer did not yet expire.

Post conditions Response:

2) Timer is cancelled - no resTimerCancel will be sent - or an error is returned.

 Rec. ITU-T J.1012 (04/2020) 123

3) TimerExpired errors will occur if the timer was cancelled but resTimerEvent was received

before the resTimerCancel.

9.4.6.3 Clock API

9.4.6.3.1 General

The Clock API permits the ECI Client to read the clock as an integer and to convert that to the local

time representation. The Clock API messages are listed in Table 9.4.6.3.1-1.

Table 9.4.6.3.1-1 – Clock API messages

Message Type Dir. Tag Description

getTime S C→H 0x3 Reads the local system clock as integer value.

callLocaltime S C→H 0x4 Converts time integer value into localtime.

9.4.6.3.2 getTime message

C→H long getTime()

• This message returns the time in seconds from January 1, 1970, 0:00 GMT.

9.1.1.1.1 callLocaltime message

C→H callLocaltime(long time; tm *tim)

• This message converts time into human representation and is defined in the structure tim.

Analogous to c-library function localtime from <time.h>.

Call parameter definitions:
time: long Time as integer representation of seconds from January 1, 1970, 0:00 GMT to be converted to a local time.

tim: tm *
Pointer to tm structure that will be set to the local time. tm is defined in Table 9.4.6.3.3-1.

Table 9.4.6.3.3-1: Type definition for human time representation structure tm

typedef struct tm {

 int tm_sec; // 0 .. 59 (seconds) or 60 in case of a leap second

 int tm_min; // 0 .. 59 (minutes)

 int tm_hour // 0 .. 23 (hours)

 int tm_mday; // 1 .. 31 (day of month)

 int tm_mon; // 1 .. 12 (month)

 int tm_year; // year - 1900

 int tm_wday; // 0 .. 6 (day of week; 0=Sunday)

 int tm_yday; // 0 .. 365 (day of year, 0= 1jan)

 int tm_isdst; // 1=daylight saving in effect, 0=no daylight saving

 char tm_zone[15]; // string for time zone: e.g., GMT, CET

 int tm_gmtoff; // local timeoffset from GMT

} tm ;

9.4.6.4 Error codes for the Time and Clock API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.4.6.4-1.

124 Rec. ITU-T J.1012 (04/2020)

Table 9.4.6.4-1 – Time and Clock API error codes

Name Value Description

ErrTimerMaxExceeded 256 maximum timer duration exceeded.

RFU other Reserved for Future Use.

9.4.7 API for access to the power management

9.4.7.1 Introduction

The ECI Client has access to the power management interface of the ECI Host. This interface

permits the ECI Client to do either a simple power down or a negotiated power down on a system

standby event and permits the ECI Client to restart CPE and the ECI Client at a later time from a

standby power state in order to perform background functions. The ECI Host has the following power

states:

• PwrOn: the ECI Host is functional and not intending to power down.

• PwrToStby: the ECI Host intends to go to standby state (but can return to PowerOn state).

All ECI Clients are typically requested to power down.

• Standby: ECI Host and ECI Client state are non-functional. The CPE (and thus the ECI

Host and ECI Client) can wake up from this state on pre-arranged events (typically a timer).

• Power-off: the CPE has no power. ECI Host and ECI Client are not in a functional state.

ECI Clients can act in a simple power management mode and simply be shut down as and when the

ECI Host finds it appropriate to do so. Alternatively ECI Clients can request to be in managed mode

by sending a reqPwrInfo(PwrInfoOn) message. In this mode they will be notified of the ECI Hosts

intention to go to power down using the reqPwrChange message, which the ECI Client can

acknowledge with resPwrChange(PwrDown) or postpone with an appropriate parameter to

resPwrChange(PwrUp) until such time it has completed and it is ready to go to standby state. The

ECI Host shall regularly re-iterate the reqPwrChange message.

NOTE – No full guarantee can be provided that the ECI Client can always complete all activities (e.g., in the

case of an uncontrolled power failure or prolonged deference of readiness to go to standby).

Figure 9.4.7.1-1 presents the ECI Host state with conditions for state transitions and

actions/messages that are triggered on the transition to ECI Clients that are in managed mode.

 Rec. ITU-T J.1012 (04/2020) 125

Figure 9.4.7.1-1 – ECI Host power states and main interaction with a managed Client

ECI Clients and ECI Hosts shall be able to manage recovery from an uncontrolled power down

event. In such cases it is permitted that regular ECI Client and ECI Host functionality is impeded in

a non-permanent manner trying to minimize the problems that may occur to the User.

CPEs can have options to wake up from low-power state on network event features or other low-

power modes. ECI does not define any specific behaviour for such power-modes and their interaction

with the ECI Host or ECI Clients other than that ECI Host and ECI Client services shall continue

to be functional if the ECI Host is in PwrOn or PwrToStdby state. In particular, there is no state

specific to suspended execution.

ECI Clients shall be able to request the ECI Host to wake up from standby state at some time in the

future and send a message to the ECI Client.

The Power Management API is split in the following groups of messages:

1) Power Transitions: managing orderly shutdown of ECI Clients. Details are defined in

clause 9.4.7.2.

2) Timed power-wakeup functions on behalf of ECI Clients. Details are defined in

clause 9.4.7.3.

9.4.7.2 Power transition API messages definition

9.4.7.2.1 General

This clause concerning the Power Management API, defines the functionality permitting ECI Clients

to do an informed shutdown on an announced power down event in the ECI Host so as to provide an

optimal service to the User. The defined messages are listed in Table 9.4.7.2.1-1.

Table 9.4.7.2.1-1– Power transition messages

Message Type Dir. Tag Description

getPwrStatus S C→H 0x0 Gets current value power status.

setPwrInfo S C→H 0x1 Requests event notices for changes in power status.

reqPwrChange A H→C 0x2 Notice of power status change.

126 Rec. ITU-T J.1012 (04/2020)

ECI Clients shall not terminate after sending a resPwrInfo(PwrDown) but be ready to resume

regular functions on receiving a reqPwrChange(PwrOn) message.

9.4.7.2.2 getPwrStatus message

C→H uchar getPwrStatus()

• This message returns the current power status of the ECI Host.

Property definition: See Table 9.4.7.2.2-1.

Table 9.4.7.2.2-1 – Host power status values

Name Value Description

PwrOn 0x00 Default IP address of ECI Host.

PwrToStdby 0x01 ECI Host IP address used for WAN (internet) communication.

RFU other Reserved for future use.

9.4.7.2.3 setPwrInfo message

C→H setPwrInfo(bool pwrInfo)

• This message permits to enter and leave managed powerdown mode and control the ECI

Host sending the ECI Client resPwrChange messages on power state change events.

Property definition:

• pwrInfo equal true is managed power mode; pwrInfo equal false is unmanaged power

mode.

Semantical description:

• When pwrInfo is True, the ECI Host will inform the ECI Client of power state changes

and will not power down the ECI Client until the ECI Client confirms a

reqPwrChange(PwrToStby).

When on pwrInfo is False the ECI Host will not inform the ECI Client of power state

changes and will power down the ECI Client "at will".

• After start-up the state of PowerInfo for each ECI Client is False.

NOTE – ECI Clients that rely on a managed power down are suggested not to commence with power-down

cycle sensitive activities until they have sent the ECI Host the reqPwrInfo(True) message.

9.4.7.2.4 reqPwrChange message

H → C reqPwrChange(uchar hostPwrState) →

C→H resPowerChange(bool ready)

• This message signals a change of power-state and if the argument is PwrToStdby Requests,

the ECI Client can either acknowledge and go to standby in a controlled manner, or decline

in case it is currently performing important software tasks.

Request parameter definitions:
hostPwrState: uchar New ECI Host power state. The possible values are defined in Table 9.4.7.2.2-1.

Response parameter definitions:
ready: bool Indicates preparedness of ECI Client to enter standby state.

Semantical description

 Rec. ITU-T J.1012 (04/2020) 127

• The ECI Host shall retransmit this message in case the ECI Client Response is negative

(not ready). Figures for the minimum repetition rate and a timeout are proposed in [b-ITU-T

J Suppl. 7].

Pre conditions Request:

1) PwrInfo == True.

2) There was a (recent) power state change in the ECI Host and the ECI Client has not (yet)

acknowledged readiness to go to standby state.

Post conditions Response:

1) ECI Client ready to go to standby state if ready == True, not so if ready == False.

Error codes are defined in Table 9.4.7.2.4-1.

Table 9.4.7.2.4-1 – ansPwrChange error codes

Name Description

ErrPwrInfoNot See Table 9.4.7.4-1.

NOTE – ECI Hosts take the ErrPwrInfoNot error for information only.

9.4.7.3 Wakeup from Standby messages definition

9.4.7.3.1 General

This clause concerning Power Management API defines the functionality permitting ECI Clients to

resume execution on a pre-programmed time, waking up the CPE from Standby power state if

required. The defined messages are listed in Table 9.4.7.3-1.

Table 9.4.7.3-1 – Wakeup from standby messages

Message Type Dir. Tag Description

setPwrWakeup set C→H 0x3 Sets wakeup time for ECI Client.

reqPwrWakeupEvent A H→C 0x4 Signals wakeup timer expiration.

9.4.7.3.2 setPwrWakeup message

C→H setPwrWakeup(uint time)

• This message sets a timer: After time the ECI Host shall wakeup ECI Client from standby

if needed and send a reqPwrWakeupEvent().

Property definition:
time: uint Time in seconds until the ECI Host shall generate a wakeup event for the ECI Client. Value 0

means no wakeup event is required by the ECI Client.

Detailed semantics:

• In case an ECI Host is not impeded it shall wake up from standby and start an ECI Client

immediately. In case it is impeded send the wakeup event at the soonest possible occasion

thereafter. Time accuracy requirements are proposed in [b-ITU-T J Suppl. 7].

9.4.7.3.3 reqPwrWakeupEvent message

H→C reqPwrWakeupEvent() →

C→H resWakeupEvent()

128 Rec. ITU-T J.1012 (04/2020)

• This message notifies ECI Client of its wakeup timer expiration with this message.

The ECI Client shall acknowledge this Request with a Response when critical processing

of wakeup event has been completed.

Detailed semantics:

• The ECI Host shall attempt to resend this message at successive ECI Client initialization

events until it is acknowledged by the ECI Client with a resPwrWakeupEvent() message.

The event is sent during PwrOn power state but delayed during PwrToStdby.

Pre conditions Request:

1) Power wakeup timer for ECI Client was previously set and has expired.

2) The event was not yet acknowledged with a Response.

3) ECI Host is in PwrOn power state.

Post conditions Response:

4) ECI Host shall stop sending reqPwrWakeupEvent() messages based on the power change

event of the matching Request; refer Pre condition 2).

9.4.7.4 Error codes for the power transitions API

The values of the API specific errors that can be returned by the Response messages for this API are

listed below in Table 9.4.7.4-1.

Table 9.4.7.4-1 – Error codes for Power Transitions API

Name Value Description

ErrPwrInfoNot -256 ECI Client indicates that it did not request to be informed about
power state change events.

9.4.8 API for access to the country/language setting resource

9.4.8.1 Introduction

The API for country and language settings permits an ECI Client or an ECI Host to request the

actual country and language settings of the User from the ECI Host or an ECI Client respectively.

The messages for the country/language setting API are listed in Table 9.4.8.1-1.

Table 9.4.8.1-1 – Country/Language setting API messages

Message Type Dir. Tag Description

reqHCountry A C→H 0x0 Requests the actual ECI Host preferred country setting.

reqCCountry A H→C 0x1 Requests the actual ECI Client preferred country setting.

reqHLanguage A C→H 0x2 Requests the actual ECI Host preferred language setting.

reqCLanguage A H→C 0x3 Requests the actual ECI Client preferred language setting.

9.4.8.2 Country/Language API message definitions

9.4.8.2.1 reqHCountry setting message

C→H reqHCountry() →

H→C resHCountry setting (uint iso_3166_country_code)

• This message allows the ECI Client to request the actual setting of the country where the

User currently resides and receives a Response of the stored country setting from the ECI

Host.

 Rec. ITU-T J.1012 (04/2020) 129

Response parameter definitions:
iso_3166_country_code: uint This field contains the current ECI Host country setting. The country code is a 24-bit

field that identifies the Host country using 3 uppercase characters as specified by
ISO 3166-1 alpha 3 [ISO 3166-1]. Each character is coded as 8-bits according to
[ISO/IEC 8859-1].

Error codes are listed in Table 9.4.8.2.1-1.

Table 9.4.8.2.1-1 – reqHCountry error codes

Name Description

ErrCountryNotExists See Table 9.4.8.2.5-1.

9.4.8.2.2 reqCCountry setting message

H→C reqCCountry() →

C→H resCCountry setting (uint iso_3166_country_code)

• This message allows the ECI Host to request the actual setting of the country where the User

currently resides and receives a Response of the stored country setting from the ECI Client.

Response parameter definitions:
iso_3166_country_code: uint This field contains the current ECI Host country setting. The country code is a 24-bit

field that identifies the Host country using 3 uppercase characters as specified by
ISO 3166-1 alpha 3 [ISO 3166-1]. Each character is coded as 8-bits according to
[ISO/IEC 8859-1].

Error codes are listed in Table 9.4.8.2.2-1.

Table 9.4.8.2.2-1 – reqCCountry error codes

Name Description

ErrCountryNotExists See Table 9.4.8.2.5-1.

9.4.8.2.3 reqHLanguage setting message

H→C reqHLanguage(uint iso_3166_language_code) →

C→H resHLanguage setting()

• This message allows the ECI Client to request the actual setting of the language the User

currently prefers and receives a Response of the stored language setting from the ECI Host.

Response parameter definitions:
iso_3166_language_code: uint This field contains the current ECI Host language preference setting. This is a 24-bit

field that identifies the language using 3 lowercase characters as specified by
[ISO 639-2]. Both ISO 639-2/B and ISO 639-2/T can be used. Each character is
coded into 8-bits according to [ISO/IEC 8859-1].

Error codes are listed in Table 9.4.8.2.3-1.

Table 9.4.8.2.3-1 – reqHLanguage error codes

Name Description

ErrLanguageNotExists See Table 9.4.8.2.5-1.

130 Rec. ITU-T J.1012 (04/2020)

9.4.8.2.3.4 reqCLanguage setting message

H→C reqCLanguage(uint iso_3166_language_code) →

C→H resCLanguage setting()

• This message allows the ECI Host to request the actual setting of the language the User

currently prefers and receives a Response of the stored language setting from the ECI Client.

Response parameter definitions:
iso_3166_language_code: uint This field contains the current ECI Host language preference setting. This is a 24-bit

field that identifies the language using 3 lowercase characters as specified by [ISO
639-2]. Both ISO 639-2/B and ISO 639-2/T may be used. Each character is coded
into 8-bits according to [ISO/IEC 8859-1].

Error codes are listed in Table 9.4.8.2.4-1.

Table 9.4.8.2.4-1 – reqCLanguage error codes

Name Description

ErrLangageNotExists See Table 9.4.8.2.5-1.

9.4.8.2.3.5 Error codes for the country/language setting API

The values of the API specific errors that can be returned by the Response messages for this API are

listed below in Table 9.4.8.2.5-1.

Table 9.4.8.2.5-1 – Error codes for country/language setting API

Name Value Description

ErrCountryNotExists -256 ECI Host indicates that the User did not yet declare the country where he
is currently residing.

ErrLangageNotExists -257 ECI Host indicates that the User did not yet declare his preferred language
for any User Interface communication.

 Rec. ITU-T J.1012 (04/2020) 131

9.5 APIs for ECI specific ECI Host resources

9.5.1 List of APIs for ECI specific ECI Host resources

Figure 9.5.1-1 – Block diagram of the APIs defined in clause 9.5

Table 9.5.1-1 lists the APIs covered in clause 9.8 and Table 9.5.1-1 illustrates the location of the APIs

defined in clause 9.5 with the ECI architecture.

Table 9.5.1-1 – List of APIs defined in clause 9.5

Clause API name Description

9.5.2 Advanced Security API
Allowing the ECI Client to access the Advanced Security
functionalities of the ECI Host.

9.5.3 Smart Card API Allowing the ECI Client to access an (optional) Smart Card reader.

9.5.4 Data Carousel Acquisition API
Allowing the ECI Client to acquire a data carousel according to the
DVB Standard.

9.5.2 Advanced Security API

9.5.2.1 Introduction

When loading an ECI Client the ECI Host allocates an appropriate Advanced Security slot (an ECI

Client type or a Micro Server type). This slot will be available during the lifecycle of that ECI

Client. The ECI Host shall initialize the slot by loading the Platform Operation Certificate Chain

containing the Platform Operation Public Key. This binds any meaningful further exchanges with

the AS slot to the holder of the Platform Operation Secret Key.

The Advanced Security API allows an ECI Client to interact with the Advanced Security function in

the CPE. There are several types of exchanges between the ECI Client and the AS function, which

are typically initiated by the ECI Client. The ECI Client receives a signal on completion of longer

AS operations.

The AS slot supports multiple sessions, permitting the reuse of the stored information (state and

configuration) in the AS slot for multiple media decryption and Re-encryption Sessions. The AS

132 Rec. ITU-T J.1012 (04/2020)

slot stores one intermediate key called the top level "link key" (LK1) per session. New control words

for sessions can be computed quickly on the basis of their LK1.

The AS slot can also compute a secret "Authentication Key" that can be used for ECI Client

application purposes, permitting highly secure delivery of secret information to the ECI Client.

The AS slot has a configuration which is initialized by the ECI Client and which defines its mode of

operation. The AS slot permits the client to authenticate its configuration. There are two essential

authentication modes:

1) Key Ladder mode. Authentication as part of the control word computation: the

configuration of the slot was used in the computation to generate the control word that

encrypted the content and the same information is required to compute the correct control

word for decrypting the content, implicitly authenticating the configuration.

2) Authentication Key mode. Authentication is performed by an explicit validation function

using verification data that can only be generated by the provisioner of the ECI Client. This

function is practically required for an AS slots configured for re-encryption as this cannot be

based on correct decryption as a verification means.

In addition to the above modes, the ECI Client can require that a renewed verification is performed

on each slot initialization by requiring "online authentication". Alternatively an "offline

authentication" may be performed. For a successful authentication the selected authentication mode

has to match with the data used to generate the authentication provided by the provisioner.

The overall AS API is split into separate APIs that permit the reflection of the capabilities of the ECI

Hosts and ECI Client using it:

1) AS General API: this API defines generic AS functionality. All ECI Hosts and ECI Clients

shall support it.

2) AS Decryption API: this API defines decryption specific AS functionality. All ECI Hosts

and ECI Clients capable of decryption shall support it.

3) AS Export API: this API defines export specific AS functionality. All ECI Hosts and ECI

Clients capable of supporting decryption and export shall support it. ECI Hosts supporting

export shall also support encryption.

4) AS Encryption API: this API defines encryption specific AS functionality. All ECI Hosts

and ECI Clients capable of encryption shall support it.

The following constraint shall apply:

• An ECI Client shall support either a decryption or encryption, and not require support for

both at the same time.

The ECI Host and ECI Client shall use the ECI Host interface discovery resource to provide each

other with information regarding each other's capabilities. The ECI Host shall allocate the

appropriate slot in accordance with the discovery result: an encryption slot for ECI Clients requiring

encryption and a decryption AS slot for ECI Clients requiring decryption.

NOTE – Functions that provide complementary functionality may exist in different APIs: the AS General API

and a more specific AS API.

Messages in the AS General API only require support by the ECI Host as far as this is necessary to

reflect the ECI Host capabilities (decryption, export and encryption support).

The messages of the AS APIs are defined in terms of the AS functions defined in clauses 8.2.4 and

9.9 of [ITU-T J.1014]. Clause 8.2.4.1 of [ITU-T J.1014] provides the AS function overview. The first

parameter, the slotId parameter, is omitted from the definitions in [ITU-T J.1014]: this is supplied by

the ECI Host.

 Rec. ITU-T J.1012 (04/2020) 133

Many of the type definitions and value definitions for parameters as used in this API definition are

defined in [ITU-T J.1014]. The error codes for this API are defined in [ITU-T J.1014], and are not

specifically listed in this Recommendation on a message by message basis. The error codes for

parameter values correspond to the parameter sequence counting as defined by the referred functions

in [ITU-T J.1014], which typically have one additional parameter (slotId).

9.5.2.2 Advanced Security General API message definitions

9.5.2.2.1 General

The Advanced Security General API provides the messages as listed in Table 9.5.2.2.1-1.

Table 9.5.2.2.1-1 – Advanced Security General messages

Message Type Dir. Tag Description

reqAsInitSlot A C→H 0x0 Initializes the AS slot.

callAsNextKeySession S C→H 0x1 Change to next random key for a session.

reqAsStopSession A C→H 0x2 Stop a session.

reqAsLoadSlotLk A C→H 0x3 Compute top level link key (LK1).

reqAsComputeAkClient A C→H 0x4 Compute Authentication Key for ECI Client applications.

reqAsClientChalResp A C→H 0x5 Apply ECI Client Authentication Key on data and return
result.

getAsSlotRk S C→H 0x6 Get random key value for the AS slot.

getAsSessionRk S C→H 0x7 Get random key value for a session.

getAsSessionLimitCounter S C→H 0x8 Get current limit counter value for the session.

setAsSessionLimitEvent S C→H 0x9 Set limit value for sending a reqAsEventSessionLimit
message to the ECI Client.

reqAsEventSessionLimit A H→C 0xA On reaching a limit value for remaining units send event
to ECI Client.

getAsClientRnd S C→H 0xB Get a new random number for ECI Client applications.

getAsSC S C→H 0xC Get current Scrambling Control field status of content in a
session.

reqAsEventSC A H→C 0xD Event message on change of scrambling control field in
session.

getChipsetId S C→H 0xE Get the ChipsetID value of the Key Ladder block

getImageTargetId S C→H 0xF Get the ECI_Image_Target_Id value of the CPE

9.5.2.2.2 reqAsInitSlot message

C→H reqAsInitSlot(uint slotVersion, uint slotMode →

H→C resAsInitSlot()

• This message initializes the slot with various general parameters.

Request Parameter definitions:
slotVersion: uint Version of the slot functionality as defined in [ITU-T J.1014].

slotMode: uint Main Mode for the slot to operate in; see [ITU-T J.1014].

Semantical description:

• This message is equivalent to the AS function reqAsInitSlot as defined in [ITU-T J.1014];

with the ECI Host providing the value of the slotId and POPKchain parameters.

9.5.2.2.3 callAsNextKeySession Message

C→H callAsNextKeySession(uint sessionId)

• This message causes a change to the next random key for a session.

134 Rec. ITU-T J.1012 (04/2020)

Request Parameter definitions:
sessionId: uint Session for which a change to the next random key is announced.

Semantical description:

• This message is equivalent to the AS message callAsNextKeySession as defined in [ITU-T

J.1014]; with the ECI Host providing the value of the slotId parameter.

9.5.2.2.4 reqAsStopSession Message

C→H reqAsStopSession(uint sessionId) →

H→C resAsStopSession()

• This message stops an AS slot session.

Request Parameter definitions:
sessionId: uint Id of Session to stop.

Semantical description:
• This message is equivalent to the AS function reqAsStopSession as defined in [ITU-T J.1014]; with the ECI

Host providing the value of the slotId parameter.

9.5.2.2.5 reqAsLoadSlotLk message

C→H reqAsLoadSlotLk(uint sessId, InputV inputV, ulong spkUri, uchar spkIndx) →

H→C resAsLoadSlotLk()

• This message computes the top level link key LK1 that can be used subsequently to compute

control words.

Request parameter definitions:
sessId: uint Id of session to be initialized.

inputV: InputV Message containing Chip Set public key encrypted and Sender Secret Key signature protected
link key LK1.

spkUri: ulong Usage rules for the SPK vector that is used subsequently to compute a control word, see [ITU-
T J.1014].

spkIndx: uchar Index defining the location of the AS slot's SPK in the SPK vector that is used subsequently
to compute a control word, see clause 7 of [ITU-T J.1014].

Semantical description:

• This message is equivalent to the AS slot function reqAsLoadLk1 as defined in [ITU-T

J.1014]; with the ECI Host providing the value of the slotId parameter.

• The ECI Host shall also issue a reqAsDecoupleDecryptSession function [ITU-T J.1014] if

an AS slot decryption session is stopped that was previously coupled to another AS slot

decryption session (see clause 9.5.2.3.1).

9.5.2.2.6 reqAsComputeAkClient message

C→H reqAsComputeAkClient(InputV inputV, uint nSpk uchar spkIndx, PubKey spk[16],

PubKey popk[16], SessionConfig akCnf[16], ulong spkUri; uchar XT[32], bool online) →

H→C resAsComputeAkClient ()

• This message computes an authentication key for use of the ECI Client.

 Rec. ITU-T J.1012 (04/2020) 135

Request Parameter definitions:
inputV: InputV Message containing Chip Set public key encrypted and Sender Secret Key signature

protected r value used to compute AK.

nSpk: uint Number of values in SPK vector, see [ITU-T J.1014].

spkIndx: uchar Index defining the location of the AS slot's SPK in the SPK vector, the AS slot's POPK
value in the POPK vector and the AS slot's slotConfig in the clCnf vector that is used to
compute the Client Authentication Key, see [ITU-T J.1014].

spk[16]: PubKey Sender Public Key vector used to compute the Client Authentication Key; see [ITU-T
J.1014].

popk[16]: PubKey Platform Operator Public Key vector used to compute the Client Authentication Key; see
[ITU-T J.1014].

akCnf[16]: SessionConfig Client session configuration vector used to compute the Client Authentication Key; see
[ITU-T J.1014].

spkUri: ulong Usage rules for the SPK vector that is used subsequently to compute a control word, see
[ITU-T J.1014].

XT[32]: uchar Value of extension field used to compute the Client Authentication Key; see
[ITU-T J.1014]. Default value is { 0x00 }.

online: bool If true the slot random key is used for the Authentication Key computation forcing a fresh
Authentication Key computation by the provisioner.

Semantical description:

• This message is equivalent to the AS function reqAsComputeAkClient as defined in [ITU-T

J.1014]; with the ECI Host providing the value of the slotId parameter.

9.5.2.2.7 reqAsClientChalResp Message

C→H reqAsClientChalResp(uchar challenge[16]);→

H→C reqAsClientChalResp(uchar response[16])

• This message uses the Client Authentication Key, as computed by the

reqAsComputeAkClient message (defined in [ITU-T J.1014]), to decrypt a 128-bit challenge

parameter input to produce a 128-bit response parameter output.

Request Parameter definitions:
challenge[16]: uchar 128-bit input to be decrypted by the Client Authentication Key.

Response Parameter definitions:
response[16]: uchar 128-bit decrypted output.

Semantical description:

• This message is equivalent to the AS function reqAsClientChalResp as defined in [ITU-T

J.1014]; with the ECI Host providing the value of the slotId parameter and the Response

message carrying the "response" parameter result.

9.5.2.2.8 getAsSlotRk message

C→H SymKey getAsSlotRk()

• This message reads the random key for the ECI Client's AS slot session.

Semantical description:

• This message is equivalent to the AS function getAsSlotRk defined in [ITU-T J.1014] with

the ECI Host providing the value of the slotId parameter.

9.5.2.2.9 getAsSessionRk message

C→H SymKey getAsSessionRk(uint sessionId, uint rkIndx)

136 Rec. ITU-T J.1012 (04/2020)

• This message reads the current (rkIndx==0) or next (rkIndx==1) random key for the ECI

Client's session with the identifier sessionId.

Request Parameter definitions:
sessionId: uint Id of the session for which to retrieve the random session key.

rkIndx: uint Identified whether the current (rkIndx==0) or the next (rkIndx==1) random session key is
to be retrieved.

Semantical description:

• This message is equivalent to the AS message getAsSessionRk defined in [ITU-T J.1014]

with the ECI Host providing the value of the slotId parameter.

9.5.2.2.10 getAsSessionLimitCounter message

C→H ulong getAsSessionLimitCounter(uint sessionId)

• This message returns the limit counter value of the ECI Client's sessionId.

Semantical description:

• This function is equivalent to the AS function getAsSessionLimitCounter defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId parameter.

Request Parameter definitions:
sessionId: uint Id of the session for which to retrieve session limit counter.

9.5.2.2.11 setAsSessionLimitEvent message

C→H ulong setAsSessionLimitEvent (uint sessionId, ulong eventLimit)

• This message sets the limit value eventLimit for the limitCounter of the ECI Client's session

with the identifier sessionId for a reqAsEventSessionLimit message to be returned to the ECI

Client.

Request parameter definitions:
sessionId: uint Id of the session for which to set the session eventLimit.

eventLimit: ulong Value of the event limit to be set.

Semantical description:

• This function is equivalent to the AS function setAsSessionLimitEvent defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId parameter.

9.5.2.2.12 reqAsEventSessionLimit message

H→C reqAsEventSessionLimit (uint sessionId)

C→H resAsEventSessionLimit ()

• This message returns the limit counter value of the ECI Client's sessionId.

Response parameter definitions:
sessionId: uint Id of the session that generated an eventLimit event.

Semantical description:

• This function is equivalent to the AS function reqAsEventSessionLimit defined in [ITU-T

J.1014] with the ECI Host removing the slotId parameter.

 Rec. ITU-T J.1012 (04/2020) 137

9.5.2.2.13 getAsClientRnd message

C→H SymKey getAsClientRnd()

• This message returns a 128-bit random number.

Semantical description:

• This function is equivalent to the AS message getAsClientRnd defined in [ITU-T J.1014].

9.5.2.2.14 getAsSC message

C→H uint getAsSC(uint sessionId)

• This message returns the current Scrambling Control field status of content in a session.

Request parameter definitions:
sessionId: uint Id of the session for which to retrieve the current scrambling control field.

Semantical description:

• This function is equivalent to the AS function getAsSC as defined in [ITU-T J.1014] with

the ECI Host providing the value of the slotId parameter.

9.5.2.2.15 reqAsEventSC message

H→C reqAsEventSC(uint sessionId; uint scramblingControlField)

C→H resAsEventSC()

• This message indicates a change in the scrambling control field in the session with the

identifier sessionId.

Response parameter definitions:
sessionId: uint Id of the session in which a scrambling status field change occurred.

scramblingControlField:
uint

New value for the scrambling status field. See clause 9.9 of [ITU-T J.1014] for the
definition of the values and their semantics.

Semantical description:

• This message is equivalent to the AS function reqAsEventSC defined in [ITU-T J.1014] with

the ECI Host removing the value of the slotId parameter.

9.5.2.2.16 getChipsetId message

C→H ulong getChipsetId()

• This message returns the ChipsetID value of the Key Ladder block as defined in [ITU-T

J.1014]

9.5.2.2.17 getImageTargetId message

C→H ECI_Image_Target_Id getImageTargetId()

• This message returns the ECI_Image_Target_Id value of the CPE as defined in Table

6.2.2.2-1.

9.5.2.3 Advanced Security Decryption API message definitions

9.5.2.3.1 General

The Advanced Security Decryption API provides the messages as listed in Table 9.5.2.3.1-1.

Two decryption sessions can be coupled permitting different control words to be used to decrypt two

streams of content that are to be treated as a single content item after decryption.

138 Rec. ITU-T J.1012 (04/2020)

EXAMPLE: A sports channel may be broadcast with multiple sound channels, the sound channel for a specific

language only being made available if a specific subscription is available for decrypting it. Only one

session can be coupled to another session.

Table 9.5.2.3.1-1 – Advanced Security Decryption messages

Message Type Dir. Tag Description

reqAsAStartDecryptSession A H→C 0x0 Start a decryption session in the ECI Client's AS slot.

reqAsComputeDecrCw A H→C 0x1 Compute a decryption control word.

reqAsAuthDecrSlotConfig A H→C 0x2 Authenticate the slot configuration with authentication
mechanisms (decryption mode).

9.5.2.3.2 reqAsStartDecryptSession message

C→H reqAsAStartDecryptSession(ushort mh, PubKey spk, SessionConfig config,

ScrambleMode sm) →

H→C resAsAStartDecryptSession(uint sessionId)

• This message starts a decryption session in the ECI Client's AS slot.

Request parameter definitions:
mh: ushort Media Handle for which content is decrypted (to be used by ECI Host to associate the

content to be decrypted to the decryption resource allocated to this session).

spk: PubKey Sender Public Key for this session.

config: SessionConfig Session configuration.

sm: ScrambleMode Mode of descrambling to use. For definition see Table 9.5.2.3.2-1. See note.

NOTE – The information in the sm parameter should not contradict the cwUri parameter of a subsequent
reqAsComputeDecrCw message.

Table 9.5.2.3.2-1 – ScrambleMode definition

typedef ScrambleMode {

 uchar modeRef;

 uchar mode[16] ;

} ScrambleMode;

The definition of modeRef is given in Table 9.5.2.3.2-2.

 Rec. ITU-T J.1012 (04/2020) 139

Table 9.5.2.3.2-2 – modeRef definition

Name Value Description

ScrambleModeHost 0x01 Host shall select (de)scramble mode based on standardized or proprietary
information.

ScrambleModeDvb 0x02 DVB definition for scrambling mode is used. Byte 0 of the mode field
contains a value with the same meaning as defined in the
scrambling_mode field of the Scrambling_descriptor as defined in [IEC
62766-5-2]. Byte 1 has the following meaning for byte 0 values 0x02, 0x03
or 0x10 (i.e., DVB CSA1/2, DVB CSA3 mode for descrambling and DVB-
CISSA version 1 mode):
Value==0x01: TS-mode (de)scrambling.
Value==0x02: PES-mode (de)scrambling.
All other values are reserved; all unused bytes of the mode field are
reserved. See Note 1.

ScrambleModeCencEnum 0x03 The scrambling mode is defined in [ITU-T T.871] or Byte 0 of the mode
field is defined as:
Value==0x01: CENC CTR mode.
Value==0x02: CENC CBC mode.
Other values for byte 0 are reserved.
For the above defined values of byte 0 byte 1 indicated the subscheme:
Value==0x01: host defined, for encryption selected from one of the values
defined below.
Value==0x02: full segment encryption as defined in [W3C GIF V89a].
Value==0x03: subsample encryption as defined in [W3C PNG].
Other values for byte 1 are reserved.
For other values of byte 0 byte 1 is reserved.
Bytes 2-15 are reserved.
See Note 2.

RFU Other Reserved for future use.

NOTE 1 – The ECI Host shall at least support DVB CSA1/2, DVB CSA3 mode for descrambling and DVB-CISSA version
1 mode for scrambling and descrambling.

NOTE 2 – The ECI Client or (if so permitted) the ECI Host can select a scrambling mode for encryption that suitably fits
the application; specifically taking into account streaming type applications that typically use CBC full segment
encryption and storage applications that typically use CTR mode, and may benefit from subsample encryption.

Response parameter definitions:
sessionId: uint Id of the session that was created.

Semantical description:

• This message is equivalent to [ITU-T J.1014] AS function reqAsAStartDecryptSession; with

the ECI Host providing the value of the slotId parameter, and the sessionId result returned

in the Response message.

The ECI Host shall also issue a reqAsCoupleDecryptSession function [ITU-T J.1014] when a second

AS slot decryption session is started for the same Media Handle so as to couple these AS slot

decryption sessions, coupling the second session to the first session.

9.5.2.3.2 reqAsComputeDecrCw Message

C→H reqAsComputeDecrCw(int sessionId, ulong cwUri, uint nSpk, uint nElk, SymKey

elk[24], PubKey spk[16], PubKey popk[16], SessionConfig config[16], uchar XT[32], uint

rkIndx, Field2 field2, uint cwIndx) →

H→C resAsComputeDecrCw ()

• This message computes a decryption control word.

140 Rec. ITU-T J.1012 (04/2020)

Request parameter definitions:
sessionId: int Id of the session for which to compute a control word.

cwUri: ulong cwUri defines the applications of the control word. cwUri values are defined in clause 7.5
of [ITU-T J.1014].

nSpk: uint Number of SPK values in the SPK vector.

nElk: uint Number of Elk values in the ELK vector.

elk[24]: SymKey Vector of symmetrically encrypted key values to be successively decrypted by the key
ladder mechanism. Value elk[nElk-2] is the field1 input to the content property
authentication as defined in clause 8.2.3 of [ITU-T J.1014] using the function as defined
in clause 8.2.4.7 of [ITU-T J.1014]..

spk[16]: PubKey Vector of sender public keys as defined in clause 7.5 of [ITU-T J.1014].

popk[16]: PubKey Vector of platform operator public keys as defined in clause 7.5 of [ITU-T J.1014].

config[16]: SessionConfig Vector of client session configurations as defined in clause 7.5 of [ITU-T J.1014].

XT[32]: uchar Spare input to control word mechanism as defined in clause 7.5 of [ITU-T J.1014].

rkIndx: uint Identified whether the current (rkIndx==0) or the next (rkIndx==1) random session key is
to be used in the control word calculation.

field2: Field2 Larger content property content not authenticated in field1 as defined in clause 8.2.3 of
[ITU-T J.1014].

cwIndx: uint Index of control word to be computed: 0 for even and 1 for odd control word; no meaning
for file based decryption.

Semantical description:

• This message is equivalent to the AS function reqAsComputeDecrCw as defined in [ITU-T

J.1014]; with the ECI Host providing the value of the slotId parameter.

9.5.2.3.3 reqAsAuthDecrSlotConfig Message

C→H reqAsAuthDecrSlotConfig(uint sessionId, InputV inputV; uchar nSpk, uint spkIndx,

PubKey spk[16], PubKey popk[16], SessionConfig cnf[16], ulong spkUri, uchar XT[32], bool

online, uchar verifier[16]) →

H→C resAsAuthDecrSlotConfig ()

• This message authenticates the slot configuration with authentication mechanisms

(decryption mode).

Request parameter definitions:
sessionId: uint Id of the session for which to authenticate the slot configuration.

inputV: InputV Message containing Chip Set public key encrypted and Sender Secret Key signature
protected r value used to compute AK used to authenticate the AS slot configuration.

nSpk: uchar Number of SPK values in the SPK vector.

spkIndx: uint Index defining the location of the AS slot's SPK in the SPK vector, the AS slot's POPK
value in the POPK vector and the AS slot's slotConfig in the clCnf vector that is used to
compute the Client Authentication Key, see [ITU-T J.1014].

spk[16]: PubKey Vector of sender public keys as defined in clause 7.5 of [ITU-T J.1014].

popk[16]: PubKey Vector of platform operator public keys as defined in clause 7.5 of [ITU-T J.1014].

cnf[16]: SessionConfig Vector of client configurations as defined in clause 7.5 of [ITU-T J.1014].

spkUri: ulong Usage rules for the SPK vector that is used subsequently to compute the authentication
key AK, see [ITU-T J.1014].

XT[32]: uchar Value of extension field used to compute the Client Authentication Key;
see [ITU-T J.1014]. Default value is { 0x00 }.

online: bool If true the slot random key is used for the Authentication Key computation forcing a fresh
Authentication Key computation by the provisioner.

verifier[16]: uchar Value with which reqAsAuthDecrSlotConfig authenticates the slot configuration.

Semantical description:

• This message is equivalent to the AS function reqAsAuthDecrSlotConfig as defined in

[ITU-T J.1014] with the ECI Host providing the value of the slotId parameter.

 Rec. ITU-T J.1012 (04/2020) 141

9.5.2.4 Advanced Security Export API

9.5.2.4.1 General

The Advanced Security Export API provides the messages as listed in Table 9.5.2.4.1-1.

Table 9.5.2.4.1-1 – Advanced Security Export messages

Message Type Dir. Tag Description

reqAsExportConnSetup
A C→H 0x0 Setup an Export Connection from decryption to

encryption session.

reqAsExportConnEnd
A C→H 0x1 Terminate existing export session.

9.5.2.4.2 reqAsExportConnSetup message

C→H reqAsExportConnSetup(uint sessId, ushort expMh, uint grpIndx; CertSerialChain expCh,

CertSerialChain impCh, CertSerialChain auth[]) →

H→C resAsExportConnSetup()

• This message sets up an advanced security connection from the decryption session to the

export Media Handle session.

Request parameter definitions:
sessId: uint Id of the export session of the ECI Client's AS slot.

expMh: ushort Id of the export Media Handle to be used for encryption of the decrypted content in the
AS sessions.

grpIndx: uint Index to store the export session connection; permitted values are 0 or 1. This parameter
can be used to alternate the Export Connection authentication to a Micro Server (e.g.,
for anticipating a forthcoming changeover of Export Group ID in a stream).

expCh: CertSerialChain Export Chain for ECI Client.

impCh: CertSerialChain IImport Chain for encrypting/importing ECI Client.

auth[]: CertSerialChain Authorization Certificates for Import Chain.

Semantical description:

• This message is equivalent to the AS function reqAsExportConnSetup as defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId, impSlotId and ImpSessId

parameter. The ECI Host shall use the Media Handle of the export session to connect the

AS decryption session to the corresponding AS encryption session, i.e., provide the

impSlotId and impSessId parameters in the reqAsExportConnSetup AS function of [ITU-T

J.1014].

9.5.2.4.3 reqAsExportConnEnd message

C→H reqAsExportConnEnd(ushort expMh) →

H→C resAsExportConnEnd()

• This message terminate an existing export session.

Request parameter definitions:
expMh: ushort Export Media Handle session of the AS sessions for which the content exchange

shall be terminated.

Semantical description:

• This message is equivalent to the AS function reqAsExportConnEnd as defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId and sessionId parameters

associated with expMh.

142 Rec. ITU-T J.1012 (04/2020)

9.5.2.5 Advanced Security Encryption API

9.5.2.5.1 General

The Advanced Security Encryption API provides the messages as listed in Table 9.5.2.5.1-1.

Table 9.5.2.5.1-1 – Advanced Security Encryption messages

Message Type Dir. Tag Description

reqAsStartEncryptSession A C→H 0x0 Start an encryption session.

reqAsComputeEncrCw A C→H 0x1 Compute encryption control word.

reqAsAuthEncrSlotConfig A C→H 0x2 Authenticate the slot configuration and encryption
parameters with authentication mechanisms
(encryption mode).

reqAsLdUssk A C→H 0x3 Load Micro Server secret key.

reqAsMInikLk1 A C→H 0x4 Compute asymmetrical Micro Client initialization
message.

reqAsEventCpChange A H→C 0x5 Event message on content property change in imported
content in an encryption session.

setAsPermitCPChange S C→H 0x6 Enable/disable imported content property CP changes
taking effect on control word selection for encryption in
an encryption session.

setAsSC S C→H 0x7 Set scrambling control field of encrypted content of an
encryption session.

9.5.2.5.2 Target client chain definition

Micro Servers can use the Certificate Processing System to provide a robust implementation of

asymmetrical client authentication. ECI defines certificate chains to permit such Micro Client

authentication. Such target chains are used as input to the reqAsMInikLk1 message.

The Certificate Chains shall be in accordance with clause 5.4.1. There are two types of Certificates

involved:

• A Micro Client Certificate authenticates a single Micro Client; the Public Key of the

Certificate shall be identical to the Chipset Public Key of the Micro Client CPE in case the

Micro Client is an ECI Client.

• A Target Group Certificate authenticates one or more Target Groups or Micro Client

Certificates.

Micro DRM Systemoperators can use the ECI Revocation List mechanism to securely manage the

evolution of authenticated Micro Clients for a server.

NOTE – The maintenance of Revocation Lists is a Micro DRM System operator’s private issue.

The Certificate ID for the Target Group Certificate is defined in Table 9.5.2.5.2-1.

Table 9.5.2.5.2-1 – Target Group ID definition

Syntax No. of bits Mnemonic

ECI_Target_Group_Id {

 padding(4)

 type
4

uimsbf

 target_group_id
20

uimsbf

 target_group_version
8

uimsbf

}

 Rec. ITU-T J.1012 (04/2020) 143

Semantics:

type: integer Value in accordance with Table 5.1.3-1.

target_group_id: integer Target Group number, unique in the context of the father.

target_group_version: integer Incremented in case the micro group changes its Certificate.

The Certificate ID for the Micro Client Certificate is defined in Table 9.5.2.5.2-2.

Table 9.5.2.5.2-2 – Micro Client ID definition

Syntax No. of bits Mnemonic

ECI_Micro_Client_Id {

 padding(4)

 type 4 uimsbf

 micro_client_id 20 uimsbf

 micro_client_version 8 uimsbf

}

Semantics:

type: integer Value in accordance with Table 5.1.3-1.

micro_client_id: integer Micro Client number, unique in the context of the Father.

micro_client_version: integer Incremented in case the micro group changes its Certificate.

9.5.2.5.3 reqAsStartEncryptSession message

C→H reqAsStartEncryptSession(ushort mh, PubKey spk, SessionConfig config,

uint nEncr, PubKey encrSpk[MaxSpkEncr], PubKey encrPopk[MaxSpkEncr], ulong

encrCwUri)→

H→C resAsStartEncryptSession()

• This message starts the encryption session.

Request parameter definitions:
mh: ushort Identifier of the Media Handle of the encrypted content for which to create an encryption

session.

spk: PubKey Public Key of the sender used to authenticate the sender and LK1 encrypted message
by the AS system.

config: SessionConfig Configuration for the session.

nEncr: uint Number of additional SPK (and POPK) values that are defined for encryption and
possible subsequent decryption). The maximum value is MaxEncr (see [ITU-T J.1014]).

encrSpk:PubKey[] Vector with additional SPK values for encryption.

encrPopk:PubKey[] Vector with additional POPK values for encryption.

encrCwUri: ulong CWURI value to use for encryption; see clause 8.2.2 of [ITU-T J.1014].

Semantical description:

• This message is equivalent to the AS function reqAsStartEncryptSession as defined in [ITU-

T J.1014] with the ECI Host providing the value of the slotId parameter. The ECI Host shall

derive the ,importSlotId and importSessionId parameters from the mh value.

NOTE – The Response message returns the new session ID created if no error occurred.

144 Rec. ITU-T J.1012 (04/2020)

9.5.2.5.4 reqAsComputeEncrCw message

C→H reqAsComputeEncrCw(int sessId, ulong cwUri, uint nElk, SymKey elk[24], uchar

XT[32],

 uint rkIndx, Field2 field2, uint cwIndx)→

H→C resAsComputeEncrCw()

• This message computes the encryption control word.

Request parameter definitions:
sessId: int Id of the session to compute a control word.

cwUri: ulong cwUri defines the applications of the control word. cwUri values are defined in clause 7.5
of [ITU-T J.1014].

nElk: uint Number of Elk values in the ELK vector.

elk[24]: SymKey Vector of symmetrically encrypted key values to be successively decrypted by the key
ladder mechanism. Value elk[nElk-2] is the field1 input to the content property
authentication as defined in clause 8.2.3 of [ITU-T J.1014] using the function as defined
in clause 8.2.4.6 of [ITU-T J.1014].

XT[32]: uchar Spare input to control word mechanism as defined in clause 7.5 of [ITU-T J.1014].

rkIndx: uint Identified whether the current (rkIndx==0) or the next (rkIndx==1) random session key is
to be used in the control word calculation.

field2: Field2 Larger content property content not authenticated in field1 as defined in clause 8.2.3 of
[ITU-T J.1014].

cwIndx: uint Index of control word to be computed: 0 for even and 1 for odd control word; no meaning
for file-based encryption.

Semantical description:

• This message is equivalent to the AS function reqAsComputeEncrCw as defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId parameter.

9.5.2.5.5 reqAsAuthEncrSlotConfig message

C→H reqAsAuthEncrSlotConfig(uint sessId, InputV inputV, uchar XT[32], bool online, uchar

verifier[16]) →

H→C resAsAuthEncrSlotConfig()

• This message authenticates the slot configuration with authentication mechanisms

(encryption mode).

Request parameter definitions:
sessId: uint Session ID for which the configuration shall be authenticated.

inputV: InputV Message containing Chip Set public key encrypted and Sender Secret Key signature
protected r value used to compute AK used to authenticate the AS slot configuration.

XT[32]: uchar Spare input to control word mechanism as defined in clause 7.5 of [ITU-T J.1014].

online: bool If true, the slot random key is used for the Authentication Key computation forcing a fresh
Authentication Key computation by the provisioner.

verifier[16]: uchar reqAsAuthDecrSlotConfig uses this value to authenticate the slot configuration.

Semantical description:

• This message is equivalent to the AS function reqAsAuthEncrConfig as defined in [ITU-T

J.1014] with the ECI Host providing the value of the slotId parameter.

9.5.2.5.6 reqAsLdUssk message

C→H reqAsLdUssk(uint sessId, InputV inputV, uchar XT[32], bool online, uchar

mUssk[NUSSK])→

H→C resAsLdUssk()

• This message loads the Micro Server secret key in case of asymmetrical authentication of

the ECI Clients that will be able to decode the content.

 Rec. ITU-T J.1012 (04/2020) 145

Request parameter definitions:
sessId: uint Session ID for which the Micro Server secret key will be loaded.

inputV: InputV Message containing Chip Set public key encrypted and Sender Secret Key signature
protected r value used to compute AK used to decrypt the Micro Server secret key to
be loaded.

XT[32]: uchar Spare input to control word mechanism as defined in clause 7.5 of [ITU-T J.1014].

online: bool If true, the slot random key is used for the Authentication Key computation forcing a fresh
Authentication Key computation by the provisioner.

mUssk[NUSSK]: uchar Encrypted Micro Server secret key.

Semantical description:

• This function is equivalent to the AS function reqAsLdUssk as defined in [ITU-T J.1014]

with the ECI Host providing the value of the slotId parameter.

9.5.2.5.7 reqAsMInikLk1 message

C→H reqAsMInikLk1(uint sessId, ECI_Certificate_Chain ClCPK) →

H→C resAsMInikLk1(InputV inputV)

• This message computes asymmetrical Micro Client initialization message.

Request parameter definitions:
sessId: uint Session ID for which the Micro Server secret key will be loaded.

ClCPK: ECI_Certificate_Chain Target Certificate Chain as defined in clause 9.5.2.5.2 for loading the Micro Client
Chipset Public key to be used to encrypt the secret session key between Micro
Server and Micro Client.

Response parameter definitions:
inputV: InputV MicroDRM session key encrypted with the Micro Client Chipset public key and

signed by the Micro Server secret key. Can be used by the micro-client as a
message to load the common session LK1.

Semantical description:

• This function is equivalent to [ITU-T J.1014] AS function reqAsMInikLk1 with the ECI

Host providing the value of the slotId parameter.

9.5.2.5.8 reqAsEventCpChange message

H→C reqAsEventCpChange(int sessionId)

• This message requests a content property change of imported content in an encryption

session.

Request Parameter definitions:
sessionId: int Encryption session in which a content property change event occurred in the

imported content.

Semantical description:

• This message is equivalent to [ITU-T J.1014] AS function reqAsEventCpChange; with the

ECI Host removing the slotId parameter.

9.5.2.5.9 setAsPermitCPChange message

C→H setAsPermitCPChange(int sessionId; bool permit)

• This message initiates a content property change of imported content in an encryption

session.

146 Rec. ITU-T J.1012 (04/2020)

Request parameter definitions:
sessionId: int Encryption session to permit an automatic changeover of the control word in a

content property change that will occur or which is pending.

permit: bool Value true means permission is granted, False means permission is not granted.

Semantical description:

• This function is equivalent to [ITU-T J.1014] AS function setAsPermitCPChange; with the

ECI Host providing the value of the slotId parameter.

9.5.2.5.10 setAsSC message

C→H setAsSC(int sessionId, uint scramblingControlField)

• This message sets the next value of scrambling control field in the encryption session.

Request parameter definitions:
sessionId: int Encryption session for which the scrambling control field is to be set that is to be

used on the first possible point of change in the stream.

scramblingControlField: uint Value of the scrambling control field; see clause 9.9 of [ITU-T J.1014] for the
permitted values and their meaning.

Semantical description:

• This function is equivalent to [ITU-T J.1014] AS function setAsSC; with the ECI Host

providing the value of the slotId parameter.

9.5.2.5.11 Error codes for the advanced security (AS) API

All error codes for the AS APIs are defined in clause 8.2.4.15 of [ITU-T J.1014].

9.5.3 Smart Card API

9.5.3.1 Introduction

ECI permits ECI Clients to interface with a single detachable local security module (Smart Card).

ECI Clients can create a secure channel from ECI Client to Smart Card or (security wise) directly

from Smart Card to Advanced Security block so as to provide maximum robustness to the protection

of control words. The details of the actual protocols to make exchanges for key management are not

defined by ECI but are fully defined by the CA/DRM system on the basis of the Advanced Security

block API as defined in [ITU-T J.1014].

ECI compliant CPEs may have one or multiple card reader slots. The ECI Host manages card readers

completely transparently for the ECI Clients. The ECI Host matches any inserted Smart Card to

the available ECI Clients. For this purpose, ECI Clients publish a list of card specifiers to the ECI

Host. The ECI Host manages any potential conflict between ECI Clients wishing to access the same

Smart Card. The ECI Host further provides contention management for card readers.

9.5.3.2 Base specifications

This clause provides the basic standards and specifications that the CPE card reader hardware and

associated drivers and ECI Host software shall comply with.

A CPE's card reader physical characteristics can be based on relevant market requirements. The

dominant format for conditional access cards is ID-1 (credit card size), but cards with ID-000 format

(SIM) are also used. See [ISO/IEC 7816-1], [ISO/IEC 7816-2] and [ISO/IEC 14496-12] for reference.

A regular CPE's card reader shall comply with clause 5 of [ISO/IEC 7816-3], supporting at least class

A (5V) and B (3V) operation. The following pins shall be supported: C1 (VCC), C2 (RST), C3 (CLK),

C5 (GND) and C7 (I/O).

 Rec. ITU-T J.1012 (04/2020) 147

ECI Hosts may support card readers not compliant with the above. Such card readers shall be clearly

marked as such and cannot be mistaken for regular ECI card readers by the User.

The ECI Host and CPE card reader hardware shall support the ECI relevant features defined in

clauses 6 to 12 of [ISO/IEC 7816-2]. The ECI Host shall initialize any card inserted using the

procedures as defined in [ISO/IEC 7816-2].

The ECI Host shall implement the functionality of [ISO/IEC 7816-3] as required for implementing

the specifications in this Recommendation. The ECI Host shall support [ISO/IEC 7816-5] as far as

required to support the AID retrieval functionality defined in clause 9.5.3.3 below.

9.5.3.3 Smart Card access management

Before initializing a connection to an ECI Client the ECI Host shall initialize the protocol and the

card reader in accordance with clauses 6 to 11 of [ISO/IEC 7816-3]. It shall select the appropriate

settings for the protocol, communication timing parameters and operating class of the Smart Card.

The ECI Host shall be able to retrieve the AID (Application IDentifier as defined in clause 8.2.1.2

of [ISO/IEC 7816-4],) as well as in clause 8.2.1 of [ISO/IEC 7816-4] and as retrieved from the card

as defined in clause 8.2.2.1 of [ISO/IEC 7816-4] from historical bytes, or initial data string. For multi-

application Smart Cards, the ECI Host shall be able to retrieve the list of AIDs as defined in clause

8.2 of [ISO/IEC 7816-4] specifically within clauses 8.2.1.1, 8.2.2 and clause 8.2.2.3.

The ECI Host shall use the following list of Card Identifiers for a card:

1) If the card is a multi-application card in accordance with [ISO/IEC 7816-4] it shall use as the

list of Card Identifiers, the list of AIDs as retrieved from the EF.DIR's application templates

and AIDs directly represented in the EF.DIR.

2) If the card is not a multi-application card in accordance with 1) above, the AID retrieved

from the 'historical bytes' as defined in clause 8.1.1 or clause 8.1.2 of [ISO/IEC 7816-4], shall

be used as the single Card Identifier.

3) If no AID can be retrieved as defined in 1) or 2) above, the ATR as defined in clause 8.2 of

[ISO/IEC 7816-4] shall be used as the single Card Identifier. The ATR for the purpose of

matching is defined from T0 up to Tk, excluding TCK (if present).

Based on the above Card Identifier list the CPE shall matchECI Clients accordingly.

ECI Clients shall provide the list of eligible Card Identifier Specifiers if it is ready to connect to a

card. The Exclusive Card attribute shall be present per Card Identifier Specifier and indicates that the

ECI Host shall signal a Smart Card access resolution conflict to the User. Thisis in case multiple

ECI Clients request access to a Smart Card matching the Card Identifier Specifier and such a Smart

Card is inserted or present in one of the CPE's Smart Card readers.

The ECI Host shall detect and when possible resolve any conflicts between card identification and

matching ECI Clients according to the following rules:

• A Smart Card is considered to match an ECI Client if one of the card identifiers in its card

identifier list matches one of the Card Identifier Specifiers of the ECI Client.

• In case a Smart Card matches multiple ECI Clients and none of the ECI Clients wishes

exclusive access. a card session is granted in the following order:

– A card session shall first be established for the ECI Client that had a session with the

card most recently.

– If no such ECI Client exists or the card is not recognized to have been inserted in the

card reader of the CPE before, a card session may be established by an algorithm to be

elected by the ECI Host.

148 Rec. ITU-T J.1012 (04/2020)

• An ECI Client shall disconnect a Smart Card session in case it cannot operate with the

Smart Card to enable the ECI Host to match it with other ECI Clients, which can attempt

to use it.

ECI Clients shall be able to handle ECI Host-generated "connect" and "disconnect" events on a

Smart Card session.

9.5.3.4 Smart Card reader contention management

This clause defines the application conflict resolution functionalities of ECI Hosts for managing

contention between Clients and available card readers for accessing Smart Cards.

When accessing Smart Cards through a card reader (Smart Card session), the ECI Client shall

provide the Smart Card session priority. The values are:

• Active: used for a primary function which if interrupted creates discomfort for the User. An

example is a viewing session requested by the User or a recording session previously

programmed by the User.

• Background: in use for background processing which can be interrupted if necessary - this

is the default state. An example is the processing of EMM messages for acquisition of future

access rights.

An ECI Client shall be able to request a Smart Card to be inserted - implying active use - with

references to one or more Media Handles or a string indicating the application requiring the card in

case this is not required for a specific Media Handle.

The ECI Host shall direct the User to an appropriate card reader in case an ECI Client requests a

card using the following guidelines:

• It shall attempt to direct to a free card reader if available.

• It shall attempt to direct to a background mode reader if no free reader is available.

• If no background mode or free readers are available it should attempt to direct to an active

mode reader that causes the User the least aggravation by using information from the

application/ECI Client on the current active sessions of those readers.

The above process can involve the ECI Host to use additional information to match the card to the

proper reader type (e.g., physical dimensions), by associating a reader-type to the ECI Client that fits

the requirements of a successful connection to the ECI Client - assuming the same card type will be

reinserted in the future. The ECI Host can use its own policies for this purpose.

9.5.3.5 Smart Card session management API

9.5.3.5.1 General

The Smart Card session management API shall provide Clients managed access to Smart Cards as

defined in clauses 9.5.3.3 and 9.5.3.4.

For the Smart Card session management the available API messages are listed in Table 9.5.3.5.1-1.

Table 9.5.3.5.1-1 – Smart Card session management API messages

Message Type Dir. Tag Description

setCardMatch set C→H 0x0 Set card identification specifier list for ECI Client.

callCardSessionPrio call C→H 0x1 Set Smart Card session priority.

getCardConnStatus get H→C 0x2 Provides status of card connection status.

reqCardConOpen A H→C 0x3 Informs ECI Client that a card session has been opened.

reqCardConClose A H→C 0x4 Informs ECI Client that a card session has been closed.

reqCardConClose A C→H 0x5 Informs ECI Host that ECI Client wishes to terminate a
session with the connected card.

 Rec. ITU-T J.1012 (04/2020) 149

9.5.3.5.2 setCardMatch message

C→H setCardMatch(uint matchListLenth, CardSpecifier matchList[])

• This message permits the ECI Client to indicate the card identifiers with which the ECI

Client wishes to connect to.

CardMatch Property definition
matchListLength: uint Length of matchList in terms of specifiers.

matchList: CardSpecifier[]. See Table 9.5.3.6.1-1: Smart Card Communication Messages. The ECI Host
shall use this list to match connected Smart Cards to the ECI Client in
accordance with clause 9.5.3.3. The Type definition is given in Table 9.5.3.5.2-1
and the values for the specifierType field are defined in Table 9.5.3.5.2-2.

Table 9.5.3.5.2-1 – Type definitions for Smart Card Specifier

#define MaxAtr 32

#define MaxAid 16

typedef struct CardSpecifier {

 bool exclusiveFlag;

 uchar specifierType;

 union specifier {

 struct {

 uchar atrLen;

 byte atr[MaxAtr];

 } atrSpec;

 struct {

 uchar aidLen;

 byte aid[MaxAid];

 } aidSpec;

 }

} CardSpecifier;

Table 9.5.3.5.2-2 – Smart Card Specifier type

Name Value Description

CardSpecifierATR 0x01 Card specifier is of ATR type. A card matches to the specifier if the atrLen
field is identical to the ATR length of the card and the ATR bytes of the
card match the first atrLen bytes of the atr field. The ATR of a card is
defined in clause 9.5.3.5.3, T0..TCK.

CardSpecifierAID 0x02 Card specifier is of AID type. A card matches to the specifier if the aidLen
field is identical to the AID length of the card and the AID bytes of the card
match the first aidLen bytes of the aid field. The AID of a card is defined
in clause 9.5.3.3.

RFU other Reserved for future use.

Pre conditions:

1) The ECI Client is prepared to respond to invCardConOpen and invCardConClose messages

if matchListLength > 0.

Post conditions

2) The ECI Host will match any card inserted in a card reader to the ECI Client as defined in

clause 9.5.3.3. In case of a match it shall open a card session to the ECI Client as defined in

clause 9.5.3.5.5.

150 Rec. ITU-T J.1012 (04/2020)

3) The ECI Host will not drop a running card session in case the new matchList no longer

provides a match to the currently connected Smart Card. The ECI Client shall use the

reqCardConnClose message for that purpose.

9.5.3.5.3 callCardSessionPrio message

C→H callCardSessionPrio(uchar priority, uint nrMh, ushort mH[], char *clientApplication)

• This message updates the card session priority and provides the ECI Host with the list of

Media Handles mH and the ECI Client internal reason for requesting or having an Active

card session.

Call parameter definition
priority: uchar Priority of the card session required by the ECI Client. Values are defined in Table

9.5.3.5.3-1.

nrMh: uint Number of Media Handles depending on an Active session to the card.

mH: ushort List of Media Handles that require an Active session to a Smart Card.

clientApplication: char * Null char terminated string with the reason for the ECI Client to require an active
session with a Smart Card not related to a Media Handle activity. If this pointer equals
NULL there is no such requirement. If the pointer is not NULL, the string value shall
have a meaningful value for the User. The maximum number of displayable characters
is 40.

Table 9.5.3.5.3-1 – Smart Card Session priority values

Name Value Description

CardPriorityBackground 0x01 ECI Client Card Priority requirement is Background and is defined in
clause 9.5.3.4.

CardPriorityActive 0x02 ECI Client Card Priority requirement is Active and is defined in clause
9.5.3.4.

RFU other Reserved for future use.

Post conditions:

1) The ECI Host shall manage the card session as defined in clause 9.5.3.4 in accordance with

priority and use mH and clientApplicaiton for resolving access conflicts to card readers

through the User interface if so required.

9.5.3.5.4 getCardConnStatus message

C→H uchar getCardConStatus()

• This message returns current session connection status to a Smart Card.

Property definition: see Table 9.5.3.5.4-1.

Table 9.5.3.5.4-1 – Card Connection Status values

Name Value Description

CardConNo 0x00 ECI Client does not have a session with a Smart Card.

CardConYes 0x01 ECI Client has a session with a Smart Card.

RFU other Reserved for future use.

9.5.3.5.5 reqCCardConOpen message

H→C reqCCardConOpen() →

C→H resCardConOpen()

• This message allows the ECI Host to inform the ECI Client on a new session connection

event to a card; ECI Client responds confirming the event is being processed.

 Rec. ITU-T J.1012 (04/2020) 151

Pre condition Request:

1) A card session with the ECI Client is to be established in accordance with clause 9.5.3.3.

Post condition Response:

2) The ECI Client will manage the session priority in accordance with the requirements thereto

given in clause 9.5.3.4.

3) The ECI Client shall close the session if it has no purpose for the card as defined in clause

9.5.3.3.

9.5.3.5.6 reqCCardConClose message

H→C reqCCardConClose () →

C→H resCardConClose ()

• This message allows the ECI Host to inform the ECI Client that the session to the card was

closed. ECI Client responds confirming that the event was processed.

Pre condition Request:

1) Card was removed from reader or a major malfunction in the card reader subsystem that

caused the connection to be lost.

Post condition Response:

1) The Response of the ECI Client confirms that the ECI Client has processed the event and

is ready to accept a new card connection as defined by the CardMatch property.

9.5.3.5.7 reqHCardConClose message

C→H reqHCardConClose() →

H→C reqHCardConClose ()

• This message allows the ECI Client to indicate to the ECI Host that it has no further

purposes for interaction with the connected Smart Card.

Post conditions Response

1) The ECI Host connect the Smart Card to another matching ECI Client as defined in clause

9.5.3.3 and shall not attempt to connect this card to the ECI Client (pending reboots and

power cycles).

2) The ECI Host shall wait for the reception of the Response before possibly reconnecting

another matching Smart Card to the ECI Client.

9.5.3.6 Smart Card Communication API message definitions

9.5.3.6.1 General

The Smart Card Command Response API shall provide the communication session primitives

between an ECI Client and a Smart Card in the context of an opened Smart Card session managed

by the ECI Host. The ECI Client can perform [ISO/IEC 7816-3] Command/Response exchanges

with the ECI Host at the level of APDUs (see Note) as defined in clause 12 of [ISO/IEC 7816-3].

The ECI Client has access to all Smart Card management functions and can perform reset and

re-initialization with custom parameter settings if so required and retrieves the communication

settings. The ECI API messages are defined in Table 9.5.3.6.1-1.

NOTE – This also permits T=0 protocol exchanges at TPDU level through the use of short command and

response exchanges at the APDU level interface.

152 Rec. ITU-T J.1012 (04/2020)

Table 9.5.3.6.1-1 – Smart Card Communication API messages

Message Type Dir. Tag Description

reqCardCmdRes A C→H 0x6 Send card command, get card response back.

reqCardReInit A C→H 0x7 Reset card (warm or cold) and reruns initialization sequence

with the latest initialization preference setting.

callCardSetProp set H→C 0x8 Set card communication parameter.

callCardGetProp get H→C 0x9 Get card communication property/parameter.

9.5.3.6.2 reqCardCmdRes message

C→H reqCardCmdRes(byte nodeAddrByte, uint cmdApduLen, byte cmdApdu[]) →

H→C resCardCmdRes(uint resApduLen, byte resApdu[])

• as defined in clause 12 of [ISO/IEC 7816-3], This message sends a command APDU to the

Smart Card via the ECI Host, and gets a response APDU back Related error codes are

defined in Table 9.5.3.6.2-1.

Request parameter definition:
nodeAddrByte: byte Node address byte for T=1 protocol setting of the established Smart Card protocol as

defined in clause 11.3.2.1 of [ISO/IEC 7810]. This parameter is ignored in case the
Smart Card protocol setting is T=0.

cmdApduLen: unit Length of the cmd APDU in bytes. Note that the internal length coding of the cmdApdu
shall not exceed the cmdApduLen.

cmdApdu: byte [] The command APDU to be send to the card. Excess bytes in the cmdApdu field are
ignored by the ECI Host.

Response parameter definition:
resApduLen: uint Length of Response APDU in bytes.

resAdpu: byte [] The Response APDU received from the card.

Pre conditions Request:

1) The ECI Client has an open Smart Card session.

2) The previous reqCardCmdRes has resulted in a resCardCmdRes or the connection has (re-)

initialized.

Table 9.5.3.6.2-1 – resCardCmdRes error codes

Name Description

ErrCardConnOpenNot
See Table 9.5.3.7-1.

ErrCardConnFail

9.5.3.6.3 reqCardReInit message

C→H reqCardReInit(uchar resetMode) →

H→C resCardReInit()

• This message requests the ECI Host to reset the Smart Card with resetMode, and

reinitialized it with the latest card connection preference settings. The Response is returned

when the process has been completed (or failed). Related error codes are defined in

Table 9.5.3.6.3-2.

Request parameter definition:
resetMode: uchar See Table 9.5.3.6.3-1.

 Rec. ITU-T J.1012 (04/2020) 153

Table 9.5.3.6.3-1 – Card resetMode values

Name Value Description

CardResetCold 0x01 A cold reset shall be performed and the card shall be re-initialized as if it
was just powered up for the first time (see clause 6.2.3 of [ISO/IEC 7816-
1].

CardResetWarm 0x02 A warm reset shall be performed, the card communication timing
parameters shall be re-initialized (see clause 6.2.3 of [ISO/IEC 7816-3]
and the "protocol and parameter selection" as defined in clause 9 of
[ISO/IEC 7816-3] shall be performed again, if applicable. This can be used
specifically to attempt to switch the interface timing parameters to an ECI
Client preferred value.

RFU other Reserved for future use.

Pre conditions Request:

1) The ECI Client has an open Smart Card session.

Post conditions Response:

2) The Response indicates the successful establishment of the interface protocol and parameter

settings.

Table 9.5.3.6.3-2 – resCardCmdRes error codes

Name Description

ErrCardConnOpenNot
See Table 9.5.3.7-1.

ErrCardConnFail

9.5.3.6.4 callCardSetProp message

C→H callCardSetProp (ushort propTag, uint valueLen, byte *propValue)

• This message sets the writable property indicated by propTag of the Smart Card interface

to propValue.

Request parameter definition:

propTag: ushort The tag of the Card Communication Protocol property to be changed. The values
are defined in Table 9.5.3.6.5-2.

valueLen: uint Length of the paramValue field in bytes.

propValue: byte * Pointer to the property value to be written to the parameter indicated by propTag.

Table 9.5.3.6.4-1 – callCardSetProp error codes

Name Description

ErrCardConnOpenNot See Table 9.5.3.7-1.

9.5.3.6.5 callCardGetProp message

C→H callCardGetPropf(ushort propTag, uint valueLen, byte *propValue)

• This message reads the accessible property indicated by propTag of the Smart Card

interface into propValue. Related error codes are defined in Table 9.5.3.6.5-1.

154 Rec. ITU-T J.1012 (04/2020)

Request parameter definition:
propTag: ushort The tag of the Card Communication Protocol property to be changed. The values are

defined in Table 9.5.3.6.5-2.

valueLen: uint Maximum length of the propValue field in bytes. Any excess bytes of property are not
copied to propValue.

propValue: byte * Pointer to the requested property value.

Table 9.5.3.6.5-1 – callCardSetProp error codes

Name Description

ErrCardConnOpenNot See Table 9.5.3.7-1

Table 9.5.3.6.5-2 – Card API Tag Values and semantics for Card Protocol Properties

Name Tag Value Description

CardPropClass 0x0001 One byte. Value Class A=0x01, Class B = 0x02, Class C= 0x03. Other
values are reserved for future use. Read only.

CardPropAtrLen 0x0002 One byte. Length in bytes of the card's ATR in CardPropAtr. Read only.

CardPropAtr 0x0003 Byte string, max. 16 bytes. Card ATR on cold reset. Read only.

CardPropPpsExch 0x0004 Card and interface completed a successful PPS exchange if unequal
0x00.. Read only.

CardPropPpsVal 0x0004 One byte. Value of result of card PPS exchange of PPS1. Other values
are not supported by this Recommendation. Read only.

CardPropTAEff 0x0005 One byte. The effective value of TA applied for clock timing on the
interface. Read only.

CardPropTCEff 0x0006 One byte. The effective value of TC applied for clock timing on the
interface. Read only.

CardPropProt 0x0007 One byte. This indicates the protocol selected by the interface device to
communicate with the card. The values are defined in clause 8.2.3 of
[ISO/IEC 7816-3] , "T" field. The value 0x00 indicates the T=0 protocol,
value 0x01 indicates the T=1 protocol. Other values can appear (up to
0x0E). Read only.

CardPropT1IFSC 0x0008 One byte. The current protocol value of IFSC (Information Field Size of
Card) in the T=1 protocol encoded is defined in clause 11.4.2 of
[ISO/IEC 7816-3]. Read only.

CardPropT1IFSD 0x0009 One byte. The current protocol value of IFSD (Information Field Size of
Device = card reader) in the T=1 protocol encoded is defined in clause
11.4.2 of [ISO/IEC 7816-3]. Read only.

CardPropAidListLen 0x000A One byte: length of list of card AIDs retrieved from the card during
initialization. Read only.

CardPropAidList 0x000B *(byte[MaxAid]): list of AIDs retrieved from the card during initialization.
Read only.

CardPropClassPref 0x0011 Three bytes. Sequence of preferred Class values. The values for
preference shall be attempted to be established (without violating
safe=ty) in order. The values of the 3 bytes are in CardPropClass, with
value 0x00 meaning "no more preference". Read and write.

CardPropImplClock 0x0012 One Byte TA value shall be applied in case TA2 bit 5 in the ATR indicates
implicit values for the clock frequency. Read and write.

CardPropPps1SegLen 0x0013 One Byte. Value represents an unsigned binary number. Minimum value
is 0, maximum value ix 0x08. Represents the number of PPS1 values to
try in a PPS exchange negotiation in CardPropPps1Seq as defined in
clause 9 of [ISO/IEC 7816-3]. See Note.

CardPropPps1Seq 0x0014 One Byte sequence of maximum length 8 starting with the most
desirable value for PPS1 to try to establish in a PPS exchange. Values
are defined in clause 9.2 of [ISO/IEC 7816-3]. Read and write.

CardPropInfdPref 0x0015 One byte. Value indicates the preferred IFSD value to be established for
the T1 protocol by the interface device. Read and write.

RFU other Reserved for future use.

NOTE – Values for PPS2 and PPS3 are not supported in this API and are not required to be supported by the ECI Host.
Read and write.

 Rec. ITU-T J.1012 (04/2020) 155

9.5.3.7 Error codes for the Smart Card API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.5.3.7-1.

Table 9.5.3.7-1 – Error codes of the Smart Card API

Name Value Description

ErrCardOpenNot -256 No card session established.

ErrCardConnFail -257 Card session established but no connection established (after
reset).

RFU Other Reserved for future use.

9.5.4 Data Carousel Acquisition API

9.5.4.1 General

The Data Carousel Acquisition API permits an ECI Client to retrieve information from an ECI

formatted broadcast carousel as defined in clause 7.7.2. An ECI Client can use this, among others,

to retrieve possibly updated import export information.

NOTE – Data carousels are designed to carry quasi-static data and are not a transport protocol of preference

for transitory data.

An ECI Client can read from a carousel data directly or request the ECI Host to monitor the updates

of a carousel item module or group it is interested in. For monitoring, this may either be during PwrOn

power state or at some specified interval period during standby state. It is encouraged (for power

consumption management reasons) to let these periods coincide with the ECI Host monitor periods.

The ECI Host will try to acquire the requested data and store it in a file for later access by the ECI

Client through the file system API. The ECI Host provides for a minimum number of parallel

channels of acquisition per ECI Client as proposed in [b-ITU-T J Suppl. 7].

The messages of the Data Carousel Acquisition API are listed in Table 9.5.4.1-1.

Table 9.5.4.1-1 – ECI Data Carousel Acquisition API messages

Message Type Dir. Tag Description

reqDCAcqGroupInfo A C→H 0x0 The ECI Client requests the ECI Host to read the
GroupInfoIndication structure in the DSI message of the
specified ECI data carousel.

reqDCAcqModule A C→H 0x1 The ECI Client requests the ECI Host to acquire a specific
ECI data carousel module into a file using module filter
parameters and various modes

9.5.4.2 reqDCAcqGroupInfo message

C→H reqDCAcqGroupInfo (uint operatorId, uint platformId) →

H→C resDCAcqGroupInfo (byte gii[])

• The ECI Client requests the ECI Host to read the GroupInfoIndication structure in the DSI

message of the specified ECI data carousel. Related error codes are defined in

Table 9.5.4.2-1.

156 Rec. ITU-T J.1012 (04/2020)

Request parameter definitions:

operatorId: uint 20-bit ID of the Operator as found in ECI_carousel_id structure carried in the
data_broadcast_id_descriptor() in the PSI (see clause 7.7.2.4).

platformId: uint 20-bit ID of the Platform Operation as found in ECI_carousel_id structure carried in the
data_broadcast_id_descriptor() in the PSI (see clause 7.7.2.4).

Response parameter definitions:
gii: byte[] Byte array carrying the GoupInfoIndication structure as carried in the DSI of the carousel,

as defined for DVB DSM-CC [ETSI EN 301 192].

Detailed semantics:

• The ECI Host only provides access to carousels of clients that are loaded.

Table 9.5.4.2-1 – reqDCGroupInfo error codes

Name Description

ErrDCAcqNetwAccessResource

See Table 9.5.4.4-1 ErrDCAcqNetwAccessFail

ErrDCAcqNoCarousel

9.5.4.3 reqDCAcqModule Message

C→H reqDCAcqModule(uchar aid, fileName fname, uint oId, uint pId, byte dType, uint model,

uint version, uint index, uint mode) →

H→C resDCAcqModule()

• This message allows the ECI Client to request the ECI Host to acquire a specific ECI data

carousel module into a file using module filter parameters and various modes.

Request parameter definitions:

aid: uchar Number of the acquisition filter. An ECI Client can have a maximum of three active
acquisition filters (values 0 .. 2).

fname: fileName Name of the file to which the data from the carousel module, which is to be acquired,
shall be copied. Any existing data is overwritten.

oId: uint 20-bit ID of the Operator as found in ECI_carousel_id structure carried in the
data_broadcast_id_descriptor() in the PSI (see clause 7.7.2.4).

pId: uint 20-bit ID of the Platform Operation as found in ECI_carousel_id structure carried in the
data_broadcast_id_descriptor() in the PSI (see clause 7.7.2.4).

dType: byte This field should match to the Descriptor type field of the module group as defined in
Table 7.7.2.4-1.

model: uint Carrying 16 bit unsigned value that should match to the model field in the
compatibilityDescriptor of the group to be acquired. See Table 7.7.2.4-1.

version: uint Carrying 16 bit unsigned value that should match (positive filter) or not match (negative
filter) or be disregarded in matching, to the version field in the compatibilityDescriptor of
the group to be acquired, depending mode parameter bit 0 and 1. See Table 7.7.2.4-1.

index: uint Index of the module to be accessed in the group. This parameter shall be interpreted
according to mode parameter bit 1.

 Rec. ITU-T J.1012 (04/2020) 157

mode: uint Parameter is comprised of several fields:
bit 0: signals the positive or negative filtering on version: 0b0 is positive filtering, 0b1
is negative filtering;
bit 1: signals if filtering on version is to be ignored (value 0b1) or not (value 0b0);
bit 2: signals if index is to be ignored (value 1) and any module is to be acquired (for
single module carousels) or whether index needs to be used (modulo
numberOfModules, see Table 7.7.2.6-1);
bit 29: if set the ECI Host shall perform acquisition during standby by checking the
carousel in accordance with its own acquisition requirements for this carousel and that
such acquisition should continue until further notice in both standby and powerOn
modes until such time the requested data was acquired;
bit 30: signals if the acquisition shall assume the datacarousel is running and
acquisition is to be completed within normal carousel schedule time (value 0b0) or
whether the acquisition shall proceed as and when the carousel can be acquired and
as and when the acquisition filter matches (0b1) (i.e., just wait until the data presents
itself);
bit 31: enable (value 0b1) or disable (value 0b0) acquisition with this filter aid.

Pre conditions Response:

1) The requested carousel module was acquired, a file system error was encountered or if mode

bit 30 is set an acquisition problem was encountered.

2) The ECI Host is in PwerOn state. That is, the ECI Client is not wakened on an acquisition

during standby.

Post conditions Response:

1) The file contains the specified module or an error occurred.

2) When mode parameter bit 30 is set no acquisition errors can occur.

Detailed semantics:

• The ECI Host only provides access to carousels of ECI Clients that are loaded and for which

it is performing monitoring of the broadcast data carousel for ECI Host purposes.

• If not set no such standby acquisition will be performed. ECI Clients wishing to create their

own acquisition scheduling can do so using the Wakeup API in clause 9.4.7.3.

• The ECI Host shall provide a "trivial" Response in case request with mode bit 31 cleared.

The related error codes are listed in Table 9.5.4.3-1.

Table 9.5.4.3-1 – reqDCAcqModule error codes

Name Description

ErrDCAcqNetwAccessResource

See Table 9.5.4.4-1

ErrDCAcqNetwAccessFail

ErrDCAcqNoCarousel

ErrDCAcqCarNoGroup

ErrDCAcqCarNoModule

ErrDCAcqCarTimeout

ErrDCAcqFileSystemFailure

ErrDCAcqFileQuotaExceeded

9.5.4.4 Error Codes for the Data Carousel Acquisition API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.5.4.4-1.

158 Rec. ITU-T J.1012 (04/2020)

Table 9.5.4.4-1 – Error codes media session API for TS media

Name Value Description

ErrDCAcqNetwAccessResource -256 See Table 9.6.2.3.7-1.

ErrDCAcqNetwAccessFail -257 See Table 9.6.2.3.7-1.

ErrDCAcqNoCarousel -258 No carousel with matching Operator and Platform OperationID
was found in the broadcast networks accessible to the ECI Host.

ErrDCAcqCarNoGroup -260 The groupInfoIndication structure in carousel DSI was found but no
matching group was found.

ErrDCAcqCarNoModule -261 The carousel group (DII) was found but no matching module could
be found.

ErrDCAcqCarTimeout -262 A timeout occurred accessing the carousel DSI, DII or DDB.

ErrDCAcqFileSystemFailure -263 See Table 9.4.5.5-1.

ErrDCAcqFileQuotaExceeded -264 See Table 9.4.5.5-1.

9.6 APIs for access to the ECI Host decryption resource

9.6.1 ECI Host decryption API

Figure 9.6.1-1 – Block diagram of the APIs defined in clause 9.6

Table 9.6.1-1 lists the APIs covered in clause 9.6 and Figure 9.7.1 illustrates the location of the APIs

defined in clause 9.6 with the ECI architecture.

Table 9.6.1-1 – List of APIs defined in clause 9.6

Clause API name Description

9.6.2 ECI Host decryption API
Allows the ECI Client to deliver Standard URI information related to
a certain content element to the ECI Host.

9.6.2 Definition of the ECI Host decryption API

9.6.2.1 Introduction

The decryption APIs allows the ECI Host (e.g., on request of resident or downloaded applications)

to select an ECI Client matching the content decryption requirements and request it to be decrypted.

All decryption messages between an ECI Client and a the ECI Host are exchanged in the context of

a Media Handle which represents the content, any associated delivery network and resources

required to decode it.

 Rec. ITU-T J.1012 (04/2020) 159

The following APIs make up the decryption APIs:

1) Generic media session API for all media types including matching function between content

and ECI Client.

2 Transport Stream Decryption APIs.

3) File and stream Decryption APIs.

9.6.2.2 Media Session API

9.6.2.2.1 General

The ECI Client can announce the list of Match Specifiers by which the ECI Host can match to

content.

The ECI Host can request a matching ECI Client to open a descrambling session for a Media

Handle. The opening of a session does not imply any decoding to commence. It merely ensures any

resources needed for accessing content and/or metadata therein and for performing a descrambling

session that are available at both the ECI Host as well as on the ECI Client side. ECI Clients should

ensure that access to Smart Cards or other resources needed to actually descramble content are

available before confirming a session. Table 9.6.2.2.1-1 lists the API functions.

Table 9.6.2.2.1-1 – Media Handle Decryption Session API messages

Message Type Dir. Tag Description

setDcrMhMatch Set C→H 0x0 Signals to ECI Host under which Ids the ECI Client can be
recognized for descrambling content.

reqDcrMhOpen A H→C 0x1 ECI Host Requests ECI Client to open a media session of a
specified type using a Media Handle.

reqDcrMhClose A H→C 0x2 ECI Host closes a media session with an ECI Client.

reqDcrMhBcAlloc A C→H 0x3 ECI Client Requests Media Handle session for its own
broadcast network access purposes.

reqDcrMhCancel A C→H 0x4 ECI Client cancels a media session with the ECI Host.

9.6.2.2.2 setDcrMhMatch API message

C→H setDcrMhMatch(uint matchListLength, MatchSpecifier matchList[])

• This message permits the ECI Client to indicate to the ECI Host the decryption system Ids

for which it is able to provide Transport Stream decryption services.

NOTE – The actual ability to decrypt content may depend on subscription, payment status or other conditions.

SetDcrMhMatch Property definition
matchListLength: uint Length of matchList in terms of specifiers.

matchList: MatchSpecifier[]. Table 9.6.2.2.2-1. The ECI Host shall use this list to match content to potential
ECI Client decryption capabilities in accordance with clause 9.5.3.3. The match
specifiers are defined by the MatchSpecifier type. All fields of MatchSpecifier
shall match with the content in order to generate a match.

160 Rec. ITU-T J.1012 (04/2020)

Table 9.6.2.2.2-1 – Type definitions for MatchSpecifier

#define MaxMhSubFormat 16;

typedef struct MatchSpecifier {

 uchar decryptIdType; /*see Table 9.6.2.2.2-2 */

 union decryptId {

 bool ECI Client ID;

 ushort dvbCaId;

 byte uuid[16];

 }

 byte mhType;

 byte subFormat[MaxMhSubFormat];

} MatchSpecifier;

Table 9.6.2.2.2-2 – setDcrMhMatch decryptIdType definition

Name Value Description

None 0x00 Does not match to any content on an issued Request; indicates "no
match" in case of opening a session.

ClientEciId 0x01 The identification of the ECI Client can be done based on the ECI Client
Id, composed of the 20-bit values (not including type and version fields)
<<operator_id,platform_operation_id>,<vendor_id,client_id>> as
specified in clause 7 of this Recommendation.

ClientDvbCaId 0x02 The decryptId is a Conditional Access System Identifier as defined in [CEN
EN 50221] and [ETSI EN 301 192]. This value indicates that dvbCaId is
the used variant of the specifierType union. The actual+ values for
dvbCaId are as defined in [CEN EN 50221].

ClientUUID 0x03 The decrypted is a DRM ID as defined by CENC/Dash, specified as a
UUID [IETF RFC 4122].

RFU other Reserved for future use.

mhType: unit Type of the Media Handle (main decryption mode) supported by the ECI Client for this
ClientEciID.

subFormat: byte[] This parameter permits additional type specification to be defined for the ECI Client. The
interpretation of these bytes depends on mhType as defined in Table 9.6.2.2.2-3.

Table 9.6.2.2.2-3 – subFormat type definition

mhType value Semantics of subFormat field

ISOBMFF The subFormat field contains zero or more sequential 4CC definitions of the ISOBMFF

ftyp or styp box brand values that are suited for decoding by the ECI Client. One (or

more) of these 4CC values shall match to the major_brand or

compatible_brands[] values of the ftyp or styp box of the ISOBMFF container.

Value 0x0000 in subFormat shall mean no value (always mismatch), value 0xFFFF as

the first entry shall mean any brand value (regardless of the following bytes).

Other Reserved for future use.

Detailed semantics:

When trying to render Transport Stream based content the ECI Host shall try to match the content to

the available ECI Clients using the following rules in priority order:

1) The ECI Host shall try to establish a set of applicable match specifiers using ECI Client IDs

for that content as defined in clause 7.2.2. If any applicable ECI Client ID and associated

match properties match to the MatchSpecifier of one ECI Client it shall offer content for

 Rec. ITU-T J.1012 (04/2020) 161

decryption to that ECI Client. If multiple ECI Clients match the ECI Host shall use the

following procedure:

a) The ECI Host shall offer the content for decryption with the ECI Client that most

recently successfully delivered the CWs for decryption of content from the same "content

source".

b) If the first ECI Client fails to decrypt the content, it shall attempt to use alternative ECI

Clients that match whereby it should apply the ECI Clients order of the most recent

successful decryption history in relation to "content source".

2) If the ECI Host cannot establish any ECI Client ID for the content or if none of the ECI

Clients under 1) above can decode the content, the ECI Host shall try to establish a set of

other IDs for the content as defined in clause 9.5.4.3. If only one identifier and associated

match properties match one ECI Client, the ECI Host shall offer content for decryption to

that ECI Client. If multiple ECI Clients match, the ECI Host shall use the following

procedure:

a) The ECI Host shall offer the content for decryption with the ECI Client that most recently

successfully decrypted content from the same "content source".

b) If the first ECI Client fails to decrypt the content, it shall attempt to use alternative ECI

Clients that match whereby it should apply the ECI Clients order of the most recent

successful decryption history in relation to "content source".

The term "content source" in the above shall at minimum encompass:

3) A DVB broadcast network or bouquet therein that originates the TS.

4) A website used for browsing with a browser that offers references to content.

9.6.2.2.3 reqDcrMhOpen message

H→C reqDcrMhOpen(ushort mH, MatchSpecifier match) →

C→H resDcrMhOpen(ushort mH)

• This message allows the ECI Host to request a decryption session with the ECI Client. ECI

Client should reserve all resources normally required to perform decryption as identified by

mh and match. Related error codes are defined in Table 9.6.2.2.3-1.

Request parameter definition
mH: ushort Media Handle of content to be decrypted.

match: MatchSpecifier Copy of the matching specifier (also contains the Media Handle’s type of the
session).

Response parameter definition
mH: ushort Media Handle of content to be decrypted.

Pre conditions Request:

• The ECI Host has reserved all resources required to decrypt the content. For TS content this

includes any tuning or other network access resources and applicable control there over,

demultiplexing resources and descrambling resources for at minimum one cw-pair

application.

Post conditions Response:

• In case of a successful result, the ECI Client has reserved all resources typically required for

decoding content for the requested session. This should include access to any external

resources (DRM servers, Smart Cards, etc.) typically required for a decryption operation.

162 Rec. ITU-T J.1012 (04/2020)

NOTE – Resources required by exception or resources that can normally be attained when required are

excluded.

• In case ErrDcrUserDelay is returned the ECI Client is pending User input to open the session

(e.g., to get access to a Smart Card). The ECI Host should repeat sending the

reqDcrMhOpen Request (with the same parameters) until a positive result is returned or a

definitive error is returned or alternatively may send a reqDcrMhClose to terminate the

pending session. The ECI Client may cancel with reqDcrMhCancel in case it cannot attain

the required User input.

Table 9.6.2.2.3-1 – reqDcrMhOpen error codes

Name Description

ErrDcrUserDelay

See Table 9.6.2.2.7-1

ErrDcrCardMissing

ErrDcrServiceMissing

ErrDcrResourceMissing

ErrDcrMmiMissing

9.6.2.2.4 reqDcrMhClose message

H→C reqDcrMhClose(ushort mH) →

C→H resDcrMhClose(ushort mH)

• This message enables the ECI Host to close a decryption session with the ECI Client. The

ECI Client may release the resources for this session.

Request parameter definition
mH: ushort Media Handle of session to be closed

Response parameter definition
mH: ushort Media Handle of session closed

Post conditions Request:

• The ECI Client releases any resources it required specifically for the session.

Post conditions Response:

• The ECI Host may release any resources related to the Media Handle.

9.6.2.2.5 reqDcrMhBcAlloc message

C→H reqDcrMhBcAlloc(byte networkType[2], uchar priority, char reason[80]) →

H→C resDcrMhBcAlloc(ushort mH)

• This message allows the ECI Client to request the connection to a broadcast network for

security data acquisition purposes.

Request parameter definition
networkType: byte[2] Broadcast network type to be accessed by an ECI Client; values in accordance with

Table 9.6.2.3.6.2-3.

priority: uchar Priority for accessing the network is defined in Table 9.6.2.2.5-1.

reason: char[80] Null terminated string of maximum 80 characters that can be presented to the User
to resolve resource conflict in the ECI Host for resolving this request.

 Rec. ITU-T J.1012 (04/2020) 163

Table 9.6.2.2.5-1 – Broadcast Network Access Priority definition

Name Value Description

DcrAllocPrioBackground 0x01 Access is required for background processing which may not be granted
or may be interrupted when a task with a higher priority requires access
to the resources. An example is accessing EMM or security renewability
data on a central multiplex.

DcrAllocPrioActivec 0x02 Access is required for a primary descrambling function and if not granted
(or when interrupted) creates discomfort for the User. An example is a
viewing session requested by the User or a recording session previously
programmed by the User.

RFU other Reserved for future use.

Request parameter definition
mH: ushort Media Handle of session opened

Detailed semantics:

• The ECI Host may cancel the session in case another task requires the network access

resources with a higher priority using the reqDcrMhClose message.

• The ECI Client shall close the session using the reqDcrMhCancel message in case it no

longer requires access to the network.

Post conditions Request:

1) The ECI Host has allocated all resources for accessing the requested network type.

Post conditions Response:

2) The ECI Client shall tune to acquire a Transport Stream using the reqDcrTsRelocate

message before commencing section acquisition.

Table 9.6.2.2.5-2 – reqDcrMhBcAlloc error codes

Name Description

ErrDcrNetworkAccessCapability

See Table 9.6.2.2.7-1.
ErrDcrNetworkAccessResource

ErrDcrPrioOverride

ErrDcrResourceMissing

9.6.2.2.6 reqDcrMhCancel message

C→H reqDcrMhCancel(ushort mH, uchar reason) →

H→C resDcrMhCancel(ushort mH)

• This message allows the ECI Client to close a decryption session with the ECI Host. ECI

Client has released all resources specifically needed for the session.

Request parameter definition:
mH: ushort Media Handle of session to be closed.

reason: uchar Reason for cancelling the decryption session. The values are defined in Table
9.6.2.2.6-1.

164 Rec. ITU-T J.1012 (04/2020)

Table 9.6.2.2.6-1 – reqDcrMhCancel reason values

Name Value Description

DrcMhUndefined 0x00 An undefined error occurred in the ECI Client requiring it to cancel the
session.

DcrMhCardMissing 0x01 Smart Card is required for decoding but could not be successfully (re-
)connected and assist in decrypting content within a reasonable time.

DcrMhServiceMissing 0x02 A service (external to the CPE) supporting the ECI Client in providing
decryption services required to maintain a decryption session is not
available in a reasonable time.

DcrMhResourceMissing 0x03 A resource (internal to the CPE) required for providing decryption services
is not available to the ECI Client within a reasonable time (not including
DcrMhMmiMissing).

DcrMhMmiMissing 0x04 The ECI Client was not successful in attaining an MMI session resource
for User interaction required for maintaining the decryption session within
a reasonable time.

DcrMhAllocTerminate 0x05 Media Handle was allocated on behalf of ECI Client through
reqDcrMhBcAlloc and is no longer required by the ECI Client.

RFU Other Reserved for future use.

The reasonable time for the ECI Host to cancel a Media Handle session is proposed in [b-ITU-T J

Suppl. 7].

Response parameter definition:
mH: ushort Media Handle of cancelled session

Pre condition Request:

• The ECI Client has released the resources it required specifically for the session.

Post conditions Request:

• The ECI Host may release any resources related to the Media Handle.

Post conditions Response:

• The Media Handle session is closed by the ECI Host.

9.6.2.2.7 Error codes for the Media Session API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.6.2.2.7-1.

 Rec. ITU-T J.1012 (04/2020) 165

Table 9.6.2.2.7-1 – Error codes media session API for TS media

Name Value Description

ErrDcrUserDelay -256 Long delay waiting for input from User required to complete the
operation occurred. Operation not completed.

ErrDcrCardMissing -257 Smart Card required for session is not accessible/available

ErrDcrServiceMissing -258 A service from outside the CPE required to support the ECI Client in
decryption operations is not available.

ErrDcrResourceMissing -259 An undefined resource inside the CPE required for accessing or
decrypting content is not available.

ErrDcrMmiMissing -260 ECI Client access to the MMI is not available.

ErrDcrDescrContinue -261 ECI Host continues to attempt to descramble content in this TS.

ErrDcrNetworkAccessCapability -262 The ECI Host does not have a network access resource for locating
the requested TS.

ErrDcrNetworkAccessResource -263 The ECI Host cannot acquire the network access resource for
accessing the requested TS.

ErrDcrPrioOverride -264 A higher priority task in the CPE required the resources for the Media
Handle causing the Media Handle session to be terminated.

RFU other Reserved for future use.

9.6.2.3 Descrambling transport stream data

9.6.2.3.1 Introduction

The ECI Host can request the ECI Client to perform a descrambling session (of a specific type: in

this case the mpeg broadcast type) by providing it with a Media Handle (see clause 9.1.2). The ECI

Host will provide the security data as specified by the ECI Client for descrambling the data.

For descrambling content in most Transport Stream formats ECI uses an implicit timing model for

synchronization of the control words with the content offered to the descrambler. In this model, the

ECI Host provides the ECI Client with security control data from the Transport Stream as it is being

demultiplexed and descrambled. The ECI Client provides the required control words (typically two

per elementary stream, often identical for all elementary streams) at the appropriate time. The ECI

Client typically decodes an ECM to CWs, and loads the CWs into the descrambler immediately. The

application of these control words is synchronized with the stream through the signalling in the

content stream using the scrambling control bits at TS packet level or at PES packet level.

The API is partitioned in the following clauses:

1) Starting, restarting and stopping Transport Stream decryption (clause 9.6.2.3).

2) Security data acquisition (clause 9.6.2.3.5).

3) Broadcast tuning functions (clause 9.6.2.3.6).

9.6.2.3.2 Transport Stream format and session versions

Transport Streams descrambled through a Media Handle with the media session type

MhDvbTsBroadcast shall comply with the following specifications: [ISO/IEC 13818-1-1]

(specifically the application of scrambling control bits to TS packets) and [ETSI ETR 289].

9.6.2.3.3 ECI Host processing requirements

9.6.2.3.3.1 Scrambling cipher detection

ECI Hosts shall signal the applicable cypher mode to the ECI Client based on the following rules:

1) For DVB streams it shall use the signalling using the scrambling descriptor in the PMT as

defined in [ETSI TS 103 127] and [ETSI TS 100 289].

2) If no descriptor is found under 1) and the source is a DVB broadcast network the ECI Host

shall assume that CSA1 is used as specified in the definition of the scrambling descriptor.

166 Rec. ITU-T J.1012 (04/2020)

9.6.2.3.3.2 CA Identification detection

For establishing the list of applicable DVB CA IDs for a scrambled service, scrambling being detected

by either TS or PES packet scrambling bits, in a Transport Stream (originating from a broadcast

network or otherwise) the ECI Host shall use the following sequence of acquisition rules:

1) It shall attempt to retrieve the CA_descriptors as carried in the PMT of the service.

2) In case this is unsuccessful and the content is scrambled, it shall attempt to retrieve the set of

CA_system_ids as carried in the CA identifier descriptor as carries in any DVB bouquet,

SDT or EIT table applicable for the content.

NOTE – For some sources of Transport Stream based content the applicable CA or DRM ID may be known

through other means.

9.6.2.3.4 Starting and stopping Transport Stream decryption

9.6.2.3.4.1 General

The ECI Host can start the decrypting content on an open Media Handle using the ECI Client

resources reserved. The ECI Host shall provide a "CA-PMT" table containing the specification of

the elementary streams to be decrypted. Table 9.6.2.3.4.1-1 lists the available decryption API

messages.

Table 9.6.2.3.4.1-1 – Media Handle TS content decryption API

Message Type Dir. Tag Description

reqDcrTsDescrStart A H→C 0x08 Requests ECI Client to descramble or return the
descramble status of a programme in a TS.

reqDcrTsDescrStop A H→C 0x09 ECI Host requests ECI Client to descramble a Media
Handle.

reqDcrTsDescrQuit A C→H 0x0A ECI Client terminates a descrambling session with the
ECI Host.

9.6.2.3.4.2 reqDcrTsDescrStart Message

H→C reqDcrTsDescrStart(ushort mH, uint caPmtLen, byte caPmt[]) →

C→H resDcrTsDescrStart(ushort mH, unit sizeofEsStat, descrStat esStat[])

• This message allows the ECI Client to commence decryption of a programme as defined by

caPmt on the stream identified by mH or inquires as to the ability or conditions to do so.

Request parameter definition:
mH: ushort Media Handle of TS stream.

caPmtLen: uint Length in bytes of the caPmt parameter.

caPmt: byte[] ca_pmt object is defined in clause 8.4.3 of [ETSI TR 101 202] in network byte order,
with a modified interpretation of ca_pmt_list_management and ca_pmt_cmd_id
parameters as defined in Table 9.6.2.3.4.2-1.

The ca_pmt_list_management parameter values and semantics shall comply to the definitions in

Table 9.6.2.3.4.2-1.

Table 9.6.2.3.4.2-1 – ca_pmt_list_management values

Name Value Description

DcrTsDescrStartOnly 0x03 A single programme should be descrambled in the service. This may be a
new or an updated value.

DcrTsDescrStartUpdate 0x05 Same meaning as DcrTsDescrStartOnly.

RFU Other Reserved for future use.

 Rec. ITU-T J.1012 (04/2020) 167

The ca_pmt_cmd_id parameter values shall be identical to clause 8.4.3 [CEN EN 50221] with the

following restrictions:

1) The value 0x02 (ok_mmi) is not permitted.

2) The values 0x01 (ok_scrambling) and 0x03 (query) shall not occur in the same ca_pmt

structure. That is, a Request shall either be a pure query or a pure descrambling request.

Response parameter definition:
mH: ushort Media Handle of TS stream.

sizeofEsStat: uint Number of bytes of esStat parameter.

esStat: descrStat
The descrambling status of the elementary streams as specified in the caPmt
parameter of the Request. descrStat is defined in Table 9.6.2.3.4.2-2. A
descrStat.pid value shall occur only once in esStat. Each elementary_PID
parameter of the ca_pmt structure of [CEN EN 50221] shall occur once unless it's
corresponding ca_pmd_cmd_id is 0x04 (not_selected) in which case it shall not
occur in esStat.

Table 9.6.2.3.4.2-2 – Type definition for descrStat structure

typedef struct descrStat {

 ushort pid;

 uchar caStatus

} descrStat;

pid: ushort PID value of the stream to be descrambled.
caStatus: uchar Values shall correspond to the definition of the CA_enable parameter of the

ca_pmt_reply object in clause 8.4.3 [CEN EN 50221].

Detailed semantics:

1) The ECI Host shall issue this command in case the set of elementary streams to be decoded

has to change.

2) The ECI Host shall issue a reqDcrTsDescrEnd Request in case the media session is

stopped. Failure to do so may mislead the ECI Client to registering ongoing content

consumption by the User and associated charges.

3) Related error codes are defined in Table 9.6.2.3.4.2-3.

Pre conditions Request:

1) mH is open and has a TS format.

Post conditions Request:

2) ECI Client may start descrambling actions and use other mH TS related functions.

Table 9.6.2.3.4.2-3 – reqDcrTsStart error codes

Name Description

ErrDcrUserDelay

See Table 9.6.2.3.7-1.
ErrDcrCardMissing

ErrDcrServiceMissing

ErrDcrResourceMissing

ErrDcrMmiMissing

168 Rec. ITU-T J.1012 (04/2020)

9.6.2.3.4.3 reqDcrTsDescrStop message

H→C reqDcrTsDescrStop(ushort mH) →

C→H resDcrDescrStop(ushort mH)

• This message allows the ECI Host to indicate the ECI Client that it shall stop the TS

descrambling operation related to the current mH.

Request parameter definition:
mH: ushort Media Handle of TS stream

Response parameter definition:
mH: ushort Media Handle of TS stream

Pre conditions Response:

1) Any ECI Client operation related to descrambling mH is terminated.

9.6.2.3.4.4 reqDcrTsDescrQuit message

C→H reqDcrTsDescrQuit(ushort mH, ushort reason) →

H→C resDcrDescrQuit(ushort mH)

• This message allows the ECI Client to inform the ECI Host that it has stopped to process

keys for the TS descrambling operation related to the current mH.

Request parameter definition:
mH: ushort Media Handle of TS stream

reason: ushort The reason why the ECI Client has terminated the key processing for the descrambling
operation as defined in Table 9.7.2.5.9-1.

Response parameter definition:
mH: ushort Media Handle of TS stream

Pre conditions Response:

1) All ECI Host activities related to descrambling mH has terminated or an error is returned.

Post conditions Response:

2) All ECI Client activity related to mH shall terminate immediately or an error was returned.

Table 9.6.2.3.4.4-1 – reqDcrTsDescrQuit error codes

Name Description

ErrDcrDescrContinue See Table 9.6.2.3.7-1.

 Rec. ITU-T J.1012 (04/2020) 169

9.6.2.3.5 ECI Client decryption data acquisition in TS

9.6.2.3.5.1 General

The ECI Client can acquire in-band TS data required for decryption purposes in the form of sections

from the Transport Stream associated with a Media Handle. The most straightforward form is setting

a section filter. In order to speed up acquisition on channel changes it can set a default section filter

including the PMT and ECM stream. It can also read other standard MPEG and DVB tables from the

ECI Host. MPEG sections are data structures as defined in clause 2.4.4.1 [ISO/IEC 13818-1-1] ,

private_section() structure. The functions of this part of the MPEG TS API are listed in Table

9.6.2.3.5.1-1.

Table 9.6.2.3.5.1-1 – ECI Host TS Descrambling Control Messages

Message Type Dir. Tag Description

setDcrTsSectionAcqDefault set C→H 0x10 Sets a default filter for section acquisition.

setDcrTsSectionAcq set C→H 0x11 Sets a filter for section acquisitions.

reqDcrTsSection A H→C 0x12 Forwards an acquired section to ECI Client.

reqDcrTsTable A C→H 0x13 ECI Client acquires a table in the stream.

9.6.2.3.5.2 Section Filter Specification

MPEG sections as defined in clause 2.4.4.11of [ISO/IEC 13818-1-1] can be extracted on

specification from an ECI Client to the ECI Host from a Transport Stream. The ECI Host shall

support eight section filters for an ECI Client. A section filter setup permits the ECI Client to filter

from one PID in the TS stream with a limited number of indirect specifiers (e.g., for PMT). It permits

the ECI Client to setup positive filters (selected section fields match the ECI Client's specification)

and negative filters (the section data differ from the ECI Client's filter specification). The filtered

sections may be clustered and sent either when reaching the maximum buffer size or alternatively be

forwarded as soon as acquired.

The filtering of section bytes shall skip the second and third byte of a section.

The specification for a section filter is given in Table 9.6.2.3.5.2-1.

Table 9.6.2.3.5.2-1 – Type definition for DcrSectionFilterSpec

structure#define DcrSectionFilterMaxlen 16

#define DcrSectionFilterMaxlen 16

typedef struct dcrSectionFilterSpec {

 ushort pid;

 ushort caId;

 ushort bufferSize;

 uint timeout;

 uint modeFlags;

 byte filter[DcrSectionFilterMaxlen];

 byte mask[DcrSectionFilterMaxlen];

 byte neg[DcrSectionFilterMaxlen];

} dcrSectionFilterSpec;

170 Rec. ITU-T J.1012 (04/2020)

The semantics are as follows:

pid: ushort PID of TS packets to be filtered. PID values shall be represented by their unsigned 13-bit
value: i.e., between 0x0000 and 0x1FFF. The PID of the PMT of the stream to be acquired
is represented by 0x8000. The PID for an associated ECM stream to be acquired is
represented by 0x8001.

caId: ushort This field is relevant only when the value of the pid field is 0x8001. In that case the value of
this field is the MPEG/DVB CA ID of the conditional access system for which the ECM stream
shall be acquired. The ECI Host shall parse the PMT of the service to be descrambled and
match caId field to the CA_descriptors (as defined in [ISO/IEC 13818-1-1]) applicable to the
video PID if present or the first ES in the PMT and use the CA-PID field in the matching
descriptor to identify the ECM stream to be acquired and filtered.

bufferSize: ushort Maximum size of the buffer. At minimum, a single section shall be buffered. By setting this
field to zero every section will be forwarded separately.

timeout: uint Timeout in ms for the filtering of a single section. Restarts at every section successfully
filtered. Value zero means no timeout.

modeFlags: uint When bit 0 is set, the ECI Host shall prevent sending the same section to the ECI Client
twice. The ECI Host shall use a buffer of previously acquired sections of max. 64 kB for this
purpose. All other bits are reserved and shall be set to 0 by the ECI Client.

filter: byte [] Value to match to corresponding section bytes.

mask: byte[] If a bit is set to zero the corresponding match to the section value is ignored.

neg: byte [] If a bit is set to one the corresponding match to the section bit is negative.

A section matches the filter if all positively filtered masked section bits match their corresponding

filter value and no negatively filtered masked section bits match their corresponding filter value

(provided there is at least one negatively filtered bit). A section match (represented by data for section

bytes 1 and 3-18) is defined by the sectionFilterMatch function.
bool sectionFilterMatch(byte *data, *filter, *mask, *neg) {

 int i;

 bool posMatch, negMatch;

 posMatch = True;

 negMatch = True;

 /* if all neg bytes are 0; the negative filter is always fulfilled */

 for (i=0; i< DcrSectionFilterMaxlen; i++)

 negMatch &&= neg[i] == 0;

 /* match section data to positive and negative filtering criteria*/

 for (i=0; i< DcrSectionFilterMaxlen; i++) {

 posMatch &&= (data[i] & mask[i] & ~neg[i]) == (filter[i] & mask[i] & ~neg[i]);

 negMatch ||= (data[i] & mask[i] & neg[i]) != (filter[i] & mask[i] & neg[i]);

 }

 return posMatch && negMatch;

}

9.6.2.3.5.3 reqDcrTsSectionAcqDefault message

C→H setDcrTsSectionAcqDefault(ushort mH, uchar filterNr, dcrSectionFilterSpec

sectionFilter)

• This message sets the default section filters that will be used by the ECI Host to acquire

information from the stream for the ECI Client after a resDcrTsDescrStart message is

received. This function can for instance be used by the ECI Client to speed up section

acquisition of ECMs by the ECI Host during channel change.

 Rec. ITU-T J.1012 (04/2020) 171

Request parameter definition:
mH: ushort Media Handle of TS stream on which to set the default section filter.

filterNr: uchar Number of the filter to be programmed. The value shall be between 0 and 7.

sectionFilter: dcrSectionFilterSpec Section filter specification according to clause 9.6.2.3.5.2 dcrSectionFilterSpec.

Post condition:

• This section filter shall be put into effect by the ECI Host immediately following the

reception of a successful resDcrTsDescrStart. The ECI Host should anticipate a successful

resDcrTsDescrStart if reasonably possible.

9.6.2.3.5.4 reqDcrTsSectionAcq Message

C→H setDcrTsSectionAcq(ushort mH, uchar filterNr, dcrSectionFilterSpec sectionFilter

• This message sets the section filters that will be used by the ECI Host to acquire information

from the mH stream for the ECI Client.

Request parameter definition:
mH: ushort Media Handle of TS stream on which to set the default section filter.

filterNr: uchar Number of the filter to be programmed. The value shall be between 0 and 7.

sectionFilter: dcrSectionFilterSpec Section filter specification according to section clause 9.6.2.3.5.2
dcrSectionFilterSpec.

Detailed semantics:

• Using this message after setting a default section filter will modify the section filter until the

next resDcrTsDescrStart is issued on the same Media Handle which will reset it to the

default section filter (if a default is set).

Post condition set:

• This section filter shall be put into effect by the ECI Host.

9.6.2.3.5.5 reqDcrTsSection message

H→C reqDcrTsSection(ushort mH, uchar filterNr, uint sectionDataLen, byte sectionData[]) →

C→H resDcrTsSectionAcq (ushort mH, uchar filterNr)

• This message sends one of more sections acquired by the ECI Host in the context of the TS

stream identified by mH and the filter identified by filterNr to the ECI Client.

• Related error codes are defined in Table 9.6.2.3.5.5-1.

Request parameter definition:
mH: ushort Media Handle of TS stream on which to set the default section filter.

filterNr: uchar Number of the filter to be programmed. The value shall be between 0 and 7.

sectionDataLen: uint Number of bytes in sectionData.

sectionData: byte [] Sequence of private_sections (bytes in network order) is defined in section 2.4.4.11
of [ISO/IEC 13818-1-1]. Any section with a CRC error is not passed to the ECI Client.

Response parameter definition:
mH: ushort Media Handle of TS stream

filterNr: uchar Number of the filter that was programmed

Pre condition Request:

1) Sections shall have been acquired by the ECI Host in accordance with the section filter

specification or the timeout for the filter expired.

2) The previous reqDcrTsSection message was acknowledged with resDcrTsSection.

172 Rec. ITU-T J.1012 (04/2020)

Post condition Response:

1) The next reqDcrTsSection message from the same filter may be sent by the ECI Host.

Table 9.6.2.3.5.5-1 – reqDcrTsSection error codes

Name Description

ErrDcrTsSectionTimeout
See Table 9.6.2.3.7-1.

ErrDcrTsSectionCrcErr

9.6.2.3.5.6 reqDcrTsTable message

C→H reqDcrTsTable(ushort mH, uchar tableId, uint timeout, uint maxLen)

H→C resDcrTsTable(ushort mH, uint tableDataLen, byte tableData[])

• This message requests the ECI Host to send the sections composing a standard table or sub

table as applicable to the programme being descrambled on mH.

Request parameter definition:
mH: ushort Media Handle of TS stream on which to set the default section filter.

tableId: uchar Number of the filter to be programmed. Valid values are listed in Table 9.6.2.3.5.6-1.

timeout: uint Timeout in milliseconds. Value of 0 means no timeout.

maxLen: uint Maximum number of sectionData bytes to be returned. The ECI Host shall round down to the
highest number of sections within this limit.

Table 9.6.2.3.5.6-1 – ca_pmt_list_management values

Name Value Description

DcrTsTableMpegPat 0x0000 PAT table in accordance with [ISO/IEC 13818-1-1].

DcrTsTableMpegCat 0x0001 CAT table in accordance with [ISO/IEC 13818-1-1].

DcrTsTableMpegPmt 0x0002 PMT table of selected program in accordance with [ISO/IEC 13818-1-1].
Result is empty in case a composite PMT is used by the application.

DcrTsTableDvbNit 0x0140 NIT table of the actual delivery network as specified in [ETSI EN 300 468]
and [ETSI TS 101 211]. On cable networks using NITother to carry tables
associated with the regions of such a network the applicable NITother table
applicable to the CPE's region shall be designated.

DcrTsTableDvbSdt 0x0142 SDTactual_current table as specified in [ETSI EN 300 468] and [ETSI TS
101 211].

DcrTsTableDvbBat 0x014A BATactual table as specified in [ETSI EN 300 468] for the bouquet actively
in use by the ECI Host and/or its application.

DcrTsTableDvbEitPf 0x014E EITactual present and following table as specified in [ETSI EN 300 468]
and [ETSI TS 101 211].

DcrTsDescrStartUpdate 0x05 Same meaning as DcrTsDescrStartOnly.

Response parameter definition:
mH: ushort Media Handle of TS stream

tableDataLen: uint Number of bytes in tableData.

tableData: byte [] Sequence of private_sections (bytes in network order) representing the (sub)table
is defined in section 2.4.4.11 of [ISO/IEC 13818-1-1].

Detailed semantics:

• The ECI Host shall use section filters to acquire fresh data for all tables that may be requested

by the ECI Client (as well as for its other purposes). The table sections shall be sent once by

the ECI Host. The ECI Host shall stall the Response if it still needs to acquire the requested

table. The table shall be "up to date" and use the latest complete data available to the ECI

Host. Error codes are defined in Table 9.6.2.3.5.6-2.

NOTE – A table can always be superseded by a next version in a stream at any time in the future.

 Rec. ITU-T J.1012 (04/2020) 173

– Minimum repetition rates for updating relevant DVB SI tables are proposed in [b-ITU-T

J Suppl. 7].

 – PAT, CAT, and PMT: data is older than 20 seconds.

Table 9.6.2.3.5.6-2 – reqDcrTsTable error codes

Name Description

ErrDcrTsSectionTimeout
See Table 9.6.2.3.7-1.

ErrDcrTsSectionCrcErr

9.6.2.3.6 ECI Client source control

9.6.2.3.6.1 General

The ECI Client has the ability to read the type of source of the Transport Stream, control (redirect)

the source of the Transport Stream and redirect the program and/or components that are decoded by

the ECI Host. The messages are listed in Table 9.6.2.3.6.1-1.

Table 9.6.2.3.6.1-1 – TS Client source Control API messages

Message Type Dir. Tag Description

getDcrTsSource get C→H 0x18 ECI Client gets the source of the TS.

reqDcrTsRelocate A C→H 0x19 ECI Clients relocates the source of the TS.

reqDcrTsSelectPrg A C→H 0x1A ECI Client selects program in TS by program number.

reqDcrTsSelectPmt A C→H 0x1B ECI Client selects program in TS by PMT.

reqDcrTsSelectCancel A C→H 0x1C ECI Client cancels its previous program selection.

9.6.2.3.6.2 getDcrTsSource message

C→H tsSourceType getDcrTsSource(ushort mH)

• This message returns type of source of the Media Handle in terms of network type and

locator in the network.

Parameter definition:
mH: ushort Media Handle of the TS stream to get the type and location of the tuned stream.

Property definition:

The property definitions are given in Table 9.6.2.3.6.2-1.

Table 9.6.2.3.6.2-1 – Type definition for tsSourceType structure

#define MaxTsSourceDescr 254

typedef struct tsSourceType{

 ushort tsSourceTag ;

 byte tsSourceDescr[MaxTsSourceDescr] ;

} tsSourceType ;

tsSourceTag: ushort The type of the TS source. The defined values are listed below, including the

corresponding meaning of tsSourceDescr.
tsSourceDescr:
byte[MaxTsSourceDescr]

The meaning depends on tsSourceTag as listed in Table 9.6.2.3.6.2-2.

174 Rec. ITU-T J.1012 (04/2020)

Table 9.6.2.3.6.2-2 – Meaning of tsSource tag

Name Value Description

tsSourceDvbTuner 0x0001 Source of TS is a DVB tuner. The tsSourceDescr contains a single descriptor
from Table 9.6.2.3.6.2-3 in network byte order.

tsSourceDvbFile 0x0002 Source of TS is a file or other non tuneable asset like an IP network (see [b-
ETSI TS 102 034]). The tsSourceDescr field is undefined.

tsDvbDuplet 0x8003 Source or TS can be found using the original network ID and Transport
Stream ID within the present network. tsSourceDescr shall contain the
network byte order of
struct dvbDuplet {ushort onid; ushort tsid};

This value will not be returned by getDcrTsSource message (which will return
a tsSourceDvbTuner instead) but may be used in a reqDcrTsRelocate
message.

RFU Other Reserved for future use.

Values higher than 0x7FFF are not absolute locators and shall not be returned by getDcrTsSource.

Table 9.6.2.3.6.2-3 – DVB Tuner source descriptors

DVB Delivery descriptor Name DVB Descriptor Tag value

terrestrial_delivery_system_descriptor 0x5A

T2_delivery_system_descriptor 0x7F, 0x04

satellite_delivery_system_descriptor 0x43

S2_delivery_system_descriptor 0x79

cable_delivery_system_descriptor 0x44

C2_delivery_system_descriptor 0x7F, 0x0D

The descriptors shall be used as defined in [ETSI EN 300 468], and shall contain a single destination

frequency.

9.6.2.3.6.3 reqDcrTsRelocate message

C→H reqDcrTsRelocate(ushort mH, tsSourceType tsLoc) →

H→C resDcrTsRelocate(ushort mH)

• This message requests the ECI Host to relocate the source of the TS to tsLoc. Related error

codes are defined in Table 9.6.2.3.6.3-1.

Request parameter definition:
mH: ushort Media Handle of the TS stream to relocate/retune.

tsLoc: tsSourceType Location to which to relocate the stream is defined in Table 9.6.2.3.6.2-1.

Response parameter definition:
mH: ushort Media Handle of the TS stream that was relocated.

Detailed semantics:

• In case another network access resource (e.g., tuner/demodulator for broadcast) is required

than is currently allocated to the Media Handle, the Request may not be granted by the ECI

Host for resource constraint reasons.

• On a successful retune any existing filtering and/or descrambling is terminated. Default

acquisition shall commence once the TS is acquired.

 Rec. ITU-T J.1012 (04/2020) 175

Table 9.6.2.3.6.3-1 – reqDcrTsRelocate error codes

Name Description

ErrDcrTsNetworkAccessCapability

See Table 9.6.2.3.7-1. ErrDcrTsNetworkAccessResource

ErrDcrTsNetworkAccessFail

9.6.2.3.6.4 reqDcrTsSelectPrg message

C→H reqDcrTsSelectPrg(ushort mH, ushort prgNumber) →

H→C resDcrTsSelectPrg(ushort mH)

• This message sets the program selection for descrambling by the ECI Host in the current TS

to prgNumber.

Request parameter definition:
mH: ushort Media Handle of the TS stream

prgNumber: ushort Program number in MPEG PAT and PMT tables (see [ISO/IEC 13818-1-1]) in the
TS defining the service to be selected by the ECI Host.

Response parameter definition:
mH: ushort Media Handle of the TS stream

Detailed semantics:

• The ECI Host shall locate the PAT in the TS indicated by mH. It shall locate the PID of the

PMT by matching prgNumber to program_number. It shall acquire the PMT from the

located PID and use the regular ECI Host functions for selecting the components of the

program to be rendered. If this is completed successfully the ECI Host shall issue a

reqDcrTsDescrStart Request to commence descrambling of the program.

Post condition Request:

1) If the ECI Host was descrambling a program not selected by a reqDcrTsSelectPrg or

reqDcrTsSelectPmt Request it shall store the program selection parameters so it can later

return to the program on a reqDcrTsSelectCancel.

Post condition Response:

2) If no error is returned the ECI Host shall subsequently send a reqDcrTsDescrStart.

The error codes for this API message are given in Table 9.6.2.3.6.4-1-1.

Table 9.6.2.3.6.4-1 – reqDcrTsSelectPrg error codes

Name Description

ErrDcrTsPrgNumberNotInPsi
See Table 9.6.2.3.7-1.

ErrDcrTsComponentSelectError

9.6.2.3.6.5 reqDcrTsSelectPmt message

C→H reqDcrTsSelectPmt(ushort mH, uint pmtLen, byte pmt[]) →

H→C resDcrTsSelectPmt(ushort mH)

• This message selects a new program to be descrambled by the ECI Host by sending a MPEG

PMT table defining the program's components in the transport stream identified by mH.

176 Rec. ITU-T J.1012 (04/2020)

Request parameter definition:
mH: ushort Media Handle of the TS stream.

pmtLen: uint Number of bytes of the pmt parameter.

pmt: byte private_section containing a PMT table according to [ISO/IEC 13818-1-1].

Response parameter definition:
mH: ushort Media Handle of the TS stream.

Detailed semantics:

• This command permits an ECI Client to select components in a TS that do not have an

appropriate PAT and PMT table. The ECI Host shall use pmt for selecting the components

of the program to be rendered. If this is completed successfully the ECI Host shall issue a

reqDcrTsDescrStart Request to commence descrambling of the program.

Post condition Request:

1) If the ECI Host was descrambling a program not selected by a reqDcrTsSelectPrg or

reqDcrTsSelectPmt Request then it shall store the program selection parameters so it can

later return to the program on a reqDcrTsSelectCancel.

Post condition Response:

2) If no error is returned the ECI Host shall subsequently send a reqDcrTsDescrStart.

The error codes for this API message are given in Table 9.6.2.3.6.5-1.

Table 9.6.2.3.6.5-1 – reqDcrTsSelectPmt error codes

Name Description

ErrDcrTsComponentSelectError See Table 9.6.2.3.7-1.

9.6.2.3.6.6 reqDcrTsSelectCancel message

C→H reqDcrTsSelectCancel(ushort mH) →

H→C resDcrTsSelectCancel(ushort mH)

• This message cancels a preceding reqDcrTsSelectPrg or reqDcrTsSelectPmt by the ECI

Client, returning to the original program selected by the ECI Host in the TS identified by

mH.

Request parameter definition:
mH: ushort Media Handle of the TS stream.

Response parameter definition:
mH: ushort Media Handle of the TS stream.

Post condition Response:

1) The ECI Host may subsequently send a reqDcrTsDescrStart to resume descrambling of

the original program.

9.6.2.3.7 Error codes for the Media Session API for TS media

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.6.2.3.7-1.

 Rec. ITU-T J.1012 (04/2020) 177

All TS specific Media Handle requests return an error code for the Media Handle parameter in case

they are applied on a non-TS Media Handle.

Table 9.6.2.3.7-1 – Error codes of the media session APIs for TS media

Name Value Description

ErrDcrTsUserDelay -256 Long delay waiting for input from User required to complete the
operation occurred. Operation not completed.

ErrDcrTsCardMissing -257 Smart Card required for session is not accessible/available.

ErrDcrTsServiceMissing -258 A service from outside the CPE required to support the ECI Client
in decryption operations is not available.

ErrDcrTsResourceMissing -259 An undefined resource inside the CPE required for accessing or
decrypting content is not available.

ErrDcrTsMmiMissing -260 ECI Client access to the MMI is not available.

ErrDcrDescrContinue -261 ECI Host continues to attempt to descramble content in this TS.

ErrDcrTsSectionTimeout -262 A timeout for acquiring a section occurred.

ErrDcrTsSectionCrcErr -263 Within timeout period sections were retrieved but with CRC errors.
Typically this means the stream is heavily corrupted.

ErrDcrTsNetworkAccessCapability -264 The ECI Host does not have a network access resource for locating
the requested TS.

ErrDcrTsNetworkAccessResource -265 The ECI Host cannot acquire the network access resource for
accessing the requested TS.

ErrDcrTsNetworkAccessFail -266 The network access resource failed to (reliably) acquire the
requested TS.

ErrDcrTsPrgNumberNotInPsi -267 A PMT with corresponding program number could not be located
from the PAT.

ErrDcrTsComponentSelectError -268 A component in the PMT could not be selected for
demultiplexing/descrambling.

ErrDcrTsPidNotDescrambled -269 A Pid was not selected by ECI Host for descrambling.

ErrDcrTsCwIdNotValid -270 An invalid control word ID was referenced.

RFU other Reserved for future use.

9.6.2.4 Decrypting file and stream based content

9.6.2.4.1 Introduction

This clause defines an ECI Client/ECI Host API that permits CPE and downloaded applications to

interact with a security ECI Client through the ECI Host so as to descramble content formatted as

ISOBMFF [ISO/IEC 23001-9] or any other files or streams in which the ECI Host (or the underlying

CPE or downloaded application acting through it):

• can extract the required security control data from the file or stream and pass it to the ECI

Client;

• permit the descrambling keys generated by the ECI Client to be correctly applied

(synchronized) to the content by means of Key-IDs.

ISOBMFF files [ISO/IEC 23001-9] are a common packaging format for many non-real-time and

adaptive download methods. There is also a common encryption method defined for such file formats:

CENC [ISO/IEC 23001-7]. Also, the adaptive streaming format standard MPEG-Dash [ISO/IEC

23009-1] and [ETSI TS 103 285] is based on ISOBMFF and different (sometimes legacy) DRM

systems use their own proprietary ISOBMFF subformat (with signature "brand" identifier).

One section of the API permits the ECI Client to specify which data it requires from the ISOBMFF

file in order to perform such decoding, thus permitting proprietary (non CENC compliant) DRM

applications of ISOBMFF to be used by CPE applications. The specifics of sample descrambling

should be managed by the ECI Host: i.e., either be CENC compliant or require proprietary extensions

in the ECI Host.

The API has the following sections:

1) Starting and stopping descrambling.

178 Rec. ITU-T J.1012 (04/2020)

2) Setting of ECI Client specific security data acquisition filters.

3) Decryption Key (control word) API.

9.6.2.4.2 Applicable specifications

ISOBMFF files as referred in this clause shall be compliant to [ETSI TS 103 285]. CENC compliant

ISOBMFF files (as required for standard deciphering) shall be compliant to [ISO/IEC 23001-7].

Dash compliant streaming data shall comply with [ISO/IEC 23009-1]. ECI Hosts implementing Dash

shall (at minimum) comply with [ISO/IEC 23001-7], [ISO/IEC 23001-9], and [ETSI TS 103 285] in

as far as applicable to the functional scope of the CPE.

9.6.2.4.3 ECI Host processing requirements

9.6.2.4.3.1 Decryption System Identification detection

The ECI Host shall be able to acquire the list of applicable decryption systems from the content

container based on the following rules:

1) For all ISOBMFF and MP4 files the ECI Host shall acquire the File Type Box ('ftyp') and

Segment Type Box ('styp') and shall use the major_brand field and the

compatible_brands[] field for matching content to ECI Clients.

2) For ISOBMFF CENC encoded files the ECI Host shall recover the Protection System

Specific Header Boxes ('pssh') from any of the possible locations (see [ISO/IEC 23001-7])

and collect from the SystemID field the UUIDs of the DRM systems suitable for decrypting

the content. These files can be recognized by a Protection Scheme Information Box ('sinf')

containing Scheme Type Box ('schm') with scheme_type field equal to 'cenc' or 'cbc1' and

major version of the scheme_version field set to 0x0001. The definition and location of

the 'sinf' boxes is specified in [ISO/IEC 23001-7].

3) For MPEG-Dash content the ECI Host shall acquire all ContentProtection descriptors in the

MPD containing a specific UUID (starting with "urn:uuid:xxxxx", with xxxxx the UUID) for

@SchemeIdUri attribute for the purpose of matching to ECI Client DRM UUIDs or

containing a Conditional Access system ID in accordance with [ETSI TS 103 285] in the

@value attribute (see [b-DASH-IF ID] for the definition of this generic identifier). The ECI

Host shall acquire all ContentProtection descriptors for matching to the ECI Client

capabilities. It shall convert any PSSH boxes there included to corresponding ISOBMFF

binary representation.

The matching process for content to ECI Clients is described in clause 9.6.2.4.5.2.1.

9.6.2.4.3.2 Scrambling type detection

ECI Hosts shall signal the applicable descrambling mode to the ECI Client based on the following

rules:

1) For ISOBMFF CENC encoded files it shall be able to apply the rules as defined in [ISO/IEC

23001-7] for detection of the cipher (AES-CTR or AES-CBC) including clear/scrambled byte

selection, padding, and initialization vector extraction and application as defined in [ISO/IEC

23001-7].

2) For MPEG DASH content in ISOBMFF format AES-CTR (with key rotation) shall be

applied for descrambling as defined in [ETSI TS 103 285].

9.6.2.4.3.3 Default content container security data filtering

The ECI Host shall pass any boxes containing (opaque) information in the container designated for

the ECI Client at the time this is relevant for the process of descrambling. This specifically holds for

the following boxes in ISOBMFF CENC encoded files and for Dash content in ISOBMFF format:

 Rec. ITU-T J.1012 (04/2020) 179

1) For:

a) Protection System Specific Header boxes in 'moov' and 'moof' boxes matching the UUID

of the DRM system ID of the ECI Client, relevant to content being decoded now or in

the near future.

b) Protection Scheme Information Boxes 'sinf' - in case the ECI Client requires access to

'sinf' boxes.

9.6.2.4.3.4 Descrambling of content

The ECI Host shall be responsible for interpreting the scrambling mode, identifying the data to be

descrambled and processing the data using the descrambler using the appropriate Key-IDs to identify

the keys as made available by the ECI Client.

In order for the ECI Client to compute the associated keys, the ECI Host shall pass the required

security control data from the content container to the ECI Client in a timely fashion.

9.6.2.4.4 Media Session API for file-based and streamed media

9.6.2.4.4.1 General

The ECI Host can start the decrypting content on an open Media Handle using the ECI Client

resources reserved. The ECI Host shall provide initialization data for the ECI Client to start

evaluating the access rights.

Table 9.6.2.4.4.1-1 – Media Handle TS content decryption API

Message Type Dir. Tag Description

reqDcrFileStart A H→C 0x01 Requests ECI Client to descramble or return the
descramble status of a file or stream.

reqDcrFileStop A H→C 0x02 ECI Host requests ECI Client to stop the key processing
for the descrambling operation for a Media Handle.

reqDcrFileQuit A C→H 0x03 ECI Client cancels a descrambling operation with the ECI
Host.

9.6.2.4.4.2 reqDcrFileStart Message

H→C reqDcrFileStart(ushort mH, uchar reqType, uchar dataType, uint initDataLen, byte

initData[]) →

C→H resDcrFileStart(ushort mH, uchar dcrStat)

• This message requests the ECI Client to return the descrambling status of and/or start a

descrambling session on the content associated with mH. The ECI Host supplies initial data

for the ECI Client to commence with any license acquisition and evaluation in accordance

with the container/encryption format.

Request parameter definition:
mH: ushort Media Handle of the File.

reqType: uchar Type of Request (descrambling commencing or license inquiry) is defined in
Table 9.6.2.4.4.2-1.

dataType: uchar Type of InitData.

initDataLen: uint Length in bytes of the initData container.

initData: byte The initialization data from the content as defined by dataType. The coding of initDat
is defined in Table 9.6.2.4.2-2.

180 Rec. ITU-T J.1012 (04/2020)

Table 9.6.2.4.4.2-1 – reqType encoding

Name Value Description

ReqTypeDcr 0x01 Descramble start; enter in dialogue with User if required.

ReqTypeInq 0x02 Inquiry to descrambling options.

RFU Other Reserved for future use.

Table 9.6.2.4.4.2-2 – initData coding

dataType Value Description

FmtIsoCenc 0x04 ISOBMFF PSSH boxes (see [ISO/IEC 23001-7]) encountered matching the DRM ID
in the MatchSpecifier of the ECI Client.

FmtIsoCencDash 0x05 ISOBMFF PSSH boxes (see [ISO/IEC 23001-7]) encountered in MPD (see [ISO/IEC
23007-1]) or Initialization segment (see [ISO/IEC 23009-1]) encountered matching
the DRM ID in the MatchSpecifier of the ECI Client.

FmtIsoProp 0x06 The ECI Host may pass data to the ECI Client based on proprietary knowledge. The
ECI Client shall be able to interpret this data based on the same common proprietary
knowledge.

FmtIsoPropDash 0x07 As FmtIsoProp including the indication that the data is a DASH source.

RFU Other Reserved for future use.

Response parameter definition:
mH: ushort Media Handle of the TS stream.

dcrStat: uchar Status of descrambling; see Table 9.6.2.4.4.2-3.

Table 9.6.2.4.4.2-3 – Descrambling status

Name Value Description

DcrStatNo 0x00 No descrambling possible (DRM system has the capability of descrambling).

DcrStatOk 0x01 Descramble start; enter in dialogue with User if required.

DcrStatDialog 0x02 Dialog with User required.

DcrStatPay 0x03 Payment required, possibly also User dialog.

DcrStatDrmNok 0xFE DRM system does not have the capability of descrambling this content.

RFU Other Reserved for future use.

Detailed semantics:

• On inquiries no User dialogs will be started by the ECI Client but the ECI Client shall

evaluate the ability to descramble the content by clearing the license conditions with the

license server without User dialogue.

Pre conditions Request:

1) Media Handle pending.

Pre condition Response:

 2) If ECI Client can descramble content and reqType is OK the ECI Client shall be ready

to generate descrambling keys.

The error codes for the request starting decryption message are given in Table 9.6.2.4.4.2-4.

 Rec. ITU-T J.1012 (04/2020) 181

Table 9.6.2.4.4.2-4 – reqDcrFileStart Error Codes

Name Description

ErrDcrFileUserDelay

See Table 9.6.2.4.7-1.

ErrDcrFileCardMissing

ErrDcrFileServiceMissing

ErrDcrFileResourceMissing

ErrDcrFileMmiMissing

9.6.2.4.4.3 reqDcrFileStop message

H→C reqDcrFile Stop(ushort mH) →

C→H resDcrFile Stop(ushort mH)

• This message allows the ECI Host to stop the file decryption operation.

Request parameter definition:
mH: ushort Media Handle of the File

Response parameter definition:
mH: ushort Media Handle of the File

Pre conditions Response:

3) ECI Client has terminated any operations related to decrypting content.

9.6.2.4.4.4 reqDcrFileQuit Message

C→H reqDcrFileQuit(ushort mH, uint reason) →

H→C resDcrFile Quit(ushort mH)

• This message allows the ECI Client to inform the ECI Host that it has terminated the key

processing for a file decryption operation. Related error codes are defined in

Table 9.6.2.4.4.4-1.

Request parameter definition:
mH: ushort Media Handle of TS stream.

reason: uint Values as defined in Table 9.7.2.5.9-1.

Response parameter definition:
mH: ushort Media Handle of file.

Pre conditions Response:

1) All ECI Host activities related to descrambling mH has terminated or an error is returned.

Post conditions Response:

2) All ECI Client activity related to mH shall terminate immediately or an error shall be

returned.

Table 9.6.2.4.4.4-1 – reqDcrFileQuit error codes

Name Description

ErrDcrFileDescrContinue See Table 9.6.2.4.7-1.

182 Rec. ITU-T J.1012 (04/2020)

9.6.2.4.5 ECI Client Specific Security Data Acquisition

9.6.2.4.5.1 General

The ECI Host shall perform standard data acquisition on the data to be decoded for information

required by the ECI Client to perform key computation. The ECI Client may indicate specific data

acquisition beyond standard data provided by the ECI Host. The ECI Host shall maintain a limited

number of filters for acquisition of such data.

Table 9.6.2.4.5.1-1 – Data Filter API

reqDcrFileFilter req C→H 0x04 ECI Client requests the ECI Host to set a data filter for
security data aquisistion.

reqDcrFileData A C→H 0x05 ECI Client requests ECI Host to acquire data via the File
Filter.

9.6.2.4.5.2 File filter specification

9.6.2.4.5.2.1 Generic file filter definition

The file data filter specification is based on an underlying specification of the file format. Within the

context of a defined file format a filter is defined. The generic file filter specification is defined in

Table 9.6.2.4.5.2.1-1.

Table 9.6.2.4.5.2.1-1 – Generic file filter specification

typedef struct dcrFileFilterSpec {

 ushort filterType; // is defined in Table 9.6.2.4.5.2.1-2

 ushort filterLen;

 byte filter[filterLen]; // shall be formatted according to filterType

} dcrFileFilterSpec;

Table 9.6.2.4.5.2.1-2 – File filter types

FileFilterIsobmff 0x0001 File filter for ISMBMFF formatted data is defined in clause 9.6.2.4.5.2.2.

RFU Other Reserved for future use.

9.6.2.4.5.2.2 ISOBMFF specific File Filter Definition

The filter specification for ISOBMFF formatted files is defined in Table 9.6.2.4.5.2.2-1.

 Rec. ITU-T J.1012 (04/2020) 183

Table 9.6.2.4.5.2.2-1 – ISOBMFF file filter specification

#define MaxFilterFile 16 // maximum number of bytes in box that are filtered

#define MaxContainers 4 // maximum number of container boxes for a box

#define MaxUuidLen 16 // Length in bytes of a UUID

typedef struct BoxSpec {

 uint boxType // 4CC code of box type

 byte extendedType[MaxUuidLen]

 // UUID for boxType=='uuid', otherwise no

significance

 byte filter[MaxFileFilter]; // shall match bytes of box following

 byte filterMask[MaxFilter];

 ushort dataLen ; // maximum amount of box data to be acquired

} BoxSpec;

typedef struct dcrFileFilterIsobmff {

 BoxSpec container[MaxContainer];

 BoxSpec box;

} dcrFileFilterIsobmff;

bool function boxMatch

 (byte *boxData, byte *filter, byte*filterMask; int boxLen) {

{

 bool match = true;

 int i;

 for(i=0; i<MaxFilterFile && i<boxLen && match; i++) {

 match &&= (boxData[i] & filterMask[i] == filter & filterMask[i]) ;

 }

 return match;

}

The ECI Host shall parse the file and shall acquire boxes that match the box field that are contained

in boxes that match any of the container array. The ECI Host shall skip scanning boxes not defined

in [ISO/IEC 14496-12] or [ISO/IEC 23001-7].

The boxType in the container field of dcrFileFilterIsobmff may be set to '****' to indicate a

wildcard. In that case the other fields of container shall have no significance, and set to 0 to indicate

no match.

The filter and filterMask fields in BoxSpec shall be matched to the first bytes after the type field of

a box to be processed. For full boxes" (see [ISO/IEC 14496-12]) this is the version and flag field. The

match shall be done according to the boxMatch function, with the boxLen parameter set to the

number of bytes following the boxtype and extended_type of the box, boxData parameter to the start

of these bytes, filter parameter to the boxSpec.filter field and the filterMask parameter set to the

boxSpec.filterMask field.

The data returned by the filter are the boxes (in sequence) that match the filter as the file is parsed by

the ECI Host. The ECI Host may cluster the boxes as is convenient but should not delay passing

boxes to the ECI Client unnecessarily since this may prevent the ECI Client from generating

required descrambling keys.

9.6.2.4.5.2.3 reqDcrFileFilter Message

C→H setDrcFileFilter(ushort mH, uchar filterNr, dcrFilleFilterSpec *dataFilter)

• This message requests the ECI Host to set a data filter on the basis of the dataFilter for the

acquisition of security data for the ECI Client.

184 Rec. ITU-T J.1012 (04/2020)

Parameter definition:
mH: ushort Media Handle of TS stream.

filterNr: uchar Number of the File filter in the ECI Host.

dataFilter: dcrFilleFilterSpec * The filter specification for data extraction.

Post condition Request:

• This section filter shall be put into effect by the ECI Host until a reqDcrFileStop or

reqDcrFileQuit is effected or a reqDcrFileFilter is set with dataFilter == NULL.

9.6.2.4.5.2.4 reqDcrFileAcqData message

H→C reqDcrFileAcqData(ushort mH, uchar filterNr, uint dataLen, byte data[]) →

C→H resDcrFileAcqData (ushort mH, uchar filterNr)

• This message requests the ECI-Host to acquire and to send one or more sections in the

context of the media file or stream identified by mH and the filter identified by filterNr to

the ECI Client.

Request parameter definition:
mH: ushort Media Handle of the file on which to set the default section filter.

filterNr: uchar Number of the filter to be programmed. The value shall be between 0 and 7.

dataLen: uint Number of bytes in data.

data[]: byte Sequences of private_sections (bytes in network order) are defined in section 2.4.4.11 of
[ISO/IEC 13818-1-1],. Any section with a CRC error is not passed to the ECI Client.

Response parameter definition:
mH: ushort Media Handle of media file or stream.

filterNr: uchar Number of the filter that was programmed.

The related error codes are listed in Table 9.6.2.4.5.2.4-1.

Table 9.6.2.4.5.2.4-1 – reqDerFileAcqData error codes

Name Description

ErrDcrAcqDataTimeout
See Table 9.6.2.4.7-1.

ErrDcrAcqDataDataErr

9.6.2.4.6 File descrambling control word API

9.6.2.4.6.1 General

The content descrambling API section permits key to be made available for descrambling by the ECI

Client. The ECI Host has to first initiate the availability of a control word by passing the Key-ID to

the ECI Client. Once the key is available the ECI Host can apply the computed control word to the

(encrypted) content. The API messages related to the Media Handle File content descrambling API

are listed in Table 9.6.2.4.6.1-1.

Table 9.6.2.4.6.1-1 – Media Handle File content descrambling API

Message Type Dir. Tag Description

reqDcrFileKeyComp A H→C 0x20 Initiate any required computing or other activity of the ECI
Client to make a control word with Key-ID available.

 Rec. ITU-T J.1012 (04/2020) 185

9.6.2.4.6.2 ECI Host processing requirements

9.6.2.4.6.2.1 ISOBMFF CENC format content

This clause defined ECI Host processing requirements for descrambling content in ISOBMFF +

CENC format.

The ECI Host has the responsibility for timely passing any KeyID information to the ECI Client so

that the ECI Client can derive/acquire the required control word in a timely fashion. Other constraints

permitting this should be at least 30 seconds ahead of anticipated use of the control word.

The Key-ID information is contained in several boxes associated with the media samples (sequences

of (partially) encrypted media data): see e.g., clause 5.4 of [b-DASH-IF V3]. The data in these boxes

permit the extraction of Key-IDs, IVs and permit the identification of clear and encrypted data in

media samples.

9.6.2.4.6.2.2 MPEG DASH format content

The details of the MPEG DASH formats the ECI Host has to support are currently not covered in the

ECI specifications.

9.6.2.4.6.3 reqDcrFileKeyComp message

H→C reqDcrFileKeyComp(ushort mh, byte keyId[MaxUuidLen]) →

C→H resDcrFileKeyComp(ushort mH)

• This message initiates the computation and any other activity required by the ECI Client to

compute a control word identified by KeyId and make it available for decrypting content.

Request parameter definition:
mH: ushort Media Handle of the TS stream.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order.

Response parameter definition:
mH: ushort Media Handle of the TS stream.

Pre condition Response:

1) The key is available or an error or timeout occurred.

Detailed semantics:

• The ECI Client shall report an error in case the requested control word cannot be made

available in a timely fashion (60 seconds). ECI Clients may continue trying to acquire the

requested key even after an error is reported.

• On a reported error the ECI Host may re-issue the Request. ECI Hosts may issue a

maximum number of 10 Requests.

The related error codes are listed in Table 9.6.2.4.6.3-1.

186 Rec. ITU-T J.1012 (04/2020)

Table 9.6.2.4.6.3-1 – reqDcrFileKeyComp error codes

Name Description

ErrDcrFileUserDelay

See Table 9.6.2.4.7-1.

ErrDcrFileCardMissing

ErrDcrFileServiceMissing

ErrDcrFileResourceMissing

ErrDcrFileMmiMissing

ErrDcrFileKeyIdUnknown

ErrDcrFileKeyOverflow

9.6.2.4.7 Error codes for the decrypting file and stream based content API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.6.2.4.7-1.

All file specific Media Handle requests return an error code for the Media Handle parameter in case

they are applied on a non-file Media Handle.

Table 9.6.2.4.7-1 – Error codes for media session APIs for file and stream media

Name Value Description

ErrDcrFileUserDelay -256 Long delay waiting for input from User required to complete the operation
occurred. Operation not completed.

ErrDcrFileCardMissing -257 Smart Card required for session is not accessible/available.

ErrDcrFileServiceMissing -258 A service from outside the CPE (e.g., DRM server) required to support the
ECI Client in decryption operations is not available.

ErrDcrFileResourceMissing -259 An undefined resource inside the CPE required for accessing or decrypting
content is not available.

ErrDcrFileMmiMissing -260 ECI Client access to the MMI is not available.

ErrDcrFileDescrContinue -261 ECI Host continues to attempt to descramble content in this File.

ErrDcrAcqDataTimeout -262 A timeout for acquiring a data occurred.

ErrDcrAcqDataDataErr -263 Within timeout period sections were retrieved but with errors. Typically this
means the file is corrupted or does not comply with the applicable
specifications.

ErrDcrFileKeyIdUnknown -300 keyId unknown to ECI Client/security system for this content.

ErrDcrFileKeyOverflow -301 Too many Key-ID Requests in a short period; await ECI Client Responses
to previous processing Requests.

ErrDcrFileKeyWithdrawn -302 Key no longer available; rights withdrawn by ECI Client.

 Rec. ITU-T J.1012 (04/2020) 187

9.7 APIs for access to the ECI Host re-encryption resources

9.7.1 Introduction to the re-encryption APIS

9.7.1.1 List of APIs defined in clause 9.7

Figure 9.7.1-1 – Block diagram of the APIs defined in clause 9.7

Table 9.7.1-1 lists the APIs covered in clause 9.7 and Figure 9.7.1-1 illustrates the location of the

APIs defined in clause 9.7 with the ECI architecture. Refer also to [b-Menezes].

Table 9.7.1-1 – List of APIs defined in clause 9.7

Clause API name Description

9.7.2.3 Export Connection API
Allows the ECI Client to establish an Export Connection for
imported content.

9.7.2.5 Import Connection API
Allows the ECI Client to import content, which was delivered
encrypted via an access network and decrypted under control of an
ECI Client.

9.7.2.6 Micro Client De-encryption API Allows the ECI Client to decrypt imported and re-encrypted content.

9.7.1.2 General concept of re-encryption

Re-encryption in ECI allows an independent Micro DRM System to protect the content that is

delivered by a CA or DRM ECI Client for further applications within or outside the CPE. The re-

encryption system in an ECI compliant implementation is called a Micro DRM System. The

applications of a Micro DRM System can be, for example, time shifting, PVR and streaming. The

re-encryption ECI Client is called a Micro Server. The client, be it ECI or non-ECI compliant, that

can decrypt the re-encrypted content, is called the Micro Client. The Client image and credentials

for re-encryption can be downloaded as a regular ECI Client, provisioned by a Micro DRM master

server. Figure 9.7.1.2-1 shows the overall system (excluding the micro DRM master server). In case

of local storage the Micro Server and the Micro Client are implemented in a single device.

188 Rec. ITU-T J.1012 (04/2020)

Figure 9.7.1.2-1 – Micro DRM system diagram

The CA/DRM ECI Client initially decrypting the content can control whether it is permitted to export

the content to the installed Micro DRM Systems. It authenticates the Micro Server for that purpose

through the Advanced Security system; authentication being under the control of the CA/DRM

Operator. Once the content is exported, the Micro DRM System has the responsibility for protection

of the content. Decryption, re-encryption and the authentication for export is securely supported by

the Advanced Security system. The principles are illustrated in Figure 9.7.1.2-1.

9.7.1.3 Re-encryption API structure overview

Figure 9.7.1.3-1 shows a more detailed diagram illustrating the role of the different APIs involved in

re-encryption. The ECI Host provides the decoding ECI Client with all required information through

the decryption API. The decoding ECI Client securely establishes the control word for decryption of

the content through the Advanced Security API. The essential content properties (marks) are

authenticated. The Export API permits ECI Host to request the decoding ECI Client to establish an

Export Connection to the desired Micro Server for re-encryption. The Advanced Security API

allows the exporting ECI Client to authenticate the importing Micro Server. The ECI Host uses the

Import API to establish the authorized Export Connection to a Micro Server. The re-encryption

API permits the ECI Host to direct the Micro Server to a mode of operation corresponding to the

content packaging format and the application (streaming, time-shifting or storage) and encrypt the

content for the desired (authenticated) target Micro Client.

 Rec. ITU-T J.1012 (04/2020) 189

Figure 9.7.1.3-1 – Architecture of the decryption and re-encryption functionalities

The scheme in Figure 9.7.1.3-1 and Figure 9.7.1.3-2 provide an overview of the main messages in

the decryption, export control, import control, re-encryption and the Micro Client decryption APIs. It

displays the content flowing from left to right: from a first CA/DRM delivery ECI Client over an

Export/Import Connection to a Micro Server which encrypts the decrypted content to be finally

decoded by a Target Micro Client.

The four host-client APIs support the following processing steps:

• The discovery phase enables ECI Clients to publish their potential interworking options to

the ECI Host (in collaboration with the application). This enables the ECI Host to match the

requested content to a certain ECI Client. In cases where the chosen ECI Client does not

possess the appropriate rights to process this content; the ECI Host has to look for other ECI

Clients. In home networking and distributed PVR applications this can involve application

protocols like DLNA see [b-DLNA].The authentication step permits the ECI Host to

establish an authenticated connection between the desired ECI Client and the Micro Server

or the Micro Server and the Micro Client. Authentications can be implicit: i.e., the

cryptography proof for authentication can be embodied in the ability for the ECI Client to

finally decrypt the content. Authentication is always following the flow of the content. In

some cases a reverse agreement is required. For business purposes an Import Connection

may have to be approved by the Micro Server.

• The session instantiation step permits the ECI Host to reserve all resources needed to decrypt

or encrypt content in a certain mode of operation associated with a Media Handle. The

import and Target connections are defined for reqEncrMhOpen on a Micro Server, or are

implied in a regular CA/DRM ECI Client. Note that the ECI Host is responsible for

allocating complementary resources, like (de)scrambling, de-multiplexing and decoding

processing resources for a total media application scenario to be able to proceed. The ECI

Client ultimately requests the assignment of AS and decryption or encryption resources using

the Advanced Security API.

• The Session Control step permits the ECI Host to start and stop the processing of content on

Media Handles. For seamless processing of content on a path, it is required to start the ECI

190 Rec. ITU-T J.1012 (04/2020)

Clients from destination to source: i.e., an ECI Client should be ready to process the content

if it is presented as such.

Figure 9.7.1.3-2 – En-/Decryption and Import/Export API overview

The messages use a certain systematic in their naming and semantics:

• The discovery step permits the ECI Client to publish its capabilities for connecting to another

ECI Client or content. The messages setDcrMhMatch, reqExpConnNodes,

reqImpConnNodes, reqEncrTargets, reqDcrTargets request the ECI Client to publish these

(in the form of identities).

• The authentication step uses setup, drop and cancel messages for the creation of an

(authenticated) connection, the de-allocation of a previous connection or the cancelling of

such a connection by the ECI Client. The reference for a connection is an Export

Connection (ECI Client exporting content), Import Connection (ECI Client importing

content) or a Target connection (Micro Server encrypting content for subsequent decryption

by a Target and vice versa. For example, a Micro Client decrypting content from a Micro

Server).

• The session instantiation step uses open, close and cancel for the creation and termination of

the sessions, all referring to a Media Handle as the common reference. Also, MMI sessions

and Smart Card resource management required by the ECI Client can refer to the Media

Handle to permit the ECI Host to associate a User dialogue request within the context of its

application.

• The session control step defines different messages for the decryption of two specific content

formats: transport streams and file format. Processing can be started, stopped by the ECI

Host and the ECI Client can quit processing in case of a lack of resources or a rights issue.

NOTE 1 – For some protection systems it may not be necessary to perform significant processing for all phases.

Their ECI Clients may perform only minor administrative processing for some of the messages.

NOTE 2 – The nature of ECI Clients on an Import/Export Connection is different from the relation between

a Micro Server and a Micro Client. On the Import/Export Connection with ECI Clients they share the

 Rec. ITU-T J.1012 (04/2020) 191

ECI Host and can exchange content through the AS export mechanism using ECI defined import/export

Certificate Chains. Micro Server and Micro Client can use a protocol of choice (characteristic for the Micro

DRM System) for establishing connections as long as it fits in the API framework and can use the AS System

to establish authentication and common keys. Exchange of content on an Export/Import Connection is

implicit (defined by the ECI Host); the authenticity (for export purposes) of the Micro Server will be validated

by the AS system. Exchange of content between a Micro Server and Micro Client requires a Media Handle

session and session control at both Micro Server and Micro Client.

9.7.2 ECI Export Control API

9.7.2.1 Introduction

ECI permits ECI Clients to export decoded content to Micro Server that will ensure for re-

encryption for the purpose of (permitted) redistribution to other devices or (permitted) storage of the

content for later playback. For this purpose, ECI defines a Certificate structure that defines groups

of permitted export Micro DRM Systems. Each content item decoded is accompanied by the

identification of the appropriate Export Group. From the Export Group there has to be a chain of

Certificates authorizing export to the selected Micro Server. The chain is processed by the

Advanced Security System in order to provide a highly robust export authorization mechanism.

The exporting ECI Client is responsible for providing the Export Group Certificates and all direct

descendants. The importing Micro Client is responsible for providing the complementary credential

information to permit completion of the chain from exporting to importing ECI Client.

The ECI Host can set up a re-encryption connection from a decrypting ECI Client to an encrypting

Micro Server. Once the connection is established the ECI Host can proceed with decrypting and re-

encrypting content using Media Handle sessions. The AS System will ensure secure passing of

content and associated protection information from the decoding ECI Client to the Micro Client

based on the provided credentials through the AS System.

The ECI Hosts provides support for ECI Clients to access network services to receive up to date

credentials for export and import, e.g., through the data Carousel API (clause 9.5.4) and the IP HTTP

API (clause 9.4.4.6).

For targeting of re-encryption the ECI Host and application have to establish the authorized Micro

Clients that are enabled to decode the content. This can be both an individual CPE (with a suitable

Client) as well as a group (based on a shared key). The ECI Host then establishes an authorized

connection between Micro Server and its matching Micro Client (one for each Micro Client). For

time-shifting and recording applications the information needed by the ECI Client to be able to

decode the content later can be stored (e.g., along with the re-encrypted content). For real-time

streaming connections the session control messages needed by Micro Server and Micro Client can

be passed either through the ECI Host in case Micro Clients and Micro Server are residing in the

same device or may be communicated directly between the Micro Clients through an IP connection.

NOTE – The communication protocols and associated security aspects for ECI Client to ECI Client

communication are out of scope for ECI.

9.7.2.2 Export Certificate structures

9.7.2.2.1 Overall structure

The ECI export mechanism is based on Certificates. Most Certificates have an associated

Revocation List to permit updates of the export permissions. Figure 9.7.2.2.1-1 presents the

Certificate structure for immediate export control of a decoding ECI Client.

192 Rec. ITU-T J.1012 (04/2020)

Figure 9.7.2.2.1-1 – ECI Certificate distribution structure

The ECI Client Platform Operation Certificate (POC) is the Father of the Export Group

Certificates. The ECI POC has a special revocation list to permit the ECI Client to control the Export

Group Certificate and its associated revocation list versions. Each Export Group Certificate is the

Father of the actual Export Certificates or a further (descendant) Export Group. There are two types

of Export Certificates:

1) An Export System Certificate (ESC) identifies the permitted export Micro Server by means

of its Sender Public Key, permitting an immediate authentication. In addition, the

revocation-list version number of the ESC is used to define a minimum version number for

the Micro Server.

2) A Third Party Export Group Certificate (TPEGC) refers to an Export Group Certificate

managed by another organization. This permits larger heterogeneous groups of Micro DRM

Systems to be authenticated with a single export Certificate.

The third party group export Certificate structure is further illustrated in Figure 9.7.2.2.1-2.

 Rec. ITU-T J.1012 (04/2020) 193

Figure 9.7.2.2.1-2 – Third party group export Certificate structure

The ECI Root Certificate is the Father of an Export Authorization Operator Certificate (EAOC).

The ECI Root Certificate maintains a special revocation list for such Certificates. The Export

Authorization Operator Certificate (EAOC) is the Father of an Export Authorization Certificate

(EAC). This Certificate is matched to a Third Part Export Group Certificate (TPEGC). Through

this mechanism there is a dual authentication of a third party group in order to provide additional

security.

A Third Party Export Group Certificate is the Father of either:

1) An Export Group Certificate (EGC), which itself can be the Father of another EGC or of

any of the Certificates listed below. Each EGC has an associated Revocation List.

2) An Export System Certificate (ESC).

3) A (next) Third Party Export Group Certificate (TPEGC).

Each Certificate is additionally verified by a matching Export Authorization Certificate (EAC),

which form a tree matching the TPEGC/EGC tree.

Table 9.7.2.2.1-1 provides an overview of the Certificates and their Fathers.

194 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.2.1-1 – Summary of the different Export certificates

Certificate Name Abbr. Description Father

Export Group EGC This Certificate permits exporting ECI Clients to
authenticate a set (group) of Micro Clients and/or
third party authenticated groups to which they permit
export. The applicable Export Group is defined as
part of an authenticated rights-attribute to the content.

POC, TPEGC,
EGC

Third Party Export Group TPEGC A Certificate for authenticating a group of Micro DRM
Systems managed by another (third) party.

EGC, TPEGC

Export Authorization Operator EAOC A Certificate that provides the basis for an Operator
that provides an authorization service for third party
Export Groups. The Certificate is the Father of
export authorization Certificate trees for third party
Export Groups that it co-authenticates.

ECI Root

Export Authorization EAC This Certificates provides a co-authentication of a
Third Party Export Group Certificate or an Export
Group Certificate managed by a third party.

EAC, EAOC

Export System ESC This Certificate authenticates the Platform
Operation Certificate of a Micro Client.

EGC, TPEGC

9.7.2.2.2 Export Certificate definitions

9.7.2.2.2.1 Export Group Certificate and Revocation List

The Certificate definitions for the ECI Export Group Certificate (EGC) shall be in accordance

with the general ECI_certificate definition given in clause 5.2. The EGC uses the identifier field of

ECI Certificates with the field definition given in Table 9.7.2.2.2.1-1.

Table 9.7.2.2.2.1-1 – ECI Export Group ID definition

Syntax No. of bits Mnemonic

ECI_EGC_Id {

 type /* see Table 5.3-1*/ 4 uimsbf

 export_group_id /* see Table 5.3-1 */ 20 uimsbf

 export_group_version 8 uimsbf

}

Semantics:
Type Value in accordance with Table 5.2-1.

export_group_id: integer Id assigned to Export Group by entity managing the Export Group. Values
0x00000 and 0xFFFFF0-0xFFFFF are reserved.

export_group_version: integer Version of the Export Group Certificate with the identifier export_group_id.

For authentication purposes of Child Certificates the EGC shall be accompanied by a revocation list

in accordance with clause 5.3 and especially Table 5.3-1.

9.7.2.2.2.2 Third party Export Group Certificate and Revocation List

The Certificate definitions for the ECI third party Export Group Certificate (TPEGC) shall be in

accordance with the general ECI_certificate definition given in clause 5.2. The TPEGC uses the

identifier field of ECI Certificates with the field definition given in Table 9.7.2.2.2.2-1.

 Rec. ITU-T J.1012 (04/2020) 195

Table 9.7.2.2.2.2-1 – TPEGC identifier field definition

Syntax No. of bits Mnemonic

ECI_TPEGC_Id {

 type /* see Table 5.2-1*/ 4 uimsbf

 tp_export_group_id /* see Table 5.3-1 */ 20 uimsbf

 tp_export_group_version 8 uimsbf

}

Semantics:
Type Value in accordance with Table 5.3-1.

tp_export_group_id: integer Id assigned to the third-party Export Group by entity managing the third party

Export Group. Values 0x00000 and 0xFFFFF0-0xFFFFF are reserved.

tp_export_group_version: integer Version of the third-party Export Group Certificate with the identifier

tp_export_group_id.

The extension field of the TPEGC, as defined in Table 9.7.2.2.2.2-2, shall contain the following

structure, using the definitions of export_authorization_operator_id in Table 9.7.2.2.2.4-1 and

export_authorization_id in Table 9.7.2.2.2.5-1 .

Table 9.7.2.2.2.2-2 – TPEGC extension field definition

Syntax No. of bits Mnemonic

ECI_ TPEGC _Extension {

 export_authorization_operator_id 20 uimsbf

 export_authorization_id 20 uimsbf

 padding(4)

 Extension_field extension

}

Semantics:
export_authorization_operator_id: integer ECI identifier of export authorization Operator Certificate that co-

authenticates this Certificate.

export_authorization_id: integer ECI identifier of the export authorization Certificate that co-

authenticates this Certificate (see clause 9.7.1.2.2.5).

extension: Extension_field Extension of this structure.

For authentication purposes of Child Certificates the TPEGC shall be accompanied by a revocation

list in accordance with clause 5.3 and Table 5.3-1.

9.7.2.2.2.3 Root Revocation List for Export Authorization Operator Certificates

For authentication purposes an export authentication chain has to start with a root revocation list in

accordance with clause 5.3 and Table 5.3-1.

9.7.2.2.2.4 Export Authorization Operator Certificate

The Certificate definitions for the ECI export authorization Operator Certificate (EAOC) shall be

in accordance with the general ECI_certificate definition given in clause 5.2. The EAOC uses the

identifier field of ECI Certificates with the field definition given in Table 9.7.2.2.2.4-1.

196 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.2.2.4-1 – EAOC identifier field definition

Syntax No. of bits Mnemonic

ECI_EAOC_Id {

 type /* see Table 5.3-1*/ 4 uimsbf

 export_authorization_operator_id

 /* see Table 5.3-1 */

20 uimsbf

 export_authorization_operator_version 8 uimsbf

}

Semantics:
type Value in accordance with Table 5.3-1.

export_authorization_operator_id: integer Id assigned to the export authorization operator. Values 0x00000 and
0xFFFFF0-0xFFFFF are reserved.

export_authorization_operator_version:

integer

Version of the export authorization operator Certificate with the identifier

export_authorization_operator_id.

For authentication purposes of Child Certificates the EAOC shall be accompanied by a revocation

list in accordance with clause 5.3 and Table 5.3-1.

9.7.2.2.2.5 Export Authorization Certificate and Revocation List

The Certificate definitions for the ECI export authorization Certificate (EAC) shall be in accordance

with the general ECI_certificate definition in clause 5.2, using a specific non-empty extension field.

The EAC uses the identifier field of ECI Certificates with the field definition given in Table

9.7.2.2.2.5-1.

Table 9.7.2.2.2.5-1 – EAC extension field definition

Syntax No. of bits Mnemonic

ECI_EAC_Id {

 type /* see Table 5.3-1*/ 4 uimsbf

 export_authorization_id

 /* see Table 5.3-1 */

20 uimsbf

 export_authorization_version 8 uimsbf

}

Semantics:
Type Value in accordance with Table 5.3-1.

export_authorization_id: integer Id assigned to the export authorization Certificate (in the context of its

Father). Values 0x00000 and 0xFFFFF0-0xFFFFF are reserved.

export_authorization_version: integer Version of the export authorization Certificate with the identifier

export_authorization_id.

The extension field of the EAC shall contain the Certificate structure that is to be authorized for

export (see clause 5.1.3) excluding the signature field, followed by an extension field.

For authentication purposes of Child Certificates the EAC shall be accompanied by a revocation list

in accordance with clause 5.3, and Table 5.3-1, if it is required to authenticate Child Certificates.

 Rec. ITU-T J.1012 (04/2020) 197

9.7.2.2.2.6 Export System Certificate

The Certificate definitions for the ECI export system Certificate (ESC) shall be in accordance with

the general ECI_certificate definition in clause 5.2. The public_key field of the Certificate shall

contain the SPK value used by the Micro Server. The ESC uses the identifier field of ECI

Certificates with the field definition given in Table 9.7.2.2.2.6-1.

Table 9.7.2.2.2.6-1 – ESC extension field definition

Syntax No. of bits Mnemonic

ECI_ESC_Id {

 type /* see Table 5.3-1/ 4 uimsbf

 export_system_id

 /* see Table 5.3-1 */

20 uimsbf

 export_system_version 8 uimsbf

}

Semantics:
Type Value in accordance with Table 5.3-1.

export_system_id: integer Id assigned to the export system Certificate (in the context of its Father).

Values 0x00000 and 0xFFFFF0-0xFFFFF are reserved.

export_system_version: integer Version of the export system Certificate with identifier

export_system_id.

9.7.2.2.3 Validation of Export Certificate Chains

The Exporting ECI Client with a pre-validated chain and with complementary export authorization

chains shall create the requested Import/Export Connection. The exporting ECI Client and the

importing ECI Micro Server, being responsible for their part of the chains, shall provide the User

with information in case of issues and/or attempts to acquire renewed chains. The ECI Client shall

provide these chains for processing to the AS System in order to create the desired Export/Import

Connection. In case the AS System finds validation errors in any chain or in the complementary

export authorization, the ECI Client will not be able to establish the required connection.

Export Authorization Certificates are used to co-authenticate an export Certificate. The processing

rules for co-authentication are:

1) The export authorization Certificate and the Certificate to be co-authenticated have valid

signatures (as defined by their respective Fathers) and are not revoked.

2) All data in the Certificate to be co-authenticated except its signature are compared to the

data in the corresponding extension field of the export authorization Certificate. In case of a

miss-match the co-authentication is not successful.

For setting up an Export Connection the CPS shall follow the processing rules below:

1) All CPS processing rules for Certificate Chains as listed in clause 5.4.2 shall apply.

2) The CPS shall verify the types of the Child of a Father Certificate as being appropriate in

accordance with Table 5.2-2.

3) The Father for the exporting ECI Client's Export Chain shall be the ECI POC of the Client.

The accompanying Revocation List for Export Groups shall be applied for validating Child

Export Group Certificates. The version number of the POC Revocation List for Export

Groups shall be greater than the minClientVersion (see [ITU-T J.1014]) of the Client.

4) The CPS shall accept max. 2 levels of EGC for the exporting ECI Client, that is, a Child of

a second level EGC shall be a TPEGC or ESC.

198 Rec. ITU-T J.1012 (04/2020)

5) The CPS shall ensure that any TPGC is accompanied by an EAC co-authenticated through a

chain (with accompanying Revocation Lists) from the Root to EAOC to the EAC. The

version of the Root Revocation List for Export Authorization Operator Certificate shall be

used to determine the maximum revocation list version number for "system integrity

validation".

6) The CPS shall ensure that any EGC, ESC and TPEGC descending from a TPEGC is co-

authenticated by an EAC that is the Child of the EAC that validated the Father of that

Certificate.

Exporting ECI Clients and Micro DRM Servers should provide adequate pre-processing on their

chains and provide the latest available versions in order to to avoid revocation in the CPS.

9.7.2.2.4 Transport protocols for export credentials

9.7.2.2.4.1 General

Exporting ECI Clients and Micro Servers may define their own formats for transporting credential

data. ECI defines a standardized file format for carrying such data. These standardized files are

accessible for ECI Clients through the ECI Carousel Access API for broadcast media. For online

provisioning of Clients ECI defines standardized web API calls for this purpose.

9.7.2.2.4.2 Export Tree File format

For the Export Groups tree the file format is defined in Table 9.7.2.2.4.2-1.

Table 9.7.2.2.4.2-1 – ECI Export Tree File definition

Syntax No. Of bits Mnemonic

ECI_Export_Tree_File { 24

 magic = 'EET'

 image_header_version 8 uimsbf

 if (image_header_version == 0x01) {

 ECI_Operator_Id operator_id 32 uimsbf

 ECI_Platform_Operation_Id platform_operation_id 32 uimsbf

 ECI_RL_Tree export_group_tree

 Extension_Field extensions

 }

}

 Rec. ITU-T J.1012 (04/2020) 199

Semantics:
magic: byte[3] Magic number used for verification of the format of the following data. It

has the value of the three 8-bit ASCII representations of the characters

'EET'. ECI Clients shall check the value of this field to verify if an ECI

file has the expected format for additional data integrity.

image_header_version: byte Format version of the image header. Value 0x01 is the presently defined

version; all other values are reserved. ECI Clients shall ignore any

image with a version number that is not recognized.

operator_id: ECI_Operator_Id ID of Operator of the ECI Client of the export tree contained in the file.

The operator_version field corresponds to the root of the

export_group_tree.

Platform-operation_id:

ECI_Platform_Operation_Id

ID of Platform Operation of the ECI Client of the export tree contained

in the file.

export_group_tree: ECI_RL_Tree The ECI_RL_Tree structure starts with the Export Group revocation List

for the Export Groups. For Certificates that do not require a

complementary Revocation List this structure shall contain an empty

Revocation List with a signature not required to match the Certificate.

extensions: Extension_field Additional data as defined by the Operator.

9.7.2.2.4.3 Import Chains File format

For the Import Chains of a Micro Server the file format is defined in Table 9.7.2.2.4.3-1.

Table 9.7.2.2.4.3-1 – ECI Import Chains File definition

Syntax No. of bits Mnemonic

ECI_Import_Chain_File { 24

 magic = 'EIC'

 image_header_version 8 uimsbf

 if (image_header_version == 0x01) {

 ECI_Operator_Id operator_id 32 uimsbf

 ECI_Platform_Operation_Id platform_operation_id 32 uimsbf

 nr_chains 16 uimsbf

 padding(4)

 for (i=0; i<nr_chains; i++){

 ECI_Operator_Id eaoc_id 32 uimsbf

 ECI_Platform_Operation_Id

 eac_id

32 uimsbf

 ECI_Certificate_Chain import_chain

 }

 Extension_Field extensions

 }

}

200 Rec. ITU-T J.1012 (04/2020)

Semantics:
magic: byte[3] Magic number used for verification of the format of the following data. It

has the value of the three 8-bit ASCII representations of the characters

'EIC'. ECI Clients shall check the value of this field to verify if an ECI

file has the expected format for additional data integrity.

image_header_version: byte Format version of the image header. Value 0x01 is the presently defined

version; all other values are reserved. ECI Clients shall ignore any

image with a version number that is not recognized.

operator_id: ECI_Operator_Id ID of Operator of the Micro Server for which this Import Chain is

intended.

platform_operation_id:

ECI_Platform_Operation_Id

ID of Platform Operation of Micro Server for which this Import Chain

is intended.

nr_chains: integer The number of Import Chains in the file.

eaoc_id: ECI_Operator_Id ID of the authorization Operator of the Import Chain.

eac_id: ECI_Platform_Id ID of the EAC that co-authorizes the Platform Operation of the Import

Chain.

import_chain: ECI_Certificate_Chain The ECI Certificate Chain from the import Platform Operation

Certificate to the ESG identifying the Micro Client. The chain may

contain multiple TPEGCs. Each valid Import Chain shall be separately

represented: i.e., if chain1 consists of two third party subchains and the

second subchain can also be used separately as an Import Chain it

shall be represented separately. For Certificates that do not require a

complementary Revocation List this structure shall contain an empty

Revocation List with a signature not required to match the Certificate.

extensions: Extension_field Additional data as defined by the Operator.

9.7.2.2.4.4 Export Authorization File format

For the authorization of Export Chains of a Micro Server the file format is defined in Table

9.7.2.2.4.4-1.

Table 9.7.2.2.4.4-1 – ECI Export Authorization File definition

Syntax No. of bits Mnemonic

ECI_Export_Authorization_File { 24

 magic = 'EEA'

 image_header_version 8 uimsbf

 if (image_header_version == 0x01) {

 ECI_Operator_Id operator_id 32 uimsbf

 ECI_Platform_Operation_Id platform_operation_id 32 uimsbf

 nr_chains 16 uimsbf

 padding(4)

 for (i=0; i<nr_chains; i++){

 direct_flag 1 uimsbf

 padding(4)

 ECI_Operator_Id o_id 32 uimsbf

 ECI_Platform_Operation_Id po_id 32 uimsbf

 ECI_Certificate_Chain chain

 }

 Extension_Field extensions

 }

}

 Rec. ITU-T J.1012 (04/2020) 201

Semantics:
magic: byte[3] Magic number used for verification of the format of the following data. It

has the value of the three 8-bit ASCII representations of the characters

'EEA'. ECI Clients shall check the value of this field to verify if an ECI

file has the expected format for additional data integrity.

image_header_version: byte Format version of the image header. Value 0x01 is the presently defined

version; all other values are reserved. ECI Clients shall ignore any

image with a version number that is not recognized.

operator_id: ECI_Operator_Id ID of Operator of the Micro Server for which this Import Chain is

intended.

Platform_operation_id:

ECI_Platform_Operation_Id

ID of Platform Operation of Micro Server for which this Import Chain

is intended.

nr_chains: integer The number of export authorization chains in this file.

direct_flag: bit If the value is 0b1 the following chain directly authorizes an ESC

subchain and o_id and po_id are not relevant.

If the value is 0b0 the following chain authorizes TPEGC subchain and

o_id and po_id represent authorization Certificate ids.

o_id: ECI_Operator_Id ID of the third party Operator an interim third party Export Chain that is

authenticated by the following export authentication chain.

po_id: ECI_Platform_Öperation_Id ID of the third party Platform Operation an interim third party Export

Chain that is authenticated by the following export authentication chain.

chain: ECI_Certificate_Chain The ECI Certificate Chain from the ECI Root Certificate to the EAC

authenticating the first TPEGC, ESG.

extensions: Extension_field Additional data as defined by the Operator.

9.7.2.2.4.5 Broadcast Carousels carrying export credentials

Operators may deploy ECI defined carousels as defined in clause 7.7.2 to carry the export and/or

import credentials of the ECI Clients they choose to support. However, for any specific ECI Client,

the ECI Host shall only have to monitor the updates of a single location DSI of a data carousel. I.e.,

for the purpose of carrying export or import credentials using the standard carousel format, an

Operator shall use the same carousel that carries Client Image, Platform Operation credentials and

revocation data, etc., for such an ECI Client. See also clause 7.7.2.1.

The formats of the data of the carousel-modules shall follow Table 7.7.2.6-1. Modules designated by

a compatibilityDescriptor with descriptorType field equal 0xB0 shall carry modules with a single

ECI_Export_Tree_File structure, those with descriptorType field equal 0xB1 shall carry modules

with a single ECI_Import_Chain_File structure and those with descriptorType field equal 0xB2 shall

carry modules with a single ECI_Export_Authentication_File structure.

It is recommended that the ECI Client monitoring of updates in the carousel coincides with those to

be performed by the ECI Host for the other ECI Client data to permit efficient power management.

9.7.2.2.4.6 Online provisioning of export credentials

This Recommendation reserves the following web API URL structures for the purpose of permitting

a standard structure for ECI Clients to access export credentials from an Operator's online server.

With reference to clause 7.7.3 for the definition of tail_extension and the notational conventions:
tail_extension* ::=

 client_export |

 client_import |

 client_exp_auth .

The notation tail_extension* indicates that other extensions may be in future versions of this

Recommendation.

202 Rec. ITU-T J.1012 (04/2020)

The following web API requests are defined for import/export:
client_export ::= 'client-export/' operator_id '/' platform_operation_id .

This shall return the latest version of the export tree file with format ECI_Export_Tree_File for the

ECI Client designated by operator_id, platform_operatio_id.
client_import ::= 'client-import/' operator_id '/' platform_operation_id .

This shall return the latest version of the Import Chain file with format ECI_Import_Chain_File for

the Micro Server client designated by operator_id, platform_operation_id.
client_exp_auth ::= 'client-exp_auth/' operator_id '/' platform_operation_id .

This shall return the latest version of the export authentication file with format

ECI_Export_Authentication_File for the Micro Server client designated by operator_id,

platform_operation_id.

9.7.2.3 Export Connection API

9.7.2.3.1 General

ECI Clients can provide export information to the ECI Host. This permits the ECI Host to pair the

exporting system with matching Import Chains from Micro Servers. The ECI Host (and

application) can define the actual connections to be created from all possible options. It can attempt

to connect the exporting and matching importing ECI Client by sending the exporting ECI Client a

connection request with the Import Chain for the target import ECI Client. The exporting ECI

Client as well as the ECI Host may request to cancel the connection or to re-initialize the connection

in case of updated import credentials. The available Export Connection messages are listed in

Table 9.7.2.3.1-1.

Table 9.7.2.3.1-1 – Export Connection API messages

Message Type Dir. Tag Description

reqExpConnNodes A H→C 0x0 The ECI Host requests export option nodes from the ECI Client.

reqExpConnSetup A H→C 0x1 The ECI Host requests the ECI Client to initialize an Export
Connection to an importing ECI Client based on an Import
Chain.

reqExpConnDrop A H→C 0x2 The ECI Hosts cancels any previously initialized connection of
an exporting ECI Client to an importing ECI Client.

reqExpConnCancel A C→H 0x3 The ECI Client terminates an initialized Export Connection with
an importing ECI Client.

reqExpMhOpen A H→C 0x4 The ECI Host requests the ECI Client to create an export
session based on a previously initialized Export Connection.

reqExpMhClose A H→C 0x5 The ECI Host closes an export session.

reqExpMhCancel A C→H 0x6 The ECI Client cancels an export session.

9.7.2.3.2 reqExpConnNodes message

H→C reqExpConnNodes() →

C→H resExpConnNodes(ExpConnOption conn Nodes [])

• The message requests the ECI Client to return its list with possible Export Connections;

the Response message returns the list. Related error codes are listed in Table 9.7.2.3.2-2.

 Rec. ITU-T J.1012 (04/2020) 203

Response Parameter definitions:

connNodes: ExpConn

Option[]

The list provides the ECI identities of either third party or ECI Clients that the ECI Client
can connect to for export. Each option has a priority: the higher the priority the less
chance that an export cannot be successfully completed. ExpConnNode is defined in
Table 9.7.2.3.2-1.

Table 9.7.2.3.2-1 – ExpConnNode type definition

typedef struct ExpConnNode {

 uint targetType;

 uint operatorId;

 uint targetId;

 uint targetPriority;

} ExpConnNode;

Field definitions:

targetType: uint Type of the target: Value equal 1 is EAC (third party), Value equal 2 is POC (direct
export). Other values are undefined.

operatorId: uint Representing the 20-bit ECI Certificate ID of the Operator of the target export:
export_authorization_operator_id for the EAC target, and operator_id for the POC target.

targetId: uint Representing the 20-bit ECI Certificate ID of the target export being the
export_authorization_ id for the EAC target, and the platform_operation_id for the POC
target.

targetPriority: uint The priority to select a particular export is the sum of two parts:

• Value in multiples of 1 024 that represents a specific (commercial) priority for
the export to be connected to a particular Micro Server.

• Value between 0 and 1 023 representing a fraction minus 1 of 1 024 of the
anticipated content use cases that can be exported with this export Micro DRM
System.

ECI Hosts shall use this information to either automatically select the most suitable
Micro DRM System (provided application requirements for the micro DRM application
are met by the highest priority system) and/or to present the above as a preference
towards the User in case of a manual selection.

Table 9.7.2.3.2-2 – reqExpNodeInfo Error Codes

Name Description

ErrExpConnNwAccess

See Table 9.7.2.3.9-1. ErrExpConnAuthProblem

ErrExpUninitState

9.7.2.3.3 reqExpConnSetup message

H→C reqExpConn Setup (CertChainSerial Import, CertChainSerial Auth[],ushort connId) →

C→H resExpConn Setup ()

• This message requests the ECI Client to initialize (or re-initialize) an Export Connection

connId with the ECI Client with the identifier clientId using Import Chain Import, export

authentication chains Auth, and ECI Client chain Target.

204 Rec. ITU-T J.1012 (04/2020)

Request Parameter definitions:

Import: CertChainSerial Import Chain (from export TPEGC to ESC).

Auth: CertChainSerial[] The export authentication chains from Root to the EAC that authenticates the first
TPEGC in a single third party subchain. The chains in Auth are in order from exporting
connecting TPEGC towards importing POC.

connId: ushort ID of the Export Connection, assigned by the ECI Host.

CertChainSerial type and array type definition

CertChainSerial is the network order representation (big endian) of ECI_Certificate_Chain as

defined in Table 5.4.1-1, padded to a multiple of 32-bits.

CertChainSerial[] is defined by the following (quasi-C) data structure:
typedef struct CertChainSerial {

 uint numberElements; /* the number of elements in the chain array*/

 uint elementIndex[]; /* the index of the start of each element in

 chainElements data container */

 uint chainElements[]; /* data container with numberElements

 SertChainSerial representations of the

 successive chains in the array. */

 } CertChainSerial;

elementIndex and chainElements shall be represented inline data arrays in the certChainSerialArray

data structure.

Detailed semantics:

• ECI Hosts can issue a reqExpConnSetup request on behalf of an existing connection in order

to inform the exporting ECI Client of (potentially) new import credentials of the importing

ECI Client. Unless the present connection can be dropped instantly, the exporting ECI

Client is recommended to postpone renewal of the connection with the importing ECI Client

until such time no active session is taking place.

The related error codes are listed in Table 9.7.2.3.3-1.

Table 9.7.2.3.3-1 – reqExpConnSetup Error Codes

Name Description

ErrExpConnNwAccess

See Table 9.7.2.3.9-1.
ErrExpConnAuthProblem

ErrExpUninitState

ErrExpInvalidChain

9.7.2.3.4 reqExpConnDrop message

H→C reqExpConnDrop(ushort connId) →

C→H resExpConnDrop()

• The message requests the ECI Client to drop an Export Connection with the client

identified by connId.

 Rec. ITU-T J.1012 (04/2020) 205

Request Parameter definitions:

connId: ushort ID of the Export Connection.

Pre conditionPre condition Request:

1) An Export Connection (identified by connId) was previously established.

Post condition Response:

2) The Export Connection (if it existed) is closed.

The related error codes are listed in Table 9.7.2.3.4-1.

Table 9.7.2.3.4-1 – reqExpConnDrop Error Codes

Name Description

ErrExpConnNone See Table 9.7.2.3.9-1.

9.7.2.3.5 reqExpConnCancel message

C→H reqExpConnCancel(ushort connId) →

H→C resExpConnCancel()

• The message informs the ECI Host that the Export Connection identified by connId has

been terminated by the ECI Client.

Request Parameter definitions:

connId: ushort ID assigned to the connection.

Pre condition Request:

1) An Export Connection identified by connId was previously established.

9.7.2.3.56 reqExpMhOpen message

H→C reqExpMhOpen(ushort mhExp, ushort mhDcr, ushort connId) →

C→H resExpMhOpen(ushort mhExp)

• The message requests the ECI Client to create an export session identified by Media Handle

mh over Export Connection connId.

Request Parameter definitions:

mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection.

mhDcr: ushort Media Handle of the decryption session to be exported.

connId: ushort ID assigned to the Export Connection.

Response Parameter definitions:
mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection

Pre condition Request:

1) An Export Connection connId was previously established.

2) A Decryption session mhDcr was previously established.

206 Rec. ITU-T J.1012 (04/2020)

Post condition Request:

3) An Export Connection is established or an error occurred.

Detailed semantics:

• The exporting ECI Client may suspend and resume export on an existing session, e.g., based

on Export Group inclusion of the connection.

The related error codes are listed in Table 9.7.2.3.6-1.

Table 9.7.2.3.6-1 – reqExpMhOpen Error Codes

Name Description

ErrExpConnNone
See Table 9.7.2.3.9-1.

ErrExpDcrMhNone

9.7.2.3.7 reqExpMhClose message

H→C reqExpMhClose(ushort mhExp) →

C→H resExpMhClose(ushort mhExp)

• This message requests the ECI Client to close an export session identified by Media Handle

mh over Export Connection connId.

Request Parameter definitions:

mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection.

Response Parameter definitions:
mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection.

Pre condition Request:

1) An export session mhExp was previously established and has not yet terminated.

Post condition Request:

2) The export session mhExp has stopped.

The related error codes are listed in Table 9.7.2.3.7-1.

Table 9.7.2.3.7-1 – reqExpMhClose Error Codes

Name Description

ErrExpMhNone See Table 9.7.2.3.9-1.

9.7.2.3.8 reqExpMhCancel message

C→H reqExpMhCancel(ushort mhExp) →

H→C resExpMhCancel(ushort mhExp)

This message informs the ECI Host that the ECI Client has stopped the export session mhExp.

Request Parameter definitions:

mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection.

 Rec. ITU-T J.1012 (04/2020) 207

Response Parameter definitions:

mhExp: ushort Media Handle assigned by the ECI Host to the Export Connection.

Pre condition Request:

1) An export session mhExp was previously established.

2) The ECI Client terminated the session.

9.7.2.3.9 Error Codes for the Export Connection API

The values of the API specific errors that can be returned by the Response messages for this API are

defined in Table 9.7.2.3.9-1.

Table 9.7.2.3.9-1 – Error codes media session API for TS media

Name Value Description

ErrExpConnNwAccess -256 Access to the network providing information on the
requested information is not possible or is unexpectedly
slow and could not be completed.

ErrErrConnAuthProblem -257 Internal inconsistencies in the provisioned data were
detected preventing the request to be completed.

ErrEcxpConnUninitState -258 The ECI Client first requires provisioning and/or other
perform functions in order to be able to respond to this
request.

ErrExpConnInvalidChain -259 A chain provided to the ECI Client was found to be invalid
and/or it was not possible to authenticate it using the
Authentication Chains.

ErrExpConnNone -260 The connection did not exist.

ErrExpMhNone -261 The export session indicated by Media Handle is not
supported by the ECI Client.

ErrExpDcrMhNone -262 The decryption session indicated by the Media Handle is
not supported by the ECI Client.

9.7.2.4 Import Connection API

9.7.2.4.1 General

ECI Clients can provide their Import Chains to the ECI Host. This permits the ECI Host to connect

the importing ECI Client to matching export options from Micro Servers. The ECI Host and

application can select to establish the connection(s) to be created from the available connection

options. The ECI Host can commence to set up a connection between exporting and importing ECI

Client by first requesting the importing Client permission to connect it to the exporting ECI Client.

The importing Client can refuse such a connection on the basis of commercial considerations of its

operator, for example. In case a connection is established, the importing ECI Client as well as the

ECI Host may request to cancel the connection or to re-initialize the connection in case of updated

import credentials.

Input chains are identified by their first node, i.e., the ECI ids of the EAOC and EAC for the TPEGC.

This is referred to in Table 9.7.2.4.1-1 as the import node.

208 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.4.1-1 – Import Connection API messages

Message Type Dir. Tag Description

reqImpConnNodes A H→C 0x0 ECI Host requests importing ECI Client to provide its import
nodes.

reqImpConnChain A H→C 0x1 ECI Host requests importing ECI Client to provide input
chain for a specific import node.

reqImpConnChainRenew A C→H 0x2 The ECI Client requests the ECI Host to reinitialize the
connection using an updated Import Chain.

reqImpConnSetup A H→C 0x3 ECI Host requests importing ECI Client to initialize an
Import Connection with a specific exporting ECI Client
through an import node.

reqImpConnDrop A H→C 0x4 ECI Host drops the Import Connection with the specified
exporting ECI Client.

reqImpConnCancel A C→H 0x5 ECI Client terminates the Import Connection with the
specified exporting ECI Client.

9.7.2.4.2 reqImpConnNodes message

H→C reqImpConnNodes () →

C→H resImpConnNodes(ImpConnNode nodes[])

• This message enables the ECI Host to request importing ECI Client to provide its import

nodes.

Response parameter definitions:

nodes[]: ImpConnNode Array of import nodes and number of third party intermediaries. The structure of
ImpConnNodes is defined in Table 9.7.2.4.2-1.

Table 9.7.2.4.2-1 – ImpConnOption type definition

typedef str uct ImpConnNode {

 uint targetType;

 uint operatorId;

 uint targetId;

 uint intermediaries

} ImpConnNode;

Field definitions:

targetType: uint Type of the target: 1 is EAC (third party), 2 is POC (direct export). Other values are
undefined.

operatorId: uint Representing the 20-bit ECI Certificate ID of the Operator of the Target import:
export_authorization_operator_id for the EAC target, or operator_id for the POC target.

targetId: uint Representing the 20-bit ECI Certificate ID of the Target import: export_authorization_ id
for the EAC target, or platform_operation_id for the POC target.

intermediaries: uint Represents the number of intermediate third parties from input node to the POC of the
importing ECI Client. ECI Hosts shall select the shortest Import Chain among
alternatives for export options that have the same targetPriority for the exporting ECI
Client.

The related error codes are listed in Table 9.7.2.4.2-2.

 Rec. ITU-T J.1012 (04/2020) 209

Table 9.7.2.4.2-2 – reqExpConnInfo error codes

Name Description

ErrImpConnNwAccess

See Table 9.7.2.4.7-1. ErrImpConnAuthProblem

ErrImpUninitState

9.7.2.4.3 reqImpConnChain and reqImpConnChainRenew messages

H→C reqImpConnChain(ImpConnNode node) →

C→H resImpConnChain(CertChainSerial Import, CertChainSerial Auth[])

• This message enables the ECI Host to request importing ECI Client to provide input chain

for a specific import node.

C→H reqImpConnChainRenew(CertChainSerial Import, CertChainSerialAuth[]) →

H→C resImpConnChainRenew()

• This message enables the ECI Client to request the ECI Host to reinitialize the connection

using an updated Import Chain.

Request parameter for reqImpConnChain:

node: ImpConnNode Import node for which the Import Chain shall be returned to the ECI Host.

Request parameter definitions for reqImpConnChainRenew and

Response parameters definitions for reqImpConnChain:

Import: CertChainSerial Import Chain (from export TPEGC to ESC).

Auth: CertChainSerial[] The export authentication chains from Root to the EAC that authenticates the first
TPEGC in a single third party subchain. The chains in Auth are in order from exporting
TPEGC towards importing POC.

Pre condition reqImpConnChainRenew Request:

1) An Import Connection was previously established with an ECI Client using an element in

the provided chain.

Detailed semantics for reqImpConnChainRenew:

• The ECI Host shall pass the updated chain information forthwith to the affected exporting

ECI Clients.

• It is recommended that Operators provide updated chains substantially ahead of the

deprecation of the previous chain so as to ensure uninterrupted service provisioning.

The reqImpConnChain related error codes are listed in Table 9.7.2.4.3-1.

Table 9.7.2.4.3-1 – reqImpConnChain error codes

Name Description

ErrImpConnNwAccess

See Table 9.7.2.4.7-1. ErrImpConnAuthProblem

ErrImpConnUninitState

The reqImpConnChainRenew related error codes are listed in Table 9.7.2.4.3-2.

210 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.4.3-2 – reqImpConnChainRenew error codes

Name Description

ErrImpConnNoConn See Table 9.7.2.4.7-1.

9.7.2.4.4 reqImpConnSetup message

H→C reqImpConnStart (ImpConnNode node, ushort exportClientId, ushort connId) →

C→H resImpConnStart()

• This message enables the ECI Host to request importing ECI Client to establish an Import

Connection with a specific exporting ECI Client through an import node.

Request arameters:

node: ImpConnNode Import node through which the connection is established.

exportClientId: ushort ECI Host identification of exporting ECI Client.

connId: ushort ID assigned to the Import Connection.

Detailed semantics:

• The ECI Client may reject the Import Connection on the basis of commercial

considerations of its operator.

The related error codes are listed in Table 9.7.2.4.4-1.

Table 9.7.2.4.4-1 – reqExpConnStart error codes

Name Description

ErrImpConnNwAccess

See Table 9.7.2.4.7-1.

ErrImpConnAuthProblem

ErrImpConnUninitState

ErrImpConnRefuseComm

ErrImpConnUnknError

9.7.2.4.5 reqImpConnDrop message

H→C reqImpConnDrop (ushort connId) →

C→H resImpConnDrop()

• This message enables the ECI Host to drop the Import Connection with the specified

exporting ECI Client.

Request parameters:

connId: ushort ECI Host identification of the Import Connection to be dropped.

Pre condition Request:

1) An Import Connection (identified by connId) previously initialized.

Post condition Response:

2) The Export Connection (if it existed) is closed.

The related error codes are listed in Table 9.7.2.4.5-1.

 Rec. ITU-T J.1012 (04/2020) 211

Table 9.7.2.4.5-1 – reqExpConnInfo error codes

Name Description

ErrImpConnNwAccess

See Table 9.7.2.4.7-1.
ErrImpConnAuthProblem

ErrImpConnUninitState

ErrImpConnNoConn

9.7.2.4.6 reqImpConnCancel message

C→H reqImpConnCancel (ushort connId) →

H→C resImpConnCancel()

• This message enables the ECI Client to terminate the Import Connection with the specified

exporting ECI Client.\

Request parameters:

connId: ushort An Import Connection (identified by connId) previously initialized.

Pre condition Request:

1) An Import Connection was previously established with the Client with ECI Host Client ID

exportClientId and is closed.

9.7.2.4.7 Error codes for the Export Connection API

The values of the API specific errors that can be returned by the Response messages for this API are

listed in Table 9.7.2.4.7-1.

Table 9.7.2.4.7-1 – Error codes media session API for TS media

Name Value Description

ErrImpConnNwAccess -256 Access to the network providing information on the
requested information was unexpected slow.

ErrImpConnAuthProblem -257 Internal inconsistencies in the provisioned data were
detected preventing the request to be completed.

ErrImpUninitState -258 The ECI Client first requires provisioning and/or other
perform functions in order to be able to respond to this
request.

ErrImpConnRefuseComm -259 A chain provided to the ECI Client was found to be invalid
and/or it was not possible to authenticate it using the
Authentication Chains.

ErrImpConnRefuseComm -260 The importing ECI Client declines to connect to the
exporting ECI Client on basis of commercial conditions.

ErrImpConnUnknError -261 The importing ECI Client encountered an unknown error.

ErrExpConnNone -262 The connection did not exist.

9.7.2.5 Re-encryption API

9.7.2.5.1 General

The re-encryption API permits a Micro Server to re-encrypt content from an Import Connection

specific to one of a group of clients for subsequent decoding by a Micro Client. The decoding may

have to be performed near instantaneously (streaming connection) and may not permit re-play on a

subsequent session or alternatively the re-encrypted content may be stored or time shifted with

associated decryption information for the decoding Micro Client and be decoded by the Micro

Client later.

212 Rec. ITU-T J.1012 (04/2020)

The discovery phase permits the application to match a Micro Server to a possible Target (Micro

Client or a group of Micro Clients), and to exchange the required authentication information from

Micro Client to Micro Server to allow for the authentication of the Micro Client and to permit the

basis for a trusted exchange of content. The ECI Host can select a bidirectional communication mode

(IP based or message passing through the ECI Host) so as to support more elaborate protocols of

authentication between Micro Server and Micro Client.

Based on a re-encryption connection to the Target and an Import Connection, the ECI Host can

instantiate a Media Handle session of the mode (re-encryption, synchronization and data format

mode) that is desired by the application and that can be supported by the Micro Server.

Once a re-encryption connection is established, the ECI Host can instantiate a Media Handle session

with a Micro Server and start to re-encrypt content from an established Import Connection for the

Target (ECI Client or the group of ECI Clients). Multiple simultaneous re-encryptions of the same

content may be instantiated, each using its own Media Handle session. It is the responsibility of the

ECI Host to ensure the content for the re-encryption Media Handle session is sourced from the

authenticated export Media Handle on the Export Connection. An unauthorized wrong connection

will lead to an export authentication failure.

The re-encryption control words are applied to the imported decrypted content and new markings

(URI's, etc.) are applied to the re-encrypted content using the AS system.

There can be three main modes of encryption-mode:

1) Online Streaming mode: both Micro Server and Micro Client are active at the same time.

They exchange messages directly (through an IP channel) or as explicit messages through

their ECI Hosts.

2) Offline Streaming mode: the Micro Server encrypts content "on the fly" and regularly issues

new data needed for decryption by the Micro Client. The result can be delayed (time offset

mode) or stored.

3) Offline Storage mode: the Micro Server encrypts content and at the end produces the data

required by the Micro Client at the start for decoding the content.

Figure 9.7.2.5.1-1 presents a schematic overview of the different encryption-modes.

 Rec. ITU-T J.1012 (04/2020) 213

Figure 9.7.2.5.1-1 – Encryption modes for micro DRM sessions

The data needed for decryption of content to be exchanged in the two offline encryption-modes

between Micro Server and Micro Client may be passed in the following data-format-modes:

4) Generic mode: the Micro Server produces opaque data containers with information required

for decrypting the content by the Micro Client.

5) ISOBMFF mode (only for synchronization-mode equal file mode): the Micro Server

generates PSSH boxes for inclusion in an ISOBMFF file [ISO/IEC 14496-12]. The ECI Host

can use these to create ISOBMFF files by appropriate inclusion of the PSSH boxes in

ISOBMFF MOOV or MOOF boxes.

There are two mechanisms supported for synchronization-mode to permit associating the correct

control word to a section of content, applying to all of the above re-encryption modes:

6) In Transport Stream (alternating bit) mode the Micro Server produces ECM sections that

can be packetized and inserted in the transport stream by the ECI Host. The ECM is inserted

preceding the crypto-period for which it provides information to permit computation of the

control word.

7) In File Mode the Micro Server produces encrypted control words that are referred to by

explicit KeyID identifiers in the supplementary decryption information. The ECI Host

should preserve the KeyID association of the content section encrypted with a specific control

word so that the Micro Client can produce the correct control word for descrambling.

In offline mode, synchronization of the additional data is needed for decryption or computation of the

KeyId or ECMs explicitly referencing the time-dependency relation of the data relative to the KeyId

or ECM number.

214 Rec. ITU-T J.1012 (04/2020)

Not all Micro Servers have to support all modes of operation. At initialization, immediately after

using the discovery API a Micro Server signals the modes (combination of encryption-mode, data-

format-mode and synchronization-mode) it can support.

Once the Media Handle session has been instantiated, it can be started and stopped by the ECI Host

and cancelled by the ECI Client.

The messages for the re-encryption API are listed in Table 9.7.2.5.1-1.

Table 9.7.2.5.1-1 – Re-encryption API messages

Message Type Dir. Tag Description

setEncrModes set C→H 0x0 The Micro Server informs the ECI Host about the modes
(encryption-modes, data-format-modes and synchronization-
modes) it supports.

reqEncrTargets A H→C 0x1 ECI Host requests the Micro Server to provide the Target
nodes it can authenticate for decryption.

reqEncrConnSetup A H→C 0x2 ECI Host requests the ECI Client to create a re-encryption
Target connection and to pre-authenticate the re-encryption
Target for subsequent reference in setting up a Media
Handle session.

reqEncrConnDrop A H→C 0x3 ECI Host requests the ECI Client to drop any information on
a previously pre-authenticated re-encryption connection.

reqEncrConnCancel A C→H 0x4 ECI Client cancels a previously established encryption
Target connection.

reqEncrMhOpen A H→C 0x5 ECI Host requests ECI Client to open a Media Handle
session to re-encrypt content from an incoming Import
Connection for an established re-encryption connection.

reqEncrMhClose A H→C 0x6 ECI Host closes the Re-encryption Session with the ECI
Client.

reqEncrMhCancel A C→H 0x7 ECI Client terminates the Import Connection with the
specified exporting ECI Client.

reqEncrMhStart A H→C 0x8 ECI Host requests the ECI Client to start the re-encryption
operation for a Media Handle session.

reqEncrMhStop A H→C 0x9 ECI Host requests the ECI Client to stop a re-encryption
operation for a Media Handle session.

reqEncrMhQuit A C→H 0xA The ECI Client informs the ECI Host that the Media Handle
re-encryption operation was terminated.

reqEncrIpServer A H→C 0xB The ECI Host requests the IP server address of a Micro
Server so as to permit Micro Clients to create IP
connections.

reqEncrMsgSend A C→H 0xC The Micro Server requests the ECI Host to forward a
message to the Target of a Media Handle session.

reqEncrMsgRecv A H→C 0xC The ECI Host provides the Micro Server with a message
from a Target of a Media Handle session.

reqEncrTsData A C→H 0xE The Micro Server provides the ECI Host with data to be
forwarded to the Target Micro Client of a Media Handle for
decryption, including ECM related synchronization
information.

reqEncrTsEcm A C→H 0xF The Micro Server issues an ECM section that is required by
the Micro Client to decrypt in the next crypto-period.

reqEncrFileData A C→H 0x10 The Micro Server provides the ECI Host with a message to
be forwarded to the Target Micro Client of a Media Handle
for decryption, including KeyID related synchronization
information.

9.7.2.5.2 setEncrModes message

C→H setEncrModes(EciEncrModes modes)

• This message allows the Micro Server to inform the ECI Host about the modes (encryption-

modes, data-format-modes and synchronization-modes) it supports.

 Rec. ITU-T J.1012 (04/2020) 215

Request Parameter definitions:

modes: EciEncrModes Modes of encryption that are supported by the Micro Server. The type EciEncrModes is
specified in Table 9.7.2.5.2-1.

Table 9.7.2.5.2-1 – EciEncrModes type definition

Typedef uint EciEncrModes;

Bit definitions:
Name Bit Micro Server Mode Support on value equal 0b1

OnlineIpMode 0 Supports online IP mode.

OnlineMsgMode 1 Supports online Message mode.

OfflineStreamMode 2 Supports offline stream mode.

OfflineStorageMode 3 Supports offline store mode.

OfflineDataMode 4 Supports default data format containers for decryption data in offline
mode. Not relevant if no offline mode is selected.

OfflineIsobmffMode 5 Supports ISOBMFF format PSSH boxes for decryption data in offline
mode. Not relevant if no offline mode is selected.

SyncTs 6 Synchronizes control words to transport stream format alternating bit
delimited crypto periods for the content.

SyncFile 7 Synchronizes to file-type formats using KeyID identification to associate
content sections to their control word.

other RFU Reserved for future use.

9.7.2.5.3 reqEncrTargets message

H→C reqEncrTargets() →

C→H resEncrTargets(EncrTarget target[])

• This message permits the ECI Host to request the Micro Server to provide the encryption

targets it can authenticate.

Response parameter definitions:

target: EncrTarget[] List of encryption targets that the Micro Server can authenticate. The type definition
of TargetClient is specified in Table 9.7.2.5.3-1.

Table 9.7.2.5.3-1 – EncrTarget type definition

typedef struct EncrTarget {

 uint targetType;

 byte target[8];

} EncrTarget;

Field definitions:

targetType: uint Type of the encryption target: Value equal 1 is individual client, Value equal 2 means
group of clients, other values are reserved for future use.

target: byte[8] ID representing the target. The value is defined within the scope of the Micro DRM
System. Matching by the ECI Host is defined in terms of equality of targetType and
target fields.

216 Rec. ITU-T J.1012 (04/2020)

Detailed semantics:

• The ECI Host can match potential Target Micro Clients based on Target. It is up to the

application and/or ECI Host to locate potential candidate Micro Clients.

• ECI Hosts wishing to perform local PVR and time shift functions (using either an integrated

or a connected/networked storage medium on which they can store encrypted content and

associated data) can attempt to match a Micro Server being able to operate in

OfflineStreamMode to Micro Clients installed on the same ECI Host.

9.7.2.5.4 reqEncrConnSetup message

H→C reqEncrConnSetup(ushort targetConnId, EciEncrTarget target, ushort credLen, byte

cred[])

C→H resEncrConnSetup(ushort targetConnId)

• This message permits the ECI Host to request the Micro Server to create a re-encryption

connection to the Target and to (pre-)authenticate the Target. Error codes are defined in

Table 9.7.2.5.19-1.

Request parameter definitions:

targetConnId: ushort Id for further reference to the Target between the ECI Host and Micro Server.

target: EciEncrTarget ID representing the Target for authentication. The value is defined within the scope of
the Micro DRM System. Matching by the ECI Host is defined in terms of equality of
targetType and target fields.

credLen: ushort Length of the cred parameter in bytes.

cred: byte[] The credential information from the Target to be authenticated by the Micro Server.

Response parameter definitions:
targetConnId: ushort Id for further reference to the Target between the ECI Host and Micro Server.

Detailed semantics:

• In case targetConnId is equal to a targetConnId previously used by the ECI Host, but not

dropped afterwards, the implication is that the previous Target associated with

targetConnId is replaced or updated.

Pre conditions Request:

1) The Target should be equal to a Target previously provided to the ECI Host by the Micro

Server in a resEncrTargets message. Otherwise an error is returned for this parameter.

2) Target should match to a Target provided by the Micro Client and permit authentication

using cred.

Post condition Response:

3) The authentication status is returned. Note that the result is not necessarily conclusive and

might provide the wrong credentials, for example, resulting in encrypted content that cannot

be decoded.

4) The ECI Host can refer to the (pre-) authenticated Target by targetConnId.

Table 9.7.2.5.4-1 – reqEncrConnSetup error codes

Name Description

ErrEncrAuthFail
See Table 9.7.2.5.19-1.

ErrEncrAuthInconclusive

 Rec. ITU-T J.1012 (04/2020) 217

9.7.2.5.5 reqEncrConnDrop message

H→C reqEncrConnDrop(ushort targetConnId) →

C→H resEncrConnDrop(ushort targetConnId)

• This message permits the ECI Host to request the Micro Server to drop any information on

a previously pre-authenticated re-encryption connection.

Request parameter definitions:

targetConnId: ushort Id of the Target connection to be removed by the Micro Server.

Response parameter definitions:

targetConnId: ushort Id of the Target connection removed from the Micro Server.

Pre conditions Request:

1) The targetConnId should exist in the Micro Server.

Pre condition Response:

2) The Micro Server does not associate targetConnId to a pre-authenticated Target

connection any longer and has released any resources associated with the pre-authentication

of targetConnId.

9.7.2.5.6 reqEncrConnCancel message

C→H reqEncrConnCancel(ushort targetConnId) →

H→C resEncrConnDrop(ushort targetConnId)

• This message permits the Micro Server to inform in the ECI Host that it has cancelled a

previously pre-authenticated re-encryption connection.

Request parameter definitions:

targetConnId: ushort Id of the Target connection that was cancelled by the Micro Server.

Response parameter definitions:

targetConnId: ushort Id of the Target connection that was cancelled by the Micro Server.

Pre conditions Request:

3) The targetConnId should exist in the Micro Server.

Pre condition Response:

4) TargetConnId value has been deallocated and may be reallocated by the ECI Host as part of

a subsequent reqEcnrConnSetup message.

9.7.2.2.7 reqEncrMhOpen message

H→C reqEncrMhOpen(ushort mh, ushort impConn, ushort targetConnId, EncrMode mode) →

C→H resEncrMhOpen(ushort mh)

• This message permits the ECI Host to request the ECI Client to open a Media Handle

session to re-encrypt content under control of the Micro Server from an incoming Import

Connection for forwarding to a pre-authenticated target. Error codes are defined in Table

9.7.2.5.7-1.

218 Rec. ITU-T J.1012 (04/2020)

Request parameter definition:

mh: ushort Media Handle for the encryption session to be opened, allocated by the ECI Host.

impConn: ushort Id of the input connection from which the content is to be re-encrypted.

targetConnId: ushort Id of the Target connection for which the content is to be re-encrypted.

mode: EncrMode Single mode (encryption-mode, data-format-mode, synchronization-mode) specification
for the Micro Server to operate from, selected from the Micro Server modes capabilities
as indicated with setEncrModes.

Response parameter definition:

mh: ushort Media Handle for the encryption session to be opened, allocated by the ECI Host.

Pre conditions Request:

5) The ECI Host has reserved all required resources for the session to be created.

6) impConn and targetConnId are established by the ECI Host with the Micro Server.

Pre conditions Response:

7) In case of a successful result the Micro Server has reserved all resources typically required

for re-encrypting content for the requested session. This should include access to any external

resources (DRM servers, Smart Cards, etc.) typically required for a decryption operation.

NOTE – Resources required by exception or resources that can normally be attained when required are

excluded.

8) In case ErrEncrUserDelay is returned the Micro Server is pending User input to open the

session (e.g., to get access to a Smart Card or acquire a User authentication). The ECI Host

can repeat sending the reqEncrMhOpen Request (with the same parameters) until a positive

result is returned or a definitive error is returned or alternatively may send a

reqEncrMhClose to terminate the pending session. The Micro Server may cancel with

reqEncrMhCancel in case it cannot attain the required User input.

Table 9.7.2.5.7-1 – reqEncrMhOpen error codes

Name Description

ErrEncrUserMissing

See Table 9.7.2.5.19-1.

ErrEncrCardMissing

EnrEncrServiceMissing

ErrEncrResourceMissing

ErrEncrMmiMissing

ErrEncrClientAuthError

9.7.2.5.8 reqEncrMhClose message

H→C reqEncrMhClose(ushort mh) →

C→H resEncrMhClose(ushort mh)

• This message permits the ECI Host to close a Re-encryption Session with the Micro

Server.

Request parameter definition:

mh: ushort Media Handle for the encryption session to be closed.

 Rec. ITU-T J.1012 (04/2020) 219

Response parameter definition:

mh: ushort Media Handle for the encryption session to be closed.

Pre conditions Request:

1) The Media Handle session is in an opened state (or an error will occur).

Pre conditions Response:

2) The resources required by the Micro Server for maintaining the session are released.

3) mh state is closed by the Client.

9.7.2.5.9 reqEncrMhCancel message

C→H reqEncrMhCancel(ushort mh, uchar reason) →

H→C resEncrMhCancel(ushort mh)

• This message permits the ECI Client to close a Re-encryption Session with the specified

exporting ECI Client (Micro Server).

Request parameter definition:

mh: ushort Media Handle for the encryption session that is cancelled by the Micro Server.

reason: uchar Reasons for cancelling the decryption session. The values are defined in Table 9.7.2.5.9-1.

Table 9.7.2.5.9-1 – reqEncrMhCancel reason values

Name Value Description

EncrMhUndefined 0x00 An undefined error occurred in the Micro Server requiring it to cancel the
session.

EncrMhCardMissing 0x01 Smart Card is required for re-encryption but could not be successfully (re-
)connected and assist in re-encrypting content within a reasonable time.

EncrMhServiceMissing 0x02 A service (external to the CPE) supporting the Micro Server in providing
encryption services required to maintain a decryption session is not
available in a reasonable time.

EncrMhResourceMissing 0x03 A resource (internal to the CPE) required for providing re-encryption
services is not available to the Micro Server within a reasonable time (not
including DcrMhMmiMissing).

EncrMhMmiMissing 0x04 The Micro Server was not successful in attaining an MMI session
resource for User interaction required for maintaining the Re-encryption
Session within a reasonable time.

RFU Other Reserved for future use.

Response parameter definition:

mh: ushort Media Handle for the encryption session that is cancelled.

Pre condition Request:

1) The ECI Client has released any resources it required specifically for the session.

Post conditions Request:

2) The ECI Host may release any resources related to the Media Handle.

Post conditions Response:

3) The Media Handle session is closed by the ECI Host.

220 Rec. ITU-T J.1012 (04/2020)

9.7.2.5.10 reqEncrMhStart message

H→C reqEncrMhStart(ushort mh) →

C→H resEncrMhStart(ushort mh)

• This message permits the ECI Host to requests the Micro Server to start the re-encryption

operation for a Media Handle session.

Request parameter definition:

mh: ushort Media Handle for the encryption session to start.

Response parameter definition:

mh: ushort Media Handle for the encryption session that was started.

Pre conditions Request:

1) The Media Handle session is in an opened state (or an error will occur).

Pre conditions Response:

2) The Media Handle session is started or (or an error occurred).

Detailed semantics:

• The encryption of content will proceed as the content is provided by the exporting ECI

Client.

• Any URI conflicts or failures of the exporting ECI Client to authenticate the Micro Server

for export of the content will not produce encrypted content, the output control URI status of

the Micro Server set at OcAnyOther equal 0b1, all other output control bits shall be set to

0b0 (meaning no output permitted). The Micro Server will continue to attempt to encrypt

content as and when this is permitted.

• Any initialization messages for the Micro Client are made available through the respective

messages for that purpose. For sessions with re-encryption mode equal OfflineStreamMode

the first initialization data for decrypting the content is produced shortly after the

resEncrMhStart message.

• Sending a second reqEncrMhStart before ending the encryption process will end the

previous process and start the next process.

9.7.2.5.11 reqEncrMhStop message

H→C reqEncrMhStop(ushort mh) →

C→H resEncrMhStop(ushort mh)

• This message permits the ECI Host to requests the Micro Server to stop the re-encryption

operation for a Media Handle session.

Request parameter definition:

mh: ushort Media Handle for the encryption session to end.

Response parameter definition:

mh: ushort Media Handle for the encryption session that was ended.

 Rec. ITU-T J.1012 (04/2020) 221

Pre conditions Request:

3) The Media Handle session is in a started state (or an error will occur).

Pre conditions Response:

4) The Media Handle session is ended.

Post conditions Response:

5) The Media Handle session value can be reused by the ECI Host.

Detailed semantics:

• On sessions with encryption-mode equal OfflineStorageMode, the final decryption data is

produced before the Micro Server sends resEncrMhStop. This also holds for any final

decryption data that may be needed for decryption in other types of sessions.

9.7.2.5.12 reqEncrMhQuit message

C→H reqEncrMhQuit(ushort mh, uchar reason) →

C→H resEncrMhQuit(ushort mh)

• This message permits the Micro Server to inform the ECI Host that the Media Handle

associated re-encryption operation was terminated.

Request parameter definition:

mh: ushort Media Handle for the encryption session that has been terminated.

reason: uchar Reason as given in Table 9.7.2.5.9-1.

Response parameter definition:

mh: ushort Media Handle for the encryption session that has been terminated.

Pre conditions Request:

1) The Media Handle session was in a started state but is now terminated.

Pre conditions Response:

2) The ECI Host is aware of the non-started state of encryption of the session.

Detailed semantics:

• In case the error s of a quasi-permanent nature the Micro Server can also cancel the Media

Handle session itself.

• In case the Micro Server can produce valid decryption data before terminating the Re-

encryption Session, on sessions with encryption-mode equal OfflineStorageMode. The

final decryption data is produced before the Micro Server sends resEncrMhQuit. This also

holds for any final decryption data that may be needed for decryption in other types of

sessions.

9.7.2.5.13 reqEncrIpServer message

H→C reqEncrIpServer(ushort mh) →

C→H resEncrIpServer(ushort mh. Addrinfo addr)

222 Rec. ITU-T J.1012 (04/2020)

• This message permits the ECI Host to request the Micro Server to provide the Target IP

address for incoming IP connections from Micro Clients.

Request parameter definition:

mh: ushort Media Handle for the encryption session for which an IP address for incoming messages
or connections is required.

Response parameter definition:

mh: ushort Media Handle for the encryption session for which an IP address for incoming messages
or connections is required.

addr: Addrinfo IP protocol/address/port for the incoming messages or connections of a Micro Client.

Pre conditions Request:

3) The Media Handle session is opened in mode OnlineIpMode.

Pre conditions Response:

4) The ECI Host is aware of the non-started state of encryption of the session.

Detailed semantics:

• The IP exchange between Micro Client and Micro Server is specific to the Micro DRM

System. This includes protocol choice and any convention for terminating a connection or

exchange on a content streaming session.

• This message may be issued on a Media Handle session on which the re-encryption process

has not yet been started.

Table 9.7.2.5.13-1 – reqEncrIpServer error codes

Name Description

ErrEncrIpNone See Table 9.7.2.5.19-1.

9.7.2.5.14 reqEncrMsgSend message

C→H reqEncrMsgSend(ushort mh, uint length, byte msg[]) →

C→H resEncrMsgSend(ushort mh)

• This message permits the Micro Server to request the ECI Host to forward a message to the

Target Micro Client or Micro Clients (in case of a group target) associated with the Media

Handle.

Request parameter definition:

mh: ushort Media Handle for the encryption session for which a message has to be forwarded
to the Target Micro Client.

length: uint Length of the msg field in bytes.

msg[]: byte Message to be forwarded to the Micro Client.

Response parameter definition:

mh: ushort Media Handle for the encryption session.

 Rec. ITU-T J.1012 (04/2020) 223

Pre conditions Request:

1) The Media Handle session is opened in mode OnlineMsgMode.

Pre condition Response:

2) The message has been forwarded to the Micro Client; the ECI Host is ready to accept a new

reqEncrMsgSend.

Detailed semantics:

• The ECI Host shall be able to process and forward at least one message at a time to the

Micro Client. The messages should be delivered in order. The ECI Host is not obliged to

provide any specific buffering for more than one simultaneous outstanding

reqEncrMsgSend request. A safe Micro Server implementation should use the

resEncrMsgSend as a control flow handshake.

• The ECI Host forwarding mechanism shall have a reliability that is sufficient for regular

applications not to fail (message loss, or disordering of one per 10 000). Applications in

which essential access information for encrypted content may be permanently lost or during

which high value viewing may be impaired are recommended to take additional application

level precautions.

9.7.2.5.15 reqEncrMsgRecv message

H→C reqEncrMsgRecv(ushort mh, uint length, byte msg[]) →

C→H resEncrMsgRecv(ushort mh)

• This message permits that the ECI Host provides the Micro Server with a message from the

Target Micro Client.

Request parameter definition:

mh: ushort Media Handle for the encryption session for which the Micro Server gets a message
from the Target Micro Client.

length: uint Length of the msg field in bytes.

msg: byte[] Message to be received by the Micro Server.

Response parameter definition:

mh: ushort Media Handle for the encryption session for which an IP address for incoming messages
or connections is required.

Pre conditions Request:

1) The Media Handle session is opened in mode OnlineMsgMode.

Pre condition Response:

2) The message has been processed by the Micro Server and it is ready to accept a new

reqEncrMsgRecv.

Detailed semantics:

• The Micro Server shall process at minimum one message at a time. The Micro Server is

not obliged to provide any specific buffering for more than one simultaneous outstanding

reqEncrMsgSend request, though it should take care, it is ready to process a subsequent

message respecting its other responsiveness requirements. A safe ECI Host implementation

should use the resEncrMsgRecv as a control flow handshake.

224 Rec. ITU-T J.1012 (04/2020)

• The reliability of the forwarding service between Micro Client and Micro Server is as

defined for reqEncrMsgSend in clause 9.7.2.5.14.

9.7.2.5.16 reqEncrTsData message

C→H reqEncrTsData(ushort mh, TsSync sync, uint length, byte msg[]) →

C→H resEncrTsData(ushort mh)

• This message permits the Micro Server to provide the ECI Host with data to be forwarded

to the Target Micro Client of a Media Handle to enable content decryption, including ECM

related synchronization information.

Request parameter definition:

mh: ushort Media Handle for the encryption session.

sync: TsSync Synchronization of this information relative to an ecmId associated with the content. The
details are given in Table 9.7.2.5.16-1.

length: uint Length in bytes of the message to be forwarded.

msg: byte[] Message to be forwarded to the Micro Client.

Table 9.7.2.5.16-1 – TsSync typedef definition

typedef struct TsSync {

 uint ecmId;

 uint precTime;

} TsSync;

Field definitions:

ecmId: uint Identification number of an ECM associated with the content that this data message
for the Micro Client should precede.

precTime: uint Real time in terms of 100 ms units, with a maximum of 300 seconds, in terms of
content playback time that this message should precede the application of an ECM
with ecmId to the content decoding process.

Response parameter definition:

mh: ushort Media Handle for the encryption session for which an IP address for incoming
messages or connections is required.

Pre conditions Request:

1) The Media Handle session is opened, the session is in re-encryption-mode OfflineStream

or OfflineStorage mode, uses data-format-mode OfflineDataMode and synchronization-

mode SyncTs.

Pre conditions Response:

2) The ECI Host is ready to receive a next data message.

Detailed semantics:

• The ECI Host should ensure that the Micro Client is provided with the data in line with the

synchronization requirements along with the encrypted content.

 Rec. ITU-T J.1012 (04/2020) 225

• The ECI Host shall buffer the data of the message appropriately (as associated data to the

content) and should respond to the next within the time period as proposed in [b-ITU-T J

Suppl. 7].

• The Micro Server may produce one or more data messages ahead of a started Re-encryption

Session when operating in OfflineStream mode.

• The Micro Server shall produce at most one data message at the end of the encryption

session in OfflineStorage mode. This data message may be preceded by the ECM it is

supposed to synchronize to. Hence "offline Storage" mode. Typically, this data message

should be processed ahead of any content and ECMs by the Micro Client.

9.7.2.5.17 reqEncrTsEcm message

C→H reqEncrTsEcm(ushort mh, uint ecmId, uint length, byte ecm[]) →

C→H resEncrTsEcm(ushort mh)

• This message permits the Micro Server to issue an ECM section that is required to decrypt

in the next crypto-period.

Request parameter definition:

mh: ushort Media Handle for the encryption session.

ecmId: uint Identification number of the ECM assigned by the Micro Server for the purpose of
synchronizing data messages.

length: uint Length of the ecm parameter in bytes; the ecm has a single section format.

ecm: byte[] ECM message to be inserted in the next crypto period.

Response parameter definition:

mh: ushort Media Handle for the encryption session.

Pre conditions Request:

1) The Media Handle session is opened, the session uses synchronization-mode SyncTs.

Pre conditions response:

2) The ECI Host is ready to insert the next ECM.

Detailed semantics:

• ECI Host shall insert the ECM in the Transport Stream within a certain time slot after

receiving the message. Values for the time slot are proposed in [b-ITU-T J Suppl. 7]. The

ECM shall be repeated at a reasonable interval (as defined in [ISO/IEC 13818-1-1]. The ECM

PID shall be a free PID and is generated by the ECI Host.

• The ECI Host may update any PMT information in the stream, which may reflect the ECM

PID or shall otherwise forward the ECM PID information to permit a Micro Client to later

recover the required decryption information.

• On a content item change and/or another higher layer encryption change the Micro Server

may issue two successive but different ECM messages for the same forthcoming crypto

period. The ECI Host shall at minimum insert the last one for the remainder of the period.

In time-shift/storage mode it shall insert the last ECM for the full crypto-period.

226 Rec. ITU-T J.1012 (04/2020)

9.7.2.5.18 reqEncrFileData message

H→C reqEncrFileData(ushort mh, byte syncKid[MaxUuidLen], uint datalength, byte data[])

C→H resEncrFileData(ushort mh)

• This message permits the Micro Server to provide the ECI Host with a message to be

forwarded to the Target Micro Client of a Media Handle for decryption, including KeyID

related synchronization information.

Request parameter definition:

mh: ushort Media Handle for the encryption session.

syncKid [MaxUuidLen]: byte KeyId that will be used to encrypt the next "fragment" of the file for which the associated
data is required by the Micro Client for decryption.

datalength: uint Length of the data in bytes.

data[]: byte Data destined for the Micro Client for decryption purposes. The format of the data is
opaque if the data-format-mode is OfflineDataMode and is a PSSH Box for inclusion
in an ISOBMFF MOOV or MOOF box in case the data-format-mode is
OfflineIsobmffMode.

Response parameter definition:

mh: ushort Media Handle for the encryption session.

Pre conditions Request:

1) The Media Handle session is opened, the session is in re-encryption-mode OfflineStream

or OfflineStorage mode and synchronization-mode SyncFile.

Pre conditions Response:

2) The ECI Host is ready to receive a next data message.

Detailed semantics:

• The ECI Host has to ensure that any Target Micro Client is provided with the data in line

with the synchronization requirements along with the encrypted content.

• The ECI Host shall create a valid ISOBMFF file including the provided PSSH box or

otherwise ensure that the data is passed along with the file content to the Micro Client and

provided to the Micro Client in line with the data synchronization requirements.

• The ECI Host shall buffer the data of the reqEncrMsgRecv message appropriately (as

associated data to the content). Values for Response time requirements are proposed in [b-

ITU-T J Suppl. 7].

• The Micro Server may produce one or more data messages ahead of a started Re-encryption

Session when operating in OfflineStream mode.

• The Micro Server shall produce at most one data message at the end of the encryption

session in OfflineStorage mode. Typically, this data message has to be processed ahead of

any content by the Micro Client.

 Rec. ITU-T J.1012 (04/2020) 227

9.7.2.5.19 Error codes for the Re-encryption API

Table 9.7.2.5.19-1 – Error codes for Re-encryption API

Name Value Description

ErrEncrAuthInconclusive 1 The authentication was only processed partially and was not conclusive,
but no error occurred.

ErrEncrAuthFail -256 It was not possible to identify the parental authentication status of the
content item but the parental authentication was performed and found
correct.

ErrEncrUserMissing -257 User does not provide essential input to the Micro Server to proceed or
continue with re-encryption of content.

ErrEncrCardMissing -258 Smart Card is required for re-encryption but could not be successfully
(re-)connected and assist in re-encrypting content within a reasonable
time.

EnrEncrServiceMissing -259 A service (external to the CPE) supporting the Micro Server in a
decryption session is not available in a reasonable time.

ErrEncrResourceMissing -260 An unspecified resource inside the CPE required for processing and/or
re-encrypting the content is not available.

ErrEncrMmiMissing -261 Micro Server access to the MMI is required but not available.

ErrEncrClientAuthError -262 Micro Server fails to authenticate the Target Micro Client.

ErrEncrIpNone -263 Micro Server cannot provide an IP address for Micro Client
communication.

9.7.2.6 Micro Client De-encryption API

9.7.2.6.1 General

The Micro Client decryption API permits a Micro Client to de-encrypt content from Micro Server.

The discovery phase permits a Micro Client to publish the decryption targets for which it can offer

decryption services and can provide the credentials by which a Micro Server can create an

authenticated connection to it as a target.

The Micro Client has to support modes of decryption that cover the encryption modes offered by its

complementary Micro Server. Based on one of the commonly supported modes, the Micro Client

can decrypt services: this is based on the common decryption API.

Additional support messages to pass data for required decryption back and forth between the Micro

Server and the Micro Client for the various modes are part of this API.

The messages for the Micro Client decryption API are listed in Table 9.7.2.6.1-1.

228 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.6.1-1 – Decryption API messages

Message Type Dir. Tag Description

setDcrModes set C→H 0x0 The Micro Client informs the ECI Host about the modes
(encryption-modes, data-format-modes and synchronization-
modes) it supports.

reqDcrTargets A H→C 0x1 The ECI Host requests the Micro Client to provide the
encryption targets for which it can decrypt services.

reqDcrTargetCred A H→C 0x2 The ECI Host requests the ECI Client to provide the
initialization data for a Micro Server connection typically
used for authentication of the target.

reqDcrIpServer A C→H 0xA The Micro Client to request the ECI Host to provide the
Micro Server's IP address for further communication related
to the Media Handle session.

reqDcrMsgSend A C→H 0xB The Micro Client requests the ECI Host to send a message
to the Micro Server of a Media Handle session.

reqDcrMsgRecv A H→C 0xC The ECI Host provides the Micro Client with a message from
the Micro Server of a Media Handle session.

reqDcrTsData A C→H 0xD The Micro Server provides the ECI Host with data to be
forwarded to the Target Micro Client of a Media Handle for
decryption, including ECM related synchronization
information.

reqDecrFileData A C→H 0xF0 The Micro Server provides the ECI Host with a message to
be forwarded to the Target Micro Client of a Media Handle
for decryption, including KeyID related synchronization
information.

9.7.2.6.2 setDcrModes message

C→H setDcrModes(EciEncrModes modes)

• This message permits the Micro Client to inform the ECI Host about the modes (encryption-

modes, data-format-modes and synchronization-modes) it supports.

Request parameter definitions:

modes: EciEncrModes Modes of decryption that are supported by the Micro Client. The type EciEncrModes
specified in Table 9.7.1.5.2-1.

9.7.2.6.3 reqDcrTargets message

H→C reqDcrTargets() →

C→H resDcrTargets(EncrTarget target[])

• This message permits the ECI Host to request the Micro Client to provide the encryption

targets for which it can decrypt.

Response parameter definitions:

target[]: EncrTarget List of encryption targets that the Micro Server can authenticate. The type definition
of TargetClient specified in Table 9.7.2.5.2-1.

Detailed semantics:

• The ECI Host can match potential Target Micro Clients based on Target. It is up to the

application and/or ECI Host to locate potential candidate Micro Clients.

9.7.2.6.4 reqDcrTargetCred message

H→C reqDcrTargetsCred(EncrTarget target) →

C→H reqDcrTargetsCred(uint credLen, byte cred[])

 Rec. ITU-T J.1012 (04/2020) 229

• This message permits the ECI Host to request the Micro Client to provide credentials for

encryption by a Micro Server.

Request parameter definitions:

target: EncrTarget[] The encryption Target for which the Micro Client has to provide the actual credentials
for encryption of the content by a Micro Server.

Response parameter definitions:
credLen: uint Length of the cred parameter in number of bytes.

cred[]: byte Credentials encoded in a format specific for the Micro Server that will encrypt the content
to be decrypted by the Micro Client.

Detailed semantics:

• This message allows the ECI Host to request a Micro Client to provide credentials

corresponding to the Target parameter so that a Micro Server recognizing Target can

encrypt content for the Micro Client.

9.7.2.6.5 reqDcrIpServer message

C→H reqDcrIpServer(ushort mh) →

C→H resDcrIpServer(ushort mh, Addrinfo addr)

• This message permits the Micro Client to request the ECI Host to provide the Micro

Server's IP address for further communication related to the Media Handle session. Related

error codes are defined in Table 9.7.2.6.5-1.

Request parameter definition:

mh: ushort Media Handle for the decryption session for which a Micro Server IP address
sending/receiving messages is requested.

Response parameter definition:

mh: ushort Media Handle for the decryption session for which a Micro Server IP addresses
sending/receiving messages is provided.

addr: Addrinfo IP protocol/address/port for the Micro Server for this Media Handle.

Pre conditions Request:

1) The Media Handle session is opened in mode OnlineIpMode.

Pre conditions Response:

2) The ECI Host is aware of the non-started state of encryption of the session.

Detailed semantics:

• The IP exchange between Micro Client and Micro Server is specific to the Micro DRM

System. This includes protocol choice and any convention for terminating a connection or

exchange on a content streaming session.

• This message may be issued on a Media Handle session on which the re-encryption process

has not yet been started.

230 Rec. ITU-T J.1012 (04/2020)

Table 9.7.2.6.5-1 – reqDcrIpServer error codes

Name Description

ErrDcrIpNone See Table 9.7.2.6.10-1.

9.7.2.6.6 reqDcrMsgSend message

C→H reqDcrMsgSend(ushort mh, uint length, byte msg[]) →

C→H resDcrMsgSend(ushort mh)

• This message permits the Micro Client to request the ECI Host to forward a message to the

Target Micro Server associated with the Media Handle.

Request parameter definition:

mh: ushort Media Handle for the decryption session for which a message has to be forwarded to
the Micro Server.

length: uint Length of the msg field in bytes.

msg[]: byte Message to be forwarded to the Micro Server.

Response parameter definition:

mh: ushort Media Handle of the encryption session.

Pre conditions Request:

1) The Media Handle session is opened in mode OnlineMsgMode.

Pre condition Response:

2) The message has been forwarded to the Micro Server; the ECI Host is ready to accept a

new reqDcrMsgSend.

Detailed semantics:

• The ECI Host shall be able to process and forward at least one message at a time to the

Micro Server. The messages should be delivered in order. The ECI Host is not obliged to

provide any specific buffering for more than one simultaneous outstanding reqDcrMsgSend

request. A safe Micro Client implementation should use the resDcrMsgSend as a control

flow handshake.

• The reliability of the forwarding service between Micro Server and Micro Client is as

defined for reqEncrMsgSend in clause 9.7.2.5.14.

9.7.2.6.7 reqDcrMsgRecv message

H→C reqDcrMsgRecv(ushort mh, uint length, byte msg[]) →

C→H resDcrMsgRecv(ushort mh)

• This message permits that the ECI Host provides the Micro Client with a message from the

Target Micro Server.

Request parameter definition:

mh: ushort Media Handle for the decryption session for which the Micro Client gets a message
from the Micro Server.

length: uint Length of the msg field in bytes.

msg[]: byte Message to be received from the Micro Server.

 Rec. ITU-T J.1012 (04/2020) 231

Response parameter definition:

mh: ushort Media Handle for the decryption session.

Pre conditions Request:

1) The Media Handle session is opened in mode OnlineMsgMode.

Pre condition Response:

2) The message has been processed by the Micro Client and it is ready to accept a new

reqDcrMsgRecv.

Detailed semantics:

• The Micro Client shall process at minimum one message at a time. The Micro Client is not

obliged to provide any specific buffering for more than one simultaneous outstanding

reqDcrMsgSend request, though it should take care, it is ready to process a subsequent

message respecting its other responsiveness requirements. A safe ECI Host implementation

should use the resDcrMsgRecv as a control flow handshake.

• The reliability of the forwarding service between Micro Client and Micro Server is as

defined for reqEncrMsgSend in clause 9.7.2.5.14.

9.7.6.2.8 reqDcrTsData message

H→C reqDcrTsData(ushort mh, uint length, byte msg[]) →

C→H resDcrTsData(ushort mh)

• This message permits the ECI Host to provide the Micro Client with data required in the

(near) future for decrypting the content on Media Handle.

Request parameter definition:

mh: ushort Media Handle for the decryption session.

length: uint Length in bytes of the message to be forwarded.

msg[]: byte Message to be forwarded to the Micro Client.

Response parameter definition:

mh: ushort Media Handle for the decryption session.

Pre conditions Request:

1) The Media Handle session is opened, the session is in re-encryption-mode OfflineStream

or OfflineStorage mode, uses data-format-mode OfflineDataMode and synchronization-

mode SyncTs.

Pre conditions Response:

2) The ECI Host is ready to receive a next data message.

Detailed semantics:

• The ECI Host should ensure that the Micro Client is provided with the data in line with the

synchronization requirements provided by the Micro Server along with the encrypted

content to be decrypted.

• The Micro Client shall receive at most one data message at the start of the decryption session

in OfflineStorage mode. Hence "offline Storage" mode.

232 Rec. ITU-T J.1012 (04/2020)

9.7.2.6.9 reqDcrFileData message

H→C reqDcrFileData(ushort mh, uint datalength, byte data[])

C→H resDcrFileData(ushort mh)

• This message permits the ECI Host to provide the Micro Client with a data from the Target

Micro Server required to decrypt content for the Media Handle.

Request parameter definition:

mh: ushort Media Handle for the decryption session.

datalength: uint Length of the data in bytes.

data[]: byte Data destined for the Micro Client for decryption purposes. The format of the data
is opaque if the data-format-mode is OfflineDataMode and is a PSSH Box for
inclusion in an ISOBMFF MOOV or MOOF box in case the data-format-mode is
OfflineIsobmffMode.

Response parameter definition:

mh: ushort Media Handle for the encryption session.

Pre conditions Request:

1) The Media Handle session is opened, the session is in re-encryption-mode OfflineStream or

OfflineStorage mode and synchronization-mode SyncFile.

Pre conditions Response:

2) The Micro Client is ready to receive a next data message.

Detailed semantics:

• The ECI Host has to ensure that the Micro Client is provided with the data in line with the

synchronization requirements along with the encrypted content.

• The ECI Host might extract a PSSH box form a valid ISOBMFF file and provided to the

Micro Client in line with the data synchronization requirements for decoding ISOBMFF

files.

• The ECI Host shall provide at most one data message at the end of the encryption session in

OfflineStorage mode. Typically this data message has to be processed ahead of any content

by the Micro Client.

9.7.2.6.10 Error codes for the Micro Client De-encryption API

The error codes for the Micro Client De-encryption API are listed in Table 9.7.2.6.10-1.

Table 9.7.2.6.10-1 – Micro Client De-encryption API related error codes

Name Value Description

ErrDcrIpNone -256 The ECI Host has no IP address/port for communicating to the Micro
Server.

 Rec. ITU-T J.1012 (04/2020) 233

9.8 APIs for content property related resources

9.8.1 List of APIs defined in clause 9.8

Figure 9.8.1-1 – Block diagram of the APIs defined in clause 9.8

Table 9.8.1-1 lists the APIs covered in clause 9.8 and Figure 9.8.1-1 illustrates the location of the

APIs defined in clause 9.8 with the ECI architecture.

234 Rec. ITU-T J.1012 (04/2020)

Table 9.8.1-1 – APIs for content protection related resources

Clause API name Description

9.8.2.3 Standard URI message API
Allows the ECI Client to deliver Standard URI information related to
a certain content element to the ECI Host and vice versa.

9.8.2.4 Customer URI API
Allows the ECI Client to deliver User URI information related to a
certain content element to the ECI Host and vice versa.

9.8.2.5 Basic URI API
Allows the ECI Client to deliver Basic URI information related to a
certain content element to the ECI Host and vice versa.

9.8.2.6 Output control API
Allows the ECI Client to deliver output control information related to
a certain content element to the ECI Host and vice versa.

9.8.2.7 Watermarking API
Allows the ECI Client to deliver Watermarking information related to
a certain content element to the ECI Host and vice versa.

9.8.2.8 Parental Control API
Allows an ECI Client to deliver information on Parental Control
Obligations associated to a certain content element to the ECI Host.

9.8.2.9 Content Property Sync API Permits synchronization of various content property changes.

9.8.2.10 Parental Authentication API
Allows an ECI Client to delegate parental authentication to a
standard parental authentication function in the ECI Host.

9.8.2.11
Parental Authentication
delegation API

Allows an ECI Client to cancel a delegated parental authentification
request

9.8.2.12 Protection Control API
Allows the ECI Client to provide Platform Operator specific control
over output protection systems

9.8.2 APIs for access to the usage rights and parental control resource

9.8.2.1 Introduction

This clause relating to ECI Client/Host APIs permits the ECI Client to set the rights and conditions

applying to decrypted content in a secure manner.

The rights and conditions API specifies the following aspects:

• Standard URI (usage rights information): generated by the ECI Client and used by the ECI

Host to control the applications of the content on industry standard outputs and applications.

• Basic URI: generated by the ECI Client and used by the Advanced Security and hardware

subsystem of the ECI Host to set basic usage rights for the content. This permits the ECI

Client to use robust hardware protection for basic rights properties that need to be in place

on the content.

• Output Control: This permits the ECI Client to block outputs selectively that could be active

under the conditions of the URI but which are nevertheless deemed inappropriate for use

from a rights perspective.

• ECI Host-driven watermarking control: this permits the ECI Client to mark outgoing

content with ECI Client specified marks through a CPE resident watermarking system.

• Parental control conditions permit the ECI Client to forward the requirement to authenticate

a parent to grant the access to the content to the protection system to which the content is

exported.

• Content property synchronization permits several content property changes occuring

simultaneously to be identified as such.

• The parental authentication function can be performed by an ECI Client itself or be delegated

to a central industry standard function in the ECI Host. The ECI Host may in turn select a

specific ECI Client to perform parental authentication on its behalf. The delegation options

serve to permit one single parental authentication across multiple ECI Clients and the ECI

Host.

The application of the new rights properties is securely linked to the application of a new control

word to descramble the content. This ensures that rights are applied to the content they are associated

with.

 Rec. ITU-T J.1012 (04/2020) 235

The content property APIs have a set and a get message. The set message is used by ECI Clients that

decrypt content to signal the content properties associated with the next control word that is

computed. The get function is used by Micro Servers that re-encrypt content to acquire the content

properties of the incoming content for the purpose of constructing the appropriate authentication and

signalling data for signalling content properties of the re-encrypted content.

The API version signalled as part of the Discovery API effectively aligns the version of the content

properties that are used.

The ECI Host Media Handle context shall maintain at minimum two values for different content

sections for each content property. Specifically for file based decryption it shall maintain at least two

content sections each decoded with a separate KeyID for each content property. Table 9.8.2.1-1 lists

the API functions. The rights API functions are grouped into separate APIs to permit independent

version management.

236 Rec. ITU-T J.1012 (04/2020)

Table 9.8.2.1-1 – List of messages of the usage rights and parental control API

API Message Type Dir. Tag Description

ApiStdUri setDcrStdUri set C→H 0x0 Set standard URI for content to be descrambled.

ApiStdUri getEncrStdUri get C→H 0x1 Get standard URI for content to be re-encrypted.

ApiCustUri setDcrCustUri set C→H 0x0 Set custom URI for content to be descrambled.

ApiCustUri getEncrCustUri get C→H 0x1 Get custom URI for content to be re-encrypted.

ApiBasicUri setDcrBasicUri set C→H 0x0 Set Basic URI for content to be descrambled.

ApiBasicUri getEncrBasicUri get C→H 0x1 Get Basic URI for content to be re-encrypted.

ApiOC setDcrOutputCtl set C→H 0x0 Set Output Control restrictions for content to be
descrambled.

ApOC getEncrOutputCtrl get C→H 0x1 Get Output Control restrictions for content to be
re-encrypted.

ApiDcrMark getDcrMarkSyst get H→C 0x0 Get supported marking systems.

ApiDcrMark setDcrMarkMeta set C→H 0x1 Set a marking system control value.

ApiDcrMark getDcrMarkMeta get H→C 0x2 Read a marking system property.

ApiDcrMark setDcrMarkBasic set C→H 0x3 Set basic marking payload for content to be
descrambled.

ApiDcrMark setDcrMarkExt set C→H 0x4 Set extended marking payload for content to be
descrambled.

ApiPar setDcrParCtl set C→H 0x0 Set Parental Control conditions for content to be
descrambled.

ApiPar getEncrParCtrl get C→H 0x1 Get Parental Control conditions for content to be
descrambled.

ApiCpSync setCpSync set C→H 0x0 ECI Client signals that the current set of content
properties is coherent and can be applied to the
content to be descrambled by forthcoming
control word.

ApiCpSync reqCpChange req H→C 0x1 ECI Host signals that a change is forthcoming in
the content properties of content to be re-
encrypted.

ApiParAuth reqParAuthChk req C→H 0x0 Request to the ECI Host to perform a parental
authentication on behalf of the ECI Client.

ApiParAuth reqParAuthChkCan req C→H 0x1 Cancels a preceding parental authentication
request to the Host.

ApiParAuth reqParAuthCid req H→C 0x2 Requests parental pin code authorization for a
(future) content item to be decoded. This may
trigger a parental authentication dialogue.

ApiParAuthDel reqParAuthDel req H→C 0x0 The ECI Host delegates a parental
authentication to an ECI Client.

ApiParAuthDel reqParAuthDelCan req H→C 0x1 The ECI Host cancels a preceding parental
authentication request to the ECI Client.

ApiProtCtrl getProtSystCtrl get C->H 0x0 The ECI Client gets from the ECI Host the list of
output protection systems and their support for
SRMs (System Renewability Messages) and
device ID blocking services.

ApiProtCtrl reqSrmMsg req C->H 0x1 The ECI Client provides a SRM to an output
protection system

ApProtCtrl reqInfoDevId req H->C 0x2 The ECI Host provides an ID of a device to which
an output protection system provides protected
content as part of a decryption session

ApiProtCtrl reqBlockDevId req C->H 0x3 The ECI Client provides a device ID to which no
content shall be provided by an output protection
system as part of a decryption session

ApProtCtrl setBlockProtSyst set C->H 0x4 The ECI Client indicates that a protection
system is considered inadequate to protect the
content of the decryption session.

9.8.2.2 Security aspects and synchronization

The ECI specification permits the content property information above to be authenticated by the ECI

Host so as to prevent unauthorized manipulation of this information. This mechanism also ensures

that the appropriate rights settings are applied to the content to which they are associated with. This

is defined in [ITU-T J.1014].

 Rec. ITU-T J.1012 (04/2020) 237

For content property information the ECI Host can facilitate authentication of the rights information

on behalf of the ECI Client using keys in the Advanced Security Block, thus ensuring the highest

level of integrity for authentication. It is up to ECI Clients to use the ECI Host's AS services

appropriately for this purpose. This is also defined in [ITU-T J.1014].

In case content properties require specific output protection properties to be applied on an output but

such output protection properties (or more secure or constrained versions thereof) cannot be provided

by the ECI Host, the ECI Host shall not output the content and provide a suitable message to the

user. Further details are to be provided in an ECI Ecosystem compliance regime.

9.8.2.3 Standard URI message API

9.8.2.3.1 setDcrStdUri Message

C→H setDcrStdUri(ushort mh, byte keyId[MaxUuidLen], StdUri stdUri)

• This message sets the Standard URI associated with keyId to uri.

Parameter definition:
mH: ushort Media Handle of the content to be decoded

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

stdUri: StdUri Standard URI for content is defined in
Table 9.8.2.3.1-1. The semantics of the fields correspond to those defined in [ETSI
TS 103 205] and [b-CI Plus].

Table 9.8.2.3.1-1 – Standard URI type specification

typedef struct StdUri {

 uint MajorVersion: 4;

 uint tmc: 1; /* trick_mode_control_info in [CI+ v1.4] */

 unit reserved1: 3;

 uint aps: 2; /* aps_copy_control_info in [CI+ v1.4] */

 uint emi: 2; /* emi_copy_control_info in [CI+ v1.4] */

 uint ict: 1; /* ict_copy_control_info in [CI+ v1.4] */

 uint rct: 1; /* rct_copy_control_info in [CI+ v1.4] */

 uint reserved2: 1; /* reserved bit */

 uint dot: 1; /* dot_copy_control_info in [CI+ v1.4] */

 uint rl: 8; /* rl_copy_control_info in [CI+ v1.4] */

} StdUri;

The following rules shall apply (expressions over field shall evaluate to True)

in line with [CI+v1.4]

emi == 0b00 || rct == 0b0

emi == 0b11 || (dot == 0b0 && rl == 0x00)

emi == 0b01 || tmc == 0b0

The protocol_version field value 0x03 is defined for the definition above;

other values are reserved for future use.

238 Rec. ITU-T J.1012 (04/2020)

StdUri field semantics:
MajorVersion: uint: 4 Major version of this standard URI. ECI Clients shall set MajorVersion to 0b0000.

ECI Hosts shall implement all versions up to their compliance level for this field,
and shall interpret any high value as a URI not implemented and thus no usage
rights shall apply.

reserved1: unit: 3 Reserved bits. Shall be set to 0b000 by the ECI Client and shall be ignored by ECI
Hosts complying to this version of stdUri.

reserved2: unit:1 Reserved bit. Shall be set to 0b0 by the ECI Client and shall be ignored by ECI
Hosts complying to this version of stdUri.

Other fields The semantics are as defined for the indicated fields of the CI Plus v1.4 URI [ETSI
TS 103 205] in the above structure definition.

Detailed semantics:

• For Transport Stream descrambling mode the URI shall apply to the content to be decoded

with the keys applying to the next decryption key. In clause 8.2.4.7 of [ITU-T J.1014] the

details for the decryption key calculation are defined.

• ECI Client shall be in decryption mode.

9.8.2.3.2 getEncrStdUri message

C→H StdUri getEncrStdUri(ushort mh, byte keyId[MaxUuidLen])

• This message sets the standard URI for forthcoming content.

Property definition:

• The standard URI is as defined in Table 9.8.2.3.1-1.

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId: byte[MaxUuidLen] KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

Detailed semantics:

• ECI Client shall be in encryption mode.

9.8.2.4 Customer URI API

9.8.2.4.1 setDcrCustUri message

C→H setDcrCustUri(ushort mh, byte keyId[MaxUuidLen], unit custUriLen, byte *custUri)

• This message sets a custom URI associated with keyId to uri.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId: byte[MaxUuidLen]t KeyID as a UUID in network byte order to which the URI applies in case of file
format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams
to indicate applicability to the next CW.

custUriLen: unit Length in bytes of custom URI field.

custUri: byte * Custom URI for content is defined in Table 9.8.2.4.1-1. Byte 0 and 1 shall act as
msB, and lsB of the custom URI format. All values of byte 0 and 1 are reserved,
except 0x80, 0x00 which shall mean an application specific meaning to the
following bytes.

 Rec. ITU-T J.1012 (04/2020) 239

Table 9.8.2.4.1-1 – Custom URI type specification

Name Value byte
0, 1

Description

CustUriPrivate 0x80, 0x00 The meaning of the bytes following byte 1 this is private. The appropriate
interpretation of the rest of the field is defined through other communication
between ECI Client and Micro Server or protection system.

RFU Other Reserved for future use.

Detailed semantics:

• For Transport Stream descrambling mode the URI shall apply to the content to be decoded

with the keys applying to the next decryption key. In clause 8.2.4.7 of [ITU-T J.1014] the

details for the decryption key calculation are defined.

• A maximum of four separate customs URIs are allowed to be set for one control word.

• ECI Client shall be in decryption mode.

9.8.2.4.2 getEncrCustUri message

C→H custUri getEncrCustUri(ushort mh, byte keyId[MaxUuidLen], unit custUriMaxLen)

• This message gets the custom URI for forthcoming content.

Property definition:

• The custom URI is as defined in Table 9.9.1-1.

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId: byte[MaxUuidLen] KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

custUriMaxLen: uint Maximum length (in bytes) of custom URI result; any additional content is to be
truncated.

Detailed semantics:

• ECI Client shall be in encryption mode.

9.8.2.5 Basic URI API

9.8.2.5.1 setDcrBasicUri message

C→H setDcrBasicUri(ushort mh, byte keyId[MaxUuidLen], BasicUri basicUri)

• This message sets the basic URI associated with keyId to basicUri. The basic URI provides

simplified but highly robust rights management for decrypted content.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file
format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams
to indicate applicability to the next CW.

basicUri: BasicUri Basic URI for content is defined in Table 9.8.2.5.1-1. The semantics of the fields
correspond to those defined in [ETSI TS 103 205].

Table 9.8.2.5.1-1 – Basic URI type specification

typdef byte BasicUri;

240 Rec. ITU-T J.1012 (04/2020)

Name Bits Description

BasicUriVersion 7 Major version of basic URI. If the ECI Host has not implemented the version
the ECI Host shall not permit the content to be decrypted and used. Value
0b0 defines version 0. Al;l other values are reserved and are not permitted.

BasicUriV0_0Ext 2..6 Reserved for future use, not used in v0.0. The only value defined for this field
is 0b00000. Other values are not permitted. ECI Hosts implementing only
basic Uri v0.0 shall ignore the values of this field: i.e., this may be used for
future backward compatible extensions of v0.0; e.g. in the form of relaxations
on v0.0 rights control.

BasicUriV0_0 0,1 Basic URI version 0.0. The values and meanings of this field are defined in
Table 9.8.2.5.1-2.

Table 9.8.2.5.1-2 – Basic URI V0.0 definition

Name Value Description

NoBasicProtection 0b00 No rights control through basic URI

RedistributionProtected 0b01 Encryption shall be on, replay prevention off

ViewOnly 0b10 Encryption shall be on, replay prevention shall be on

ViewOnlyStrict 0b11 Encryption shall be on; replay prevention shall be on, output shall be
restricted to specifically qualified (secure) outputs.

Detailed semantics:

• For Transport Stream descrambling mode the URI shall apply to the content to be decoded

with the keys applying to the next decryption key. In clause 8.2.4.7 of [ITU-T J.1014] the

details for the decryption key calculation are defined.

• The basic URI enables control by the ECI Client over rights implementation that is at the

highest level of robustness supported by the ECI Host. It provides control over two

protection mechanisms: encryption, which ensures the content is always scrambled on any

output or storage medium, and replay prevention which ensures that the encrypted content

can only be descrambled in a live connection (i.e., cannot be stored). For specifics see [ITU-

T J.1015].

• ECI Client shall be in decryption mode.

9.8.2.5.2 getEncrBasicUri message

C→H BasicUri getEncrBasicUri(ushort mh, byte keyId[MaxUuidLen])

• This message gets the basic URI for forthcoming content.

Property definition:

• The basic URI is as defined in Table 9.8.2.5.1-1.

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

Detailed semantics:

• ECI Client shall be in encryption mode.

 Rec. ITU-T J.1012 (04/2020) 241

9.8.2.6 Output control API

9.8.2.6.1 setDcrOutputCtl message

C→H setDcrOutputCtl(ushort mh, byte keyId[MaxUuidLen], ushort ocVector)

• Set the Output Control settings associated with keyId to ocVector.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file
format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams
to indicate applicability to the next CW.

ocVector: ushort Output Control vector for standard outputs as defined in Table 9.8.2.6.1-1.

Table 9.8.2.6.1-1 – Output Control Vector specification

Name Bits Description

MajorVersion 15 Version of the ocVector parameter. Value 0b0 is defined for version 1. Any
other value is reserved and is not permitted. If an ECI Host implementing
Major Version 1 receives a value other than 0xb0 this shall mean no output
is permitted.

OcAnyOther 14 Any other ECI Host output not covered by any of the output qualification
criteria listed below. If the value is 0b0 output is permitted on these outputs,
if the value is 0b1 output shall not be permitted.
The value of this bit changes the encoding of the fields below.
If the value is 0b0 the output restrictions shall be as listed below. If the value
is 0b1 the encoding shall be bit-wise inverted. I.e., if OcAnyOther==0b1 and
OcIP==0b1 output on the IP connection is permitted.
See note 2.

OcIP 0 Output on any IP connection is permitted if value is 0b0, and shall not be
permitted in value is 0b1.

OcUSB 1 Output on any USB connection is permitted if the value is 0b0, and shall not
be permitted if the value is 0b1. Precondition for this is, that the decrypted
content is not protected by any ECI recognized output protection system
and/or an ECI Micro DRM System under the control of the decrypting ECI
Client.

OcDtcpIp 2 Output on a DTCP-IP protected connection is permitted if value is 0b0, and
shall not be permitted in value is 0b1.

OcHdcp 3,4 Any HDCP protected output.
For OcAnyOther equal to 0b0:

• value 0b00: HDCP protected output permitted.

• value 0b01: if the HDCP version is below 2.2 output shall not be
permitted, if the HDCP version is 2.2 or higher output is permitted.

• value 0b10: reserved; this value is not permitted. ECI Hosts shall
interpret this value as equal to 0b11.

• value 0b11: no HDCP protected output shall be permitted.
For OcAnyOther equal to 0b1:

• value 0b00: no HDCP output shall be permitted.

• value 0b01: reserved, ECI Hosts shall interpret this value as equal
to 0b00.

• value 0b10: If the HDCP version 2.2 or higher output shall be
permitted, if the HDCP output version is less than 2.2 no output shall
be permitted.

• value 0b11: any HDCP protected output is permitted.
HDCP 2.2 or higher means no application of HDCP with a version lower than
2.2 shall be applied to the content; i.e. no output to a HDCP1.x, HDCP2.0 or
HDCP2.1 compliant repeater or HDCP1.x compliant device is permitted. See
“Type 1 Content Stream” as defined in [b-HDCP2.3].

OcWm 5 If the value of this bit is 0b1, output of the decoded content element is
permitted only with the application of a watermark inserted by the CPE in the
related content element.
See Note 3.

OcDtcp 6,7 Any DTCP protected output.
For OcAnyOther equal to 0b0:

242 Rec. ITU-T J.1012 (04/2020)

Table 9.8.2.6.1-1 – Output Control Vector specification

Name Bits Description

• value 0b00: DTCP protected output permitted.

• value 0b01: if the DTCP version is below 2 output shall not be
permitted, if the DTCP version is 2 or higher output is permitted.

• value 0b10: reserved; this value is not permitted. ECI Hosts shall
interpret this value as equal to 0b11.

• value 0b11: no DTCP protected output shall be permitted.
For OcAnyOther equal to 0b1:

• value 0b00: no DTCP output shall be permitted.

• value 0b01: reserved, ECI Hosts shall interpret this value as equal
to 0b00.

• value 0b10: If the DTCP version is 2 or higher output shall be
permitted, if the DTCP output version is less than 2 no output shall
be permitted.

• value 0b11: any DCTP protected output is permitted.

OCDownResHDCP1 8 Output of content on an HDCP1.x protected output is permitted if the
OcHdcp field value is 0b01 and the content is downscaled to 720p or lower,
if value of this field is 0b0; this is not permitted if the value of this field is 0b1.

reserved 9-13 The value of this field should be set to 0b00000 by the ECI Clients compliant
to this version of the specification. ECI Host implementation compliant to this
version of the specification may ignore this field.

NOTE 1 – Analogue output control is effectively provided by the standard URI dot and ict fields.
NOTE 2 – OcAnyOther effectively switches the output control field from a blacklist of outputs (when value equal 0b0) to

a whitelist of outputs (when value equal 0b1). If an output field is 0b1 it means it is effectively "on the list".
NOTE 3 – Watermarking systems suitable for this application can be subject to approval. ECI Hosts that are broadcast

or multicast capable shall support watermarking. As part of the definition of the application of a Watermarking
system to an ECI based CPE it shall be possible to uniquely identify the Chipset, e.g. by recovery of the
Chipset-ID from the watermark.

In case multiple ocVector fields apply to an output (e.g., an IP output protected by DTCP-IP) the

most restrictive condition shall apply.

Detailed semantics:

ECI Client shall be in decryption mode.

9.8.2.6.2 getEncrOutputCtrl message

C→H uint getEncrOutputCtrl(ushort mh, byte keyId[MaxUuidLen])

• This message gets the output control for forthcoming content.

Property definition:

• The output control is as defined in Table 9.8.2.6.1-1.

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

Detailed semantics:

• ECI Client shall be in encryption mode.

 Rec. ITU-T J.1012 (04/2020) 243

9.8.2.7 Watermarking API

9.8.2.7.1 General

The marking API permits ECI Clients to discover embedded (water) marking systems available

through the ECI Host, and then engage in a "setup" control dialogue with such systems. The marking

systems may be able to engage in a dialogue with only a limited number of ECI Clients and may be

able to mark only a limited number of Media Handle sessions simultaneously.

Marking systems can wish to engage with authorized ECI Clients. Such authorization can, amongst

others, be established using the setMarkMeta and getMarkMeta messages using an authorization

dialogue defined by the marking system.

ECI Clients may reserve access to a marking system by completing a successful engagement

dialogue. This ECI Client (as identified by its ECI client id) shall remain engaged with the marking

system until it is removed from the CPE or until it disengages.

9.8.2.7.2 getDcrMarkSyst message

C→H MarkSystDescr getDcrMarkSyst()

• This message allows the ECI Client to read the descriptors for the available marking

systems.

Property definition:

The result type MarkSystDescr shall comply to the definition in Table 9.8.2.7.2-1.

Table 9.8.2.7.2-1 – MarkSystDescr type definition

#define MaxMarkSystDescr 16;

typedef ushort MarkId; /* ECI Marking ID allocated to a marking system */

// markId values: 0x8xxx are used for proprietary marking systems.

// 0x0000 shall mean no marking system

// All other values are reserved by ECI, allocation of new

// IDs and their publication is defined elsewhere.

typedef struct MarkSystDescrElem {

 MarkID markId; /* ID of the marking system */

 uchar nrClients; /* number of Clients that can still be supported */

 uchar markSystFlags /* field as defined below */

} MarkSystDescr[MaxMarkSystDescr];

// Any available marking systems shall be listed as the first elements

// of MarkSystDescr. The remaining elements shall use markId==0x0000.

// markSystFlags:

// bit 0 signals authorization required (0b1) or not (0b0)

// bit 1 signals scrambled stream support (0b1) or not (0b0)

// bit 2 signals multi simultaneous stream support (0b1) or not (0b0)

// other bits are reserved and shall be ignored by Clients complying

// to this Recommendation

9.8.2.7.3 setDcrMarkMeta message

C→H setDcrMarkMeta(MarkID markId, uchar index, byte data[32])

• This message enables the ECI Host to set control (meta) data for a marking system.

244 Rec. ITU-T J.1012 (04/2020)

Parameter definition:
markId: MarkID Marking system ID to set the Property Definition.

index: uchar Sub property to be set for marking systems.

data[32]: byte Value to apply to the sub property indicated by index.

9.8.2.7.4 getDcrMarkMeta message

C→H byte[32] getDcrMarkMeta(MarkID markId, uchar index)

• This message enables the ECI Client to get control (Meta) data for a marking system.

Property Definition:

• Meta data for sub property index system with mark ID markID.

Parameter definition:
markId: MarkID Marking system ID to read the Property definition: the result type MarkSystDescr shall

comply with the definition in Table 9.8.2.7.4-1.

index: uchar Subproperty of marking system to read.

9.8.2.7.5 setDcrMarkBasic message

C→H setDcrMarkBasic(ushort mH, byte keyId[MaxUuidLen], MarkID markId, byte data[16])

• This message enables the ECI Client to set max. 128 bits of data used to mark the content to

be descrambled with the designated key.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file
format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams
to indicate applicability to the next CW.

markId: MarkID Marking system ID.

data[16]: byte 128 bit value.

9.8.2.7.6 setDcrMarkExt message

C→H setDcrMarkExt(ushort mH, byte keyId[MaxUuidLen], ushort markId, uint dataLen, byte

data[])

• This message enables the ECI Client to set an extended payload of a marking system for

marking content to be descrambled with the designated key.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId: byte[MaxUuidLen] KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to indicate
applicability to the next CW.

markId: ushort Marking system ID to use for marking the content.

datalen: uint Length of the data field.

Data[]: byte Payload data for marking system.

9.8.2.8 Parental Control API

9.8.2.8.1 setDcrParCtl message

C→H setDcrParCtl(ushort mH, byte keyId[MaxUuidLen], ParCond pC)

 Rec. ITU-T J.1012 (04/2020) 245

• This message enables the ECI Client to set the parental rating conditions (pC) for content

of mH to be descrambled with the designated key.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the parental control condition pC applies
in case of file format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format
streams to indicate applicability to the next CW.

pC: ParCond Parental Control conditions to be applied on the content. See
Table 9.8.2.8.1-1 for the definition of ParCond.

Table 9.8.2.8.1-1 – Parental Condition type specification

typdef struct ParCond {

 byte basicCondition; /* see Table 9.8.2.8.1-2 */

 byte extendedQualifier[16];

} ParCond;

Table 9.8.2.8.1-2 – Parental Condition basic condition definition

Name Bits Description

AuthRequired 7 0b1 means parental authentication is required before rendering the content.
0b0 means parental authentication may be required depending on
extendedQualifier.

ToggleBit 6 This bit alternates in a stream to indicate a new parental authentication
requirement on a change of the value of the bit.

Reserved 4,5 Shall be set to 0b00

QualifierFormat 0..3 Indicates the format of the extendedQualifier field.
Value 0x0 indicates "no value", the extendedQualifier field shall be set to
zeros,
Value 0x1 indicates that the ExtendedQualifier field contains a DVB Parental
Rating Descriptor as defined in [ETSI EN 300 468]. Remaining bytes shall
have value zero. Parental authentication shall be required even if
AuthRequired==0b0 in case the required rating for the applicable country
exceeds the limit set by the parent (as defined by the semantics of the DVB
parental rating descriptor).
Values 0x2..0xF are reserved for future use.

Detailed semantics:

• ECI permit parental rating authentication conditions to be passed along with the content as

an obligation to a system protecting the descrambled content.

• ECI Client shall be in decryption mode.

9.8.2.8.2 getEncrParCtrl message

C→H ParCond getEncrParCtrl(ushort mh, byte keyId[MaxUuidLen])

• This message enables the ECI Client to get the parental control condition for forthcoming

content.

Property definition:

• The parental control URI as defined in Table 9.8.2.8.1-2.

246 Rec. ITU-T J.1012 (04/2020)

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

Detailed semantics:

• ECI Client shall be in encryption mode.

9.8.2.9 Control Property Sync API

9.8.2.9.1 setCpSync message

C→H setCpSync(ushort mH, byte keyId[MaxUuidLen])

• This message signals to the ECI Host that the forthcoming content section indicated by keyId

will have the content properties set through the standard URI, custom URI, basic URI, Output

Control, Watermarking and Parental control APIs.

Parameter definition:
mH: ushort Media Handle of the content to be decoded.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the parental control condition pC applies
in case of file format decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format
streams to indicate applicability to the next CW.

Detailed semantics:

• The message shall trigger the ECI Host to appropriately prepare for the forthcoming changes

in content properties. This shall include sending a reqCpChange message to any Micro

Server with an Import/Export Connection to this Media Handle session.

• ECI Client shall be in decryption mode.

9.8.2.9.2 reqCpChange message

H→C reqCpChange(ushort mh, byte keyId[MaxUuidLen])

• This message triggers the Micro Server to prepare a content property change based on the

most recent future values for the content properties of the decrypted content that is re-

encrypted by the Micro Server.

Property definition:

• The parental control URI as defined in Table 9.8.2.8.1-2.

Parameter definition:
mH: ushort Media Handle of the content to be encrypted.

keyId[MaxUuidLen]: byte KeyID as a UUID in network byte order to which the URI applies in case of file format
decoding, byte 0 carrying 0x00 (even) or 0x01 (odd) for TS format streams to
indicate applicability to the next CW.

Detailed semantics:

• ECI Client shall be in encryption mode.

• The ECI Client shall get the content properties for the forthcoming content related to KeyId

in the decrypted stream and prepare a new encryption setup for the new content (which can

require a new CW).

 Rec. ITU-T J.1012 (04/2020) 247

9.8.2.10 Parental Authentication API

9.8.2.10.1 General

Authentication for parental approval may be performed directly by an ECI Client using an MMI

session. Alternatively an ECI Client can request the ECI Host to perform (or have performed) the

parental authentication, so as to harmonise the pin code management as well as improve the User

interface experience by integrating the pin requests naturally in the ECI Host User interface. In turn,

the User through the ECI Host may select an ECI Client among available candidates to perform the

parental authentication using the parental authentication delegation API ParAuthDel as defined in

clause 9.8.2.11. This can be useful in case an ECI Client handling many content items cannot

delegate its parental authentication but can perform parental authentication on behalf of the ECI Host.

This API also permits an ECI Client to start a parental authentication for a content item ahead of

opening a media session, e.g., for parental authentication of a future recording event.

9.8.2.10.2 Standard parental authentication function

This clause defines a set of requirements for a standard parental rating function based on 4-character

pin-codes that an ECI Host shall be able to perform if requested by an ECI Client or that an ECI

Client shall perform on behalf of the ECI Host in case it offers such a service through the Parental

Authentication Delegation API.

An ECI Host or ECI Client may provide an alternative authentication function other than the one

described in the sequel of this clause if such function provides at least the parental authentication

integrity of the mechanism defined in this clause.

The following functionalities apply to the standard pin code based parental authentication

mechanism:

1) Parental authentication is based on a pin code of at least 4 alphanumerical characters from a

minimum set of at least 10 characters (e.g., digits).

2) The pin code setting shall be protected by the pin code itself or by a master authentication

mechanism which protects access to assets or services of material value which are deemed

highly inappropriate for access by minors from which content may need to be protected.

3) Any applicable parental rating limits setting shall be protected by the pin code or by a master

authentication mechanism as per 2) above.

4) Requirements on a potential master authentication mechanism shall create an authentication

integrity of at least that of the pin code mechanism defined in this clause without being based

on a master authentication mechanism.

5) With the purchase of a Host, the initial pin code for parental rating or the means to

authenticate with the master authentication shall be passed to the owner only.

6) At installation of a new Client, the Operator shall pass the initial pin code or the means to

authenticate with the master authentication to the owner only.

7) The Manufacturer or a custodian acting on its behalf may provide a means to reset the pin

code to its initial value or provide a service by which the owner can have the pin code set to

a new value which will be passed to the owner only.

8) The Operator may provide a means to reset the pin code to its initial value or provide a

service by which the owner can have the pin code set to a new value which will be passed to

the owner only.

9) In case of 5 successively failed authentications within 15 minutes, the parental authentication

function shall refuse to perform a new authentication for at least 15 minutes.

248 Rec. ITU-T J.1012 (04/2020)

10) It shall not be possible to recover or reset the pin code through application of regular User

software, downloaded applications running on the CPE or any User interface or regular

interfaces.

9.8.2.10.3 reqParAuthChk Message

C→H reqParAuthChk(ushort mH) →

C→H resParAuthChk(ushort mH, bool ok)

• This message allows the ECI Client to request the ECI Host to perform a parental

authentication check using the standard parental authentication function of the ECI Host (see

clause 9.8.2.10) and to return the result in a response message.

Request parameter definition:
mH: ushort Media Handle of the content to be decoded.

Response parameter definition:
mH: ushort Media Handle of the content to be decoded.

ok: bool True corresponds to authentication succeeded, False otherwise including timeout.

Detailed semantics:

• Only one outstanding parental authentication check per Media Handle shall be distinguished

by the ECI Host. Issuing a second request on the same Media Handle before the previous

one was responded to or cancelled will result in two identical Responses.

• reqParAuthChk The ECI Host should use a timeout value for requesting parental

authentication that will terminate within a reasonable period if there is no person present or

willing to perform the authentication as proposed in [b-ITU-T J Suppl. 7].

9.8.2.10.4 reqParAuthChkCan message

C→H reqParAuthChkCan(ushort mH) →

H→C resParAuthChkCan(ushort mH)

• ECI Client cancels any previous requests to the ECI for parental authentication.

Request parameter definition:
mH: ushort Media Handle of the content to be decoded.

Response parameter definition:
mH: ushort Media Handle of the content to be decoded.

Post condition response:

1) The response to a previous reqParAuthChk message may be returned by the ECI Host to

the ECI Client before the resParAuthChkCan message, but not thereafter.

9.8.2.10.5 reqParAuthCid message

H→C reqParAuthCid(uint cidLength, byte cid[]) →

C→H resParAuthCid(bool ok)

• This message allows the ECI Host to request the ECI Client to perform any required

authentication for a future content item identified by cid.

 Rec. ITU-T J.1012 (04/2020) 249

Request parameter definition:
cidLength: uint Length of the cid parameter.

cid[]: byte Identification of the content to be subjected to parental authentication (if so required). The first
byte indicated the format of the content identification parameter, as defined in Table 9.8.2.10.5-1.

Table 9.8.2.10.5-1 – Content identification formats

Name Value Description

CidDvbEvent 0x01 DVB Event identification. The bytes following bytes in cid have the value of
the sequence: original network id (2 bytes), transportstream id (2 bytes),
service id (2 bytes), event id (2 bytes) as defined in the EIT table as defined
in [ETSI EN 300 468]. All 2 byte fields in the sequence are represented in
network order (most significant byte first).

RFU other Reserved for future use.

Response parameter definition:
ok: bool True if parental authentication was successful or is not required.

Detailed semantics

• The ECI Client shall maintain a non-volatile record of content identifications that have been

authenticated with this function. It may discard the oldest records and records that will no

longer be required in the future in case it lacks storage space. The minimum requirements for

this content identification buffering are proposed in [b-ITU-T J Suppl. 7].

The related error codes are listed in Table 9.8.2.10.5-2.

Table 9.8.2.10.5-2 – Error codes media session API for TS media

Name Value Description

ErrParAuthCidUnknOk 1 It was not possible to identify the parental authentication
status of the content item but the parental authentication
was performed and found correct.

The above error statuses may also be returned in case access to the required network resources was

not available.

9.8.2.11 Parental Authentication delegation API

9.8.2.11.1 General

This API permits an ECI Client to indicate that it can perform a standard parental authentication

function as defined in clause 9.8.2.10.2 and for the ECI Host to delegate pin code verifications to

such an ECI Client.

An ECI Client may indicate support for the delegated authentication API using the configuration

API at ECI Client initialization time.

NOTE – At the same time an ECI Client may choose not to delegate its own parental authentication due to.

commercial, security or legal considerations, for example.

The ECI Host shall offer a setup function to permit the User to select the ECI Host for standard

parental control authentication or to delegate the standard parental control authentication to one of

the ECI Clients offering this function.

250 Rec. ITU-T J.1012 (04/2020)

9.8.2.11.2 reqParAuthDel message

H→C reqParAuthDel(ushort mh) →

C→H resParAuthDel(ushort mH, bool ok)

• This message allows the ECI Host to request the ECI Client to perform a delegated parental

authentication on its behalf for content on mH.

Request parameter definition:
mH: ushort Media Handle of the content to be decoded.

Response parameter definition:
mH: ushort Media Handle of the content to be decoded.

ok: bool True if the parental authentication was successful, false if not so or if there was a
timeout.

Detailed semantics:

• Only one outstanding parental authentication check per Media Handle shall be distinguished

by the ECI Client. Issuing a second request on the same Media Handle before the previous

one was responded to or cancelled will result in two identical responses.

• The ECI Client should use a timeout value for requesting parental authentication that will

terminate within a reasonable period if there is no person present or willing to perform the

authentication as proposed in [b-ITU-T J Suppl. 7].

9.8.2.11.3 setParAuthDelCan message

H→C reqParAuthDelCan(ushort mH) →

C→H resParAuthDelCan(ushort mH)

• This message allows the ECI Host to cancel a delegated parental authentication request.

Response parameter definition::
mH: ushort Media Handle of the content to be decoded.

Response parameter definition:
mH: ushort Media Handle of the content to be decoded.

Post condition response:

• The response to a previous reqParAuthDel message may be returned by the ECI Host to the

ECI Client before the resParAuthDelCan message, but not thereafter.

9.8.2.12 Protection System Control API

9.8.2.12.1 Introduction

Content decrypted by an ECI Client may be be provided to different outputs of the CPE. An output

is typically protected by an output protection system. An output protection system may have options

for accepting System Renewability Messages (SRMs) from an ECI Client and offer the ECI Client

the option to block outputs to devices connected via the output protection system in case their device

ID (in the context of the output protection system) is listed as compromised.

A protection system may support multiple outputs.

 Rec. ITU-T J.1012 (04/2020) 251

9.8.2.12.2 getProtSystCtrl Message

C->H getProtSystCtrl()

• This message allows the ECI Client to read the list of output protection systems supported

by the CPE, their versions and their support for SRMs (System Renewability Messages) and

device ID blocking services.

Table 9.8.2.12.2-1 – Protection Control Array specification

typedef struct ProtCtrlElem {

 ushort protSysType; // protection system type according to table sect-2

 uint srmSupp:4; // level of support for SRMs according to table sect-3

 uint devIdSupp:1; // 0b0 means no support for device ID services,

 // 0b1 means support for device ID services

 uint reserved:11; // reserved; shall have value 0b00000000000

} ProtCtrlElem;

#define MaxProtCtrlArr 32

typedef ProtCtrlElem ProtCtrlArr[MaxProtCtrlArr];

 // A protection system as listed in the array may protect multiple outputs.

 // Each value of ProtCtrlElem except where protSustType=0x0000 shall appear

 // only once in ProtCtrlArr. All ProtCtrlElem with ProtColElem unequal 0x0000

 // shall be in the lowest index elements of ProtCtrlArr,

 // values equal 0x0000 shall be at the end of the array

Table 9.8.2.12.2-2 – Output Protection System type values

Name Value Output protection system type

OpNoProtSyst 0x0000 No output protection system

OpHDCP_1 0x0010 HDCP version1

OpHDCP_21 0x0011 HDCP version 2.0 or 2.1

OpHDCP_22 0x0012 HDCP version 2.2 or higher

OpDTCP_1 0x0020 DCTP version 1

OpDTCP_2 0x0021 DTCP version 2 or higher

OpDTCP_IP1 0x0030 DTCP IP

Proprietary 0x8xxx May be defined outside the scope of this specification

Reserved Other values Rserved for future use

Table 9.8.2.12.2-3 – SRM support values

Protect Value Output protection system type

SrmNone 0x0 No SRM support

SrmProtSysSpecV1 0x1 Supports SRM according to version 1 (but not higher) of the Output
Protection System specification

SrmProtSysSpecV2 0x2 Supports SRM according to version 2 (but not higher) of the Output
Protection System specification

SrmProtSysSpecV3 0x3 Supports SRM according to version 3 (but not higher) of the Output
Protection System specification

SrmProtSysSpecV4 0x4 Supports SRM according to version 4 (but not higher) of the Output
Protection System specification

reserved 0x5..0xC Reserved for future use

Proprietary 0xD-0xF May be defined outside the scope of this specification

252 Rec. ITU-T J.1012 (04/2020)

Semantics:

• Device ID service support means that the protection system shall support identification and

blocking of any protected connection to a device using the reqBlockDevId, resBlockDevId

messages.

• The configuration of output protection functions shall be static over the “lifetime” of the

client.

9.8.2.12.3 reqSrmMsg message

C→H reqSrmMsg(ushort protSysType, uint srmLen, byte srmData[]) →

H→C resSrmMsg()

• This message enables the ECI Client to send an SRM to protection system type.

Request parameter definitions:

protSysType[]: ushort The protection system type this SRM is targeted for. Note: SRMs may apply to multiple
types of the same family of protection systems. In such case it is sufficient to send the
SRM to the host only once and not for each type.

srmLength: uint Length of the SRM

srmData:byte[] SRM

Precondition Request:

• No previous reqSrmMsg message was sent or the resSrmMsg message to the last reqSrmMsg message was

received.

Detailed Semantics:

• The ECI Host shall send the resSrmMsg as soon as possible.

Table 9.8.2.12.3-1 – reqSrmMsg error codes

Name Description

ErrReqSrmMsgOverflow See clause 9.8.2.12.7.

9.8.2.12.4 reqInfoDevId message

H→C reqInfoDevId(ushort mh, ushort protSysType, uint lenDevId, byte devId[])→

C→H resInfoDevId(ushort mh)

• This message permits the ECI Host to indicate the devices (by devId) to which the content

that can be decrypted by the device is sent using protection system protSysType in

decryption session mh.

Request parameter definition:

mh: ushort Media Handle for the decryption session for which the device with devId is used.

protSysType: ushort Protection system used for protecting the content to be delivered to devId – see table
6.4.2-1 in [b-ITU-T J Suppl. 7]

lenDevId: uint Length of the devId field in bytes.

devId[]: byte Device ID – specific encoding is defined in a supplementary specification

Response parameter definition:

mh: ushort Media Handle for the decryption session for which response is provided.

Precondition Request:

• No previous reqInfoDevId in the mh session was sent or the resInfoDevId message to the last reqInfoDevId

message in the mh session was received.

Detailed Semantics:

• The ECI Host shall send the devId of each device connected to the output of the mh session as soon as

possible.

 Rec. ITU-T J.1012 (04/2020) 253

Table 9.8.2.12.4-1 – reqInfoDevId error codes

Name Description

ErrReqInfoDevOverflow See clause 9.8.2.12.7.

9.8.2.12.5 reqBlockDevId message

C→H reqBlockDevId(ushort mh, ushort protSysType, uint lenDevId, byte devId[])→

H→C resBlockDevId(ushort mh)

• This message permits the ECI Client to block the devices with devId to which the decrypted

content is sent using protection system protSysType in decryption session mh.

Request parameter definition:

mh: ushort Media Handle for the decryption session for which the device with devId is used.

protSysType: ushort Protection system used for protecting the content to be delivered to devId – see table
6.4.2-1 in [b-ITU-T J Suppl. 7]

lenDevId: uint Length of the devId field in bytes.

devId[]: byte Device ID – specific encoding is defined in a supplementary specification

Response parameter definition:

mh: ushort Media Handle for the decryption session for which response is provided.

Precondition Request:

• No previous reqBlockDevId in the mh session was sent or the resBlockDevId message to the last

reqBlockDevId message in the mh session was received.

Semantics:

• On a valid reqBlockDevId the ECI Host shall respond with ErrReqOkNoId (see Table 9.3.4-1) and ensure

the output to device with devId is blocked.

9.8.2.12.6 setBlockProtSyst message

C→H setBlockProtSyst(ushort mh, ushort protSysType bool block)

• This message permits the ECI Client to block all decrypted content sent using protection

system protSysType in decryption session mh.

Parameter definition:

mh: ushort Media Handle for the decryption session for which content should be blocked.

protSysType: ushort Protection system used for protecting content to be delivered to devId – see table 6.4.2-
1 in [b-ITU-T J Suppl. 7]

block: bool True if content shall be blocked, False otherwise.

Semantics:

• In case block is set from True to False for a protSysType on a mh all devIDs for that protSysType used for

output on mh shall be sent by the ECI Host using reqInfoDevId if the implementation of protSysType

permits this (as signalled by getProtSystCtrl).

9.8.2.12.7 Error codes for the Protection System Control API

• The error codes for the Protection System Control API are listed in Table 9.8.2.12.7-1.

Table 9.8.2.12.7-1 – Protection System Control API related error codes

Name Value Description

ErrReqSrmMsgOverflow -256 The ECI Host indicates it cannot accept the next ReqSrmMsg message
yet.

ErrReqInfoDevOverflow -257 The ECI Client indicates it cannot accept the next ReqInfoDev message
yet.

254 Rec. ITU-T J.1012 (04/2020)

9.9 APIs for ECI Client and Application communication

9.9.1 List of APIs defined in this clause

Table 9.9.1-1 lists the APIs covered in this clause.

Table 9.9.1-1 – APIs for ECI Client and application communication related resources

Clause API name Description

9.9.2 Inter client communication API
Enables an ECI Client to establish a direct communication path to
another ECI Client.

9.9.2 Inter client communication API

9.9.2.1 General

The ECI Host offers an environment with standardized exchange of information between ECI

Clients in the form of import/export information, URIs and content. ECI Clients may communicate

amongst themselves in order to provide additional (at present not ECI defined) functionality. ECI

Clients can register their principal ability and willingness to support inter-client communication

through the discovery resource (see clause 9.4.2). After system initialization, they can read the

identities of other ECI Clients including the established Import/Export Connections. The ECI

Clients can open a communication channel (called pipe) to a potential counterpart and exchange

messages over the pipe. Both sides can cancel the pipe. The pipe of an ECI Client is closed by the

ECI Host on halting and/or re-initialization of its counterpart ECI Client.

The ECI Host provides ECI Client identities that are authenticated using the ECI Certificate

Chains provided with the ECI Clients. ECI Clients shall provide an additional independent

authentication mechanism in case communication with a counterpart can lead to security hazards.

In case of communication between an ECI Client decoding content and another ECI Client

subsequently re-encrypting that content (a Micro Server) the recommendation for setting up a pipe

is that the pipe is initiated (opened) by the Micro Server.

Table 9.9.2.1-1 shows the messages of the Inter client communication API.

Table 9.9.2.1-1 – Inter Client Communication API messages

Message Type Dir. Tag Description

getIccMaxClients S C→H 0x0 The ECI Client reads the maximum number of ECI Clients that
the ECI Host may support.

reqIccSystemReady A H→C 0x1 The ECI Host informs the ECI Client that all ECI Clients are
initialized.

getIccClientInfo S C→H 0x2 The ECI Client reads the identity and connection status of
another ECI Client in the system.

reqIccPipeOpen A C→H 0x3 Request to open a pipe to another ECI Client.

reqIccPipeOpenReq A H→C 0x4 Incoming request from another ECI Client to open a pipe.

reqIccPipeCancel A C→H 0x5 ECI Client cancels the pipe.

reqIccPipeClose A H→C 0x6 ECI Host informs ECI Client that the pipe with the counterpart
was closed.

reqIccPipeMsgSend A C→H 0x7 ECI Client sends a message to its pipe counterpart

reqIccPipeMsgRecv A H→C 0x8 ECI Client receives a message from its pipe counterpart .

9.9.2.2 getIccMaxClients message

C→H uint getIccMaxClients()

• Gets the maximum number of ECI Clients that can be supported by the ECI Host.

 Rec. ITU-T J.1012 (04/2020) 255

Property Definition:

• Unsigned integer representing the maximum number of ECI Clients that the ECI Host can

support.

9.9.2.3 reqIccSystemReady message

H→C reqIccSystemReady()

• The ECI Host informs the ECI Client that all other ECI Clients are initialized.

Semantics:

• This message is provided at system initialization to indicate to all ECI Client registered to

this API that it is possible to start reading the client Information Registry and attempt to open

pipes to other ECI Clients.

• The ConnId field in the result reflects the latest status of the Import/Export Connections of

the ECI Client with a potential counterpart. These can be subject to change.

• No result message is required.

9.9.2.4 getIccClientInfo message

C→H ClientInfo getIccClientInfo(ushort clientId)

• The ECI Client reads the identity and connection status of another ECI Client in the system.

Parameter Definition:
clientId: ushort Id of the client for setting up pipes. This identifier does not change over the

lifecycle of the system. It changes on reinitialization.

Property definition:

• The connectionID is a dynamic property.

• ClientInfo is a structure providing the identity of the designated ECI Client and any

Import/Export Connections with that ECI Client as defined below.

Type definition for ClientInfo:

#define MaxConnId 32

typedef struct ClientInfo {

 ECI_Operator_Id operatorId;

 ECI_Platform_Operation_Id platformOperationId;

 ECI_Vendor_Id vendorId;

 union {

 ECI_Client_Series_Id clientSeriesId;

 ECI_Client_Id clientId;

 } client;

 ushort connId[MaxConnId];

}

256 Rec. ITU-T J.1012 (04/2020)

Field definitions:
operatorId: ECI_Operator_Id Operator ID of the ECI Client.

platformOperationId:
ECI_Platform_Operation_Id

Platform Operation ID of the ECI Client.

client: union Either an ECI_Client_Series_Id or a ECI_Client_Id. The type field of
clientSeriesId and clientId define if this is a clientSeriesId or a clientId.

VendorId: ECI_Vendor_Id Vendor ID of the ECI Client.

clientSeriesId: ECI_Client_Sesies_Id Client series ID of the ECI Client.

clientId: ECI_Client_Id Client ID of the ECI Client.

connId: ushort[MaxConnId] Array of connection ids; value 0xFFFF signals an empty array entry. The
empty array entries are all at the end of the array.

9.9.2.5 reqIccPipeOpen message

C→H reqIccPipeOpen(ushort clientId, byte protocolId[16]) →

H→C resIccPipeOpen(ushort clientId)

• This message enables the ECI Client to request the ECI Host to open a pipe to another ECI

Client.

Request parameter definition:
clientId: ushort ID of the client to which a pipe is requested.

protocolId[16]: byte ID for the message protocol to be used. This shall be a UUID [IETF RFC
4122] with octets in network order in the array.

Result parameter definition:
clientId: ushort ID of the client to which a pipe was requested to be opened.

Pre conditions Response:

• The pipe is opened or an error code is returned. The related error codes are listed in Table

9.9.2.5-1.

Table 9.9.2.5-1 –reqIccPipeOpen error codes

Name Description

ErrIccPipeOpenReject

See Table 9.9.2.11-1.
ErrIccPipeOpenNoConn

ErrIccPipeOpenProtocol

ErrIccPipeOpenNotReady

9.9.2.6 reqIccPipeOpenReq message

H→C reqIccPipeOpenReq(ushort clientId, byte protocolId[16]) →

C→H resIccPipeOpen(ushort clientId)

• This message enables the ECI Client to receive an incoming request from another ECI

Client to open a pipe via the ECI Host.

Request parameter definition:
clientId: ushort ID of the client that requests a pipe.

protocolId[16]: byte ID for the message protocol to be used. This shall be a UUID [IETF RFC
4122] with octets in network order as bytes.

 Rec. ITU-T J.1012 (04/2020) 257

Result parameter definition:
clientId: ushort ID of the client that requested the pipe

Semantics:

• The response value of clientId shall be identical to the request value.

Pre conditions Response:

• The ECI Client may refuse the pipe. The error codes are equal to the ones for opening a pipe

and are transparently conveyed to the requester. They are listed in Table 9.9.2.5-1.

9.9.2.7 reqIccPipeCancel message

C→H reqIccPipeCancel(ushort clientId) →

H→C resIccPipeCancel(ushort clientId)

• This message enables the ECI Client to indicate to the ECI Host that it wants to terminate

the pipe.

Request parameter definition:
clientId: ushort ID of the client of the pipe that is cancelled.

Result parameter definition:
clientId: ushort ID of the client of the pipe that is cancelled.

Semantics:

• The response value of clientId shall be identical to the request value.

Pre conditions Response:

• The pipe is terminated: the ECI Client requesting the pipe-cancel will not receive any more

messages from the pipe.

Detailed semantics:

• If the pipe was not open this handled without error condition.

9.9.2.8 reqIccPipeClose message

H→C reqIccPipeClose(ushort clientId, uint reason) →

C→H resIccPipeClose(ushort clientId)

• This message enables the ECI Host to inform the ECI Client that the pipe with the

counterpart was closed.

Request parameter definition:
clientId: ushort ID of the client of the pipe that is closed.

reason: uint Reason for closing of the pipe. The values are listed in Table 9.9.2.11-1.

Table 9.9.2.8-1 – reqIccPipeClose reason values

Name Value Description

IccPipeCloseCancel 0x01 Pipe was closed by counterpart using an reqIccPipeCancel message.

IccPipeCloseStop 0x02 Pipe was closed by ECI Host as a consequence of a termination of the
counterpart ECI Client. It is possible that the ECI Client is subsequently
re-initialized.

RFU Other Reserved for future use.

258 Rec. ITU-T J.1012 (04/2020)

Result parameter definition:
clientId: ushort ID of the client of the pipe that is closed.

Precondition request:

• No more messages will be sent over the pipe.

Precondition response:

• The ECI Client will not attempt to send new messages over the (closed) pipe.

9.9.2.9 reqIccPipeMsgSend message

C→H reqIccPipeMsgSend(ushort clientId, uint msgId, uint dataLen, byte data[])→

H→C resIccPipeMsgSend(ushort clientId)

• This message enables the ECI Client to send a message to its counterpart of a pipe. Related

error codes are listed in Table 9.9.2.11-1.

Request parameter definition:
clientId: ushort ID of the client to which the message is sent

msgId: uint Id of the message. All negative values and zero are reserved; all positive
values are application specific (meaning is defined in the context of the
sender and recipient).

dataLen: uint Length of the data parameter in number of bytes. This shall not exceed 32
768.

data[]: byte Data field for the message.

Result parameter definition:
clientId: ushort ID of the client of the pipe.

Precondition request:

• The next reqIccMsgSend message may only be sent after the previous resIccMsgSend

message for the same pipe has been received.

Table 9.9.2.9-1 – reqIccPipeMsgSend Error Codes

Name Description

ErrIccPipeClosed See Table 9.9.2.11-1.

9.9.2.10 reqIccPipeMsgRecv message

H-→C reqIccPipeMsgRecv(ushort clientId, uint msgId, uint dataLen, byte data[])→

C→H resIccPipeMsgRecv(ushort clientId)

• This message enables the ECI Client to receive a message from its counterpart of a pipe.

Request parameter definition:
clientId: ushort ID of the client from which the message is received.

msgId: uint Id of the message. All negative values and zero are reserved; all positive
values are application specific (meaning is defined in the context of the
sender and recipient).

dataLen: uint Length of the data parameter in number of bytes. This shall not exceed 32
768.

data: byte[] Data field for the message.

 Rec. ITU-T J.1012 (04/2020) 259

Result parameter definition:
clientId: ushort ID of the client of the pipe.

Precondition request:

• The next reqIccMsgRecv message will only be sent after the previous resIccMsgRecv

message for the same pipe has been received.

9.9.2.11 Error codes for the inter client communication

Error codes for the inter client communication APIs are listed in Table 9.9.2.11-1.

Table 9.9.2.11-1 – Error codes for Inter client communication

Name Value Description

ErrIccPipeOpenReject -256 Counterpart rejected the pipe.

ErrIccPipeOpenNoConn -257 Counterpart rejects pipe as a consequence of there not being an
established Import/Export Connection with the ECI Client.

ErrIccPipeOpenProtocol -258 Counterpart rejects the protocol proposed for the pipe.

ErrIccPipeOpenNotReady -259 Counterpart is not in a state where it is ready to accept a pipe. It is
appropriate to re-attempt to establish a pipe later.

ErrIccPipeClosed -260 Pipe is closed.

10 Mandatory and optional ECI Host functionalities

10.1 Introduction

The technical specifications of the ECI system support technical solutions for a very wide range of

CPEs for media consumption. It is up to the decision of a CPE Manufacturer which frontend, core

and backend functions he implements in his device. For the frontend and backend functionalities of

a device the Manufacturer will most likely only implement only those ECI APIs which fit to his

hardware / protocol stack. In order to provide flexibility for the User, Table 10.2-1 lists all mandatory

(m), optional (o) and conditional (c) APIs for the different categories of CPEs.

10.2 List of mandatory and optional ECI functionalities for different types of CPE devices

Table 10.2-1 gives the list of mandatory and optional ECI functionalities for different types of CPE

devices. The implementation of several APIs is conditional, depending on the availability of certain

hardware/software components in the CPE device.

260 Rec. ITU-T J.1012 (04/2020)

Table 10.2-1 – List of mandatory and optional ECI functionalities

API Clause Host
Condition

(if applicable)
Decr.
Client

Micro
server

Micro
Client

Host interface discovery 9.4.2 M M M M
MMI 9.4.3 M O O O
IP 9.4.4 C If IP connectivity is supported O O O
HTTP(S) 9.4.4.6 M O O O
File system 9.4.5 M O O O
Timer and clock 9.4.6 M O O O
Power management 9.4.7 M O O O
Country and language setting 9.4.8 M O O O
Advanced Security general 9.5.2.2 M M M M
Advanced Security decryption 9.5.2.3 M M n.a. M
Advanced Security export 9.5.2.4 C For recording or gateway O n.a. O
Advanced Security encryption 9.5.2.5 C For recording or gateway n.a. M na
Smart Card 9.5.3 C For SC-reader supported O O O
Data Carousel 9.5.4 C For Broadcast network O O O
Decryption (see note) 9.6.2 M M n.a. M
Export connection 9.7.2.3 C For recording or gateway O n.a. O
Import connection 9.7.2.4 C For recording or gateway n.a. M n.a.
Re-encryption (see note) 9.7.2.5 C For recording or gateway n.a. M n.a.
Micro Client de-encryption 9.7.2.6 M O n.a. M
Country and language setting 9.4.8 M O O O
Standard URI 9.8.2.3 M M M M
Customer URI 9.8.2.4 M M M M
Basic URI 9.8.2.5 M M M M
Output control 9.8.2.6 M M M M

Watermarking 9.8.2.7 C
 For broadcast or multicast
capable devices

O n.a. O

Parental control 9.8.2.8 M M/O M/O M/O
Content property sync 9.8.2.9 M M M M
Parental authentication 9.8.2.10 M O n.a. O
Parental authentication delegation 9.8.2.11 M O n.a. O
Inter Client communication 9.9.2 M O O O
NOTE – Slots can be designated specifically for Micro Servers and decryption clients.
 The slot itself is technically identical, but the required AS resources and associated descrambling functions are

distinct.

The discovery API does not offer a mechanism to permit an ECI Host to detect that an ECI Client

can decrypt or encrypt file and/or transportstream format media data. Such signalling is provided by

the mhType field of the decryptId parameter of the setDcrMhMatch message (see clause 9.6.2.2.2).

For re-encryption such discovery is provided by the EciEncrModes parameter of the setEncrModes

message (see clause 9.7.2.5.3).

• A consumption only ECI compliant device shall provide at least 2 VM instances and AS-

slots.

• ECI Hosts that support PVR functionality shall support at least one additional container

(VM-instance) and AS-slot for a Micro Server. If such ECI Hosts also provides playback

functionality of the stored content it shall support at least one additional container (VM-

instance) and AS-slot for a Micro Client that can decode the re-encrypted content.

• ECI Hosts that support networked gateway functionality shall support at least one additional

container (VM-instance) and AS-slot for a Micro Server.

 Rec. ITU-T J.1012 (04/2020) 261

Annex A

Cryptographical functions of the ECI host

(This annex forms an integral part of this Recommendation.)

A.1 Hash function

The hash functions in this Recommendation are all based on SHA256 as defined in [NIST FIPS 197].

Function hash clause 5.2 is equal to SHA-256() as defined in [NIST FIPS 197].

The c-function asHash(uchar *data, uint datalength, resultLength, uchar *result) uses the octets

starting at data of length dataLength as dataIn octetstring and computes the octetstring resultOut as a

resultLength/8 octet string, and stores it at result in accordance with:

resultOut = BS2OSP(truncate(SHA-256(OS2BSP(dataIn)),resultLength)))

resultLength shall be a multiple of 8. Truncate shall be the function that is the left truncation of a bit

string (parameter 1) to the length (parameter 2) bits.

BS2OSP and OS2BSP are functions that convert a bit string to an octet string and vice versa as defined

in clause 9 of [ITU-T J.1014].

A.2 Asymmetrical cryptography

The asymmetrical encryption and decryption operations are defined in clause12.4 of [ITU-T J.1014].

A.3 Symmetrical cryptography

AES cryptography as defined in this Recommendation shall be as defined in [NIST FIPS 197] unless

a specific application reference for an AES application is provided.

CBC applications of AES shall be as defined in [NIST Block 2001] unless a specific application

reference for CBC with AES is provided. If not defined otherwise, initialization vector 0 shall be

used.

CTR applications of AES shall be as defined in [NIST Block 2001] unless a specific application

reference for CTR with AES is provided. If not defined otherwise initialization vector 0 shall be used.

A.4 Random number generation

Random number generation as defined in this Recommendation shall comply with the specification

defined in Annex A of [ITU-T J.1014].

262 Rec. ITU-T J.1012 (04/2020)

Annex B

Interoperability parameters

(This annex forms an integral part of this Recommendation.)

B.1 Introduction

This annex defines parameters related to resource requirements in CPEs. The adherence to these

requirements serves interoperability between ECI Clients, ECI security services delivered by

networks and CPEs.

B.2 Revocation list length

CPEs shall reserve sufficient NV storage to store Revocation Lists of the following length for each

item that can be revoked as defined in Table B.2-1. The ECI TA should ensure the issued ECI TA

RLs adhere to these limits.

Table B.2-1 – Revocation List maximum length

Revocation List Max. number_of_ids

Manufacturer RL 500

Host RL 500

Vendor RL 500

ECI Client RL 500

Operator RL 500

Platform Operation RL 500

B.3 ECI client image size

An ECI Host shall have a minimum of 500 Kbyte ECI Client Image storage per ECI Client slot it

supports.

B.4 Broadcast carousel configuration parameters

ECI defines maximum acquisition times tCdownloadScenario for all items to be downloaded from a

broadcast carousel in order to permit suitable design of ECI Hosts. The tCdownloadScenario

parameter reflects the actual download time; therefore, carousel repetition rate should be at least a

three-fold multiple of this to ensure downloading by the ECI Host within these limits. Broadcasters

should provide adequate bandwidth to support the required repetition rate.

ECI also defines a maximum module size for buffer allocation purposes.

Both tCdownloadScenario as well as the maximum module size that the ECI Host should be designed

to handle are defined in Table B.4-1.

Table B.4-1 – Maximum download scenario periods and module sizes for ECI carousels

Table type tCdownloadScenario Max. Module Size

ECI Client Images 5 minutes 500 Kbyte

ECI Client Revocation data 5 minutes 100 Kbyte per bucket

Platform Operation Certificate Chain 10 seconds 50 Kbyte

Platform Operation Revocation data 5 minutes 100 Kbyte per bucket

ECI Host revocation data 5 minutes 100 Kbyte per bucket

AS setup data 2 minutes 20 Kbyte per bucket

 Rec. ITU-T J.1012 (04/2020) 263

Annex C

ECI Host API overview

(This annex forms an integral part of this Recommendation.)

Table C-1 defines the values for MsgApiTag as defined in clause 9.3.1.

Table C-1 – Numbering scheme of the ECI APIs

API Clause
MsgApiTag

value
highest API

version
deprecated

API versions
Host interface discovery 9.4.2 0x0001 0x0000 none
MMI 9.4.3 0x0002 0x0000 none
IP 9.4.4 0x0003 0x0000 none
HTTP(S) 9.4.4.6 0x0004 0x0000 none
File system 9.4.5 0x0005 0x0000 none
Timer and clock 9.4.6 0x0006 0x0000 none
Power management 9.4.7 0x0007 0x0000 none
Country and language setting 9.4.8 0x0008 0x0000 none
Advanced Security general 9.5.2.2 0x0009 0x0000 none
Advanced Security decryption 9.5.2.3 0x000A 0x0000 none
Advanced Security export 9.5.2.4 0x000B 0x0000 none
Advanced Security encryption 9.5.2.5 0x000C 0x0000 none
Smart Card 9.5.3 0x000D 0x0000 none
Data Carousel 9.5.4 0x000E 0x0000 none
Decryption 9.6.2 0x000F 0x0000 none
Export connection 9.7.2.3 0x0010 0x0000 none
Import connection 9.7.2.4 0x0011 0x0000 none
Re-encryption 9.7.2.5 0x0012 0x0000 none
Micro Client de-encryption 9.7.2.6 0x0013 0x0000 none
Standard URI 9.8.2.3 0x0014 0x0000 none
Customer URI 9.8.2.4 0x0015 0x0000 none
Basic URI 9.8.2.5 0x0016 0x0000 none
Output control 9.8.2.6 0x0017 0x0000 none
Watermarking 9.8.2.7 0x0018 0x0000 none
Parental control 9.8.2.8 0x0019 0x0000 none
Content property sync 9.8.2.9 0x0020 0x0000 none
Parental authentication 9.8.2.10 0x0021 0x0000 none
Parental authentication delegation 9.8.2.11 0x0022 0x0000 none
Inter Client communication 9.9.2 0x0023 0x0000 none

264 Rec. ITU-T J.1012 (04/2020)

Annex D

Forward compatibility of content property definitions

(This annex forms an integral part of this Recommendation.)

Content properties have to be implemented in a highly robust way using hardware or low-level

firmware and may be complex, costly or impossible to change or update after SOC production. The

approach to creating an evolutionary path for such content properties despite such upgrade limitations

is explained in this clause.

New content properties and/or expanded functionality on existing content properties may be required

in the future. This may include an extension of the number of bits representing the value of a content

property. The content property implementation in an older ECI Host is not aware of new functionality

and it is often not feasible to update it. The definition of content properties in ECI Hosts is such that

a maximum forward compatibility with respect to new content property functionality is achieved.

ECI Hosts will have a defined behaviour for all input values and ignore any field extension that they

are not designed for. They also create defined behaviour, that is, each value of a future Content

Property will have a single defined behaviour on all ECI Hosts not implementing all extensions,

including ECI Hosts complying with the first content property version. Using this principle, new

Content Property values can be assigned with full awareness on what behaviour will result on

preceding versions of ECI Host implementations. In case a new content property should have two

(or more) different options for backward compatible interpretation by older ECI Hosts, two (or more)

reserved values can be assigned having the same new content property semantics in the new content

property definition, but each with a suitable (but different) backward compatible interpretation.

An example of a field extension is, for instance, a new output control field to be defined for a new

output type X in the output control API. This is assigned to bit-5 which is reserved in version 1. It

can use the semantical equivalent of the OcIP field. Any previous implementations of ECI Clients

will assign this field 0. The interpretation by an older ECI Host will be the following:

• if OcAnyOther==0b0 OutputX is permitted;

• if OcAnyOther==0b1 OutputX is not permitted.

This corresponds perfectly to the semantics in a new ECI Host implementation when OcX==0b0.

However, when OcX==0b1 the output permission will be the reverse of the former configuration with

OcX==0b0, thus permitting new functionality in the combination of a new ECI Host and a new ECI

Client. Note that the reverse interpretation of the field values depending on OcAnyOther ensures that

the value 0 for any undefined field takes its natural meaning: maximum permission for

OcAnyOther==0b0 (other outputs permitted) and minimum permission for OcAnyOther= 0b1 (other

outputs not permitted).

Vice versa, it is important that ECI Clients not using the latest content property definition do not

inadvertently address new content property functionality of later content property definitions that they

are not aware of, or worse, use such presumably non-assigned values for private purposes based on

the fact that such values have defined behaviour in all ECI Hosts. Such inappropriate use will

typically create a serious obstacle for future incorporation of these values for ECI defined purposes.

Therefore, this specification explicitly forbids ECI Clients application of unassigned content

property values.

Specifically: for fields which can have multiple values, the reserved values will all have a defined

behaviour in ECI Hosts, but the reserved values shall not be used by ECI Clients.

Any unassigned subfield in a content property definition shall have a defined behaviour defined in an

ECI Host, which corresponds to one of the defined content property values. Typically, an ECI Host

 Rec. ITU-T J.1012 (04/2020) 265

shall ignore such subfields, i.e., the ECI Host interprets the content property value simply in terms

of the fields that are defined. Typically, ECI Clients shall assign the value 0 to such a subfield. Any

deviation of the unassigned subfield equal zero policy shall be predefined by a version of the content

property definition.

Any field extension shall be ignored by ECI Hosts compliant to the corresponding content property

definition and ECI Clients assigning values shall assign the value 0 to such field extensions.

266 Rec. ITU-T J.1012 (04/2020)

Appendix I

List of all available API messages in alphabetic order

(This appendix does not form an integral part of this Recommendation.)

The API messages listed in Appendix I were extracted from the following tables of clause 9 of this

Recommendation and listed in Table I.1.

Table I.1 – List of tables giving the messages of the different APIs

API clause API category
Host Interface discovery API 9.4.2.1-1

General APIs

User Interface API 9.4.3.1-1
IP socket API 9.4.4.3.1-1
UDP socket API 9.4.4.4.1-1
TCP socket API 9.4.4.5.1-1
HTTP get API 9.4.4.6.1-1
File Open/Close API 9.4.5.2.1-1
File Access API 9.4.5.3.1-1
File Directory Service API 9.4.5.4.1-1
Timer API 9.4.6.2.1-1
Clock API 9.4.6.3.1-1
Power transition API 9.4.7.2-1
Wakeup from standby API 9.4.7.3-1
Country/Language setting API 9.4.8.1-1
Advanced Security General API 9.5.2.2.1-1

ECI specific APIs

Advanced Security Decryption API 9.5.2.3.1-1
Advanced Security Export API 9.5.2.4.1-1
Advanced Security Encryption API 9.5.2.5.1-1
Smart Card Session Management API 9.5.3.6.1-1
Smart Card Communication API 9.5.3.6.1-1
Data carousel acquisition API 9.5.4.1-1
Media Handle decryption session API 9.6.2.2.1-1
Export Connection API 9.7.2.3.1-1
Import connection API 9.7.2.4.1-1
Re-encryption API 9.7.2.5.1-1
Decryption API 9.7.2.6.1-1
usage rights and parental control API 9.8.2.1-1
Inter Client Communication API 9.9.2.1-1

 Rec. ITU-T J.1012 (04/2020) 267

Table I.2 lists all API messages in alphabetic order.

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

1 callAsNextKeySession
Advanced

Security General
9.5.2.2.3 S C→H

Change to next random key for a

session.

2 callCardGetProp Smart Card 9.5.3.6.5 S H→C
Get card communication

property/parameter.

3 callCardSessionPrio Smart Card 9.5.3.5.3 S C→H Set Smart Card session priority.

4 callCardSetProp Smart Card 9.5.3.6.4 S H→C Set card communication parameter.

5 callFileDataLog File System 9.4.5.3.6 S C→H
Appends data at the end of a buffered

file.

6 callLocaltime Clock 9.4.6.3.3 S C→H
Converts time integer value into local

time.

7 getApis
Interface

Discovery
9.4.2.2 S C→H Get available Host APIs.

8 getApiVersions
Interface

Discovery
9.4.2.3 S

C→H
Get available versions of a host API.

9 getAsClientRnd
Advanced

Security General
9.5.2.2.13 S

C→H Get a new random number for the ECI

Client applications.

10 getAsSC
Advanced

Security General
9.5.2.2.14 S

C→H Get current Scrambling Control field

status of content in a session.

11 getAsSessionLimitCounter
Advanced

Security General
9.5.2.2.10 S

C→H Get current limit counter value for the

session.

12 getAsSessionRk
Advanced

Security General
9.5.2.2.9 S

C→H
Get random key value for a session.

13 getAsSlotRk
Advanced

Security General
9.5.2.2.8 S

C→H
Get random key value for the AS slot.

14 getCardConnStatus Smart Card 9.5.3.5.4 S H→C
Provides status of card connection

status.

15
getChipsetId Advanced

Security General

9.5.2.2.16 S C→H Get the ChipsetID value of the Key

Ladder block

16 getDcrMarkMeta Content Property 9.8.2.7.4 S H→C Read a marking system property.

17 getDcrMarkSyst Content Property 9.8.2.7.2 S H→C Get supported marking systems.

18 getDcrTsSource
Decryption TS

Source Control
9.6.2.3.6.2 S

C→H The ECI Client gets the source of the

TS.

19 getEncrStdUri Content Property 9.8.2.3.2 S
C→H Get standard URI for content to be re-

encrypted.

20 getEncrBasicUri Content Property 9.8.2.5.2 S
C→H Get Basic URI for content to be re-

encrypted.

21 getEncrCustUri Content Property 9.8.2.4.2 S
C→H Get custom URI for content to be re-

encrypted.

22 getEncrOutputCtrl Content Property 9.8.2.6.2 S
C→H Get Output Control restrictions for

content to be re-encrypted.

23 getEncrParCtrl Content Property 9.8.2.8.2 S
C→H Get Parental Control conditions for

content to be descrambled.

24 getIccClientInfo
Inter Client

Communication
9.9.2.4 S

C→H The ECI Client reads the identity and

connection status of another ECI Client

in the system.

25 getIccMaxClients
Inter Client

Communication
9.9.2.2 S

C→H The ECI Client reads the maximum

number of ECI Clients that the ECI

Host may support.

26
getImageTargetId Advanced

Security General

9.5.2.2.17 S C→H Get the ECI_Image_Target_Id value of

the CPE

268 Rec. ITU-T J.1012 (04/2020)

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

27 getPwrStatus
Power

Management
9.4.7.2.2 S

C→H
Gets current value power status.

28 getTime Clock 9.4.6.3.2 S
C→H Reads the local system clock as integer

value.

29 reqAsAStartDecryptSession

Advanced

Security

Decryption
9.5.2.3.2 A C→H

Start a decryption session in the ECI

Client's AS slot

30 reqAsAuthDecrSlotConfig

Advanced

Security

Decryption

9.5.2.3.4 A H→C

Authenticate the slot configuration with

authentication mechanisms (decryption

mode).

31 reqAsAuthEncrSlotConfig

Advanced

Security

Encryption

9.5.2.5.5 A

C→H Authenticate the slot configuration and

encryption parameters with

authentication mechanisms (encryption

mode).

32 reqAsClientChalResp
Advanced

Security General
9.5.2.2.7 A

C→H Apply ECI Client Authentication Key

on data and return result.

33 reqAsComputeAkClient
Advanced

Security General
9.5.2.2.6 A

C→H Compute Authentication Key for ECI

Client applications.

34 reqAsComputeEncrCw

Advanced

Security

Encryption

9.5.2.5.4 A

C→H

Compute encryption control word.

35 reqAsEventCpChange

Advanced

Security

Encryption

9.5.2.5.8 A H→C

Event message on content property

change in imported content in an

encryption session.

36 reqAsEventSC
Advanced

Security General
9.5.2.2.15 A H→C

Event message on change of scrambling

control field in session.

37 reqAsEventSessionLimit
Advanced

Security General
9.5.2.2.12 A H→C

On reaching a limit value for remaining

units send event to ECI Client.

38 reqAsExportConnEnd
Advanced

Security Export
9.5.2.4.3 A

C→H
Terminate existing export session.

39 reqAsExportConnSetup
Advanced

Security Export
9.5.2.4.2 A

C→H Setup an Export Connection from

decryption to encryption session.

40 reqAsInitSlot
Advanced

Security General
9.5.2.2.2 A

C→H
Initializes the AS slot.

41 reqAsLdUssk

Advanced

Security

Encryption

9.5.2.5.6 A

C→H

Load Micro Server secret key.

42 reqAsLoadSlotLk
Advanced

Security General
9.5.2.2.5 A

C→H
Compute top level link key (LK1).

43 reqAsMInikLk1

Advanced

Security

Encryption

9.5.2.5.7 A

C→H
Compute asymmetrical Micro Client

initialization message.

44 reqAsStartEncryptSession

Advanced

Security

Encryption

9.5.2.5.3 A

C→H

Start an encryption session.

45 reqAsStopSession
Advanced

Security General
9.5.2.2.4 A

C→H
Stop a session.

46 reqCardCmdRes Smart Card 9.5.3.6.2 A
C→H Send card command, get card response

back.

47 reqCardReInit Smart Card 9.5.3.6.3 A

C→H Reset card (warm or cold) and reruns

initialization sequence with the latest

initialization preference setting.

48 reqCCardConClose Smart Card 9.5.3.5.6 A H→C
Informs ECI Client that a card session

has been closed.

 Rec. ITU-T J.1012 (04/2020) 269

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

49 reqCCardConOpen Smart Card 9.5.3.5.5 A H→C
Informs ECI Client that a card session

has been opened.

50 reqCCountry Country 9.4.8.2.2 A H→C
The ECI Host requests the actual ECI

Client preferred country setting.

51 reqCLanguage Language 9.4.8.2.4 A H→C
The ECI Host requests the actual ECI

Client preferred language setting.

52 reqCpChange Content Property 9.8.2.9.2 A H→C

The ECI Host signals that a change is

forthcoming in the content properties of

content to be re-encrypted.

53 reqDCAcqModule
Data Carousel

Acquisition
9.5.4.3 A

C→H The ECI Client requests the ECI Host

to acquire a specific ECI data carousel

module into a file using module filter

parameters and various modes.

54 reqDCAcqGroupInfo
Data Carousel

Acquisition
9.5.4.2 A

C→H The ECI Client requests the ECI Host

to read the GroupInfoIndication

structure in the DSI message of the

specified ECI data carousel.

55 reqDcrFileQuit
Decryption Media

File
9.6.2.4.4.4 A

C→H The ECI Client cancels a descrambling

session with the ECI Host.

56 reqDcrFileData
Request Data via

File Filter
9.6.2.4.5.2.4 A

C→H The ECI Client requests the ECI Host

to acquire data via the File Filter.

57 reqDcrFileStop
Decryption Media

File
9.6.2.4.4.3 A H→C

The ECI Host requests the ECI Client

to stop descrambling of a Media

Handle.

58 reqDcrFileFilter
Request File

Filter
9.6.2.4.5.2.3 A C→H

The ECI Client requests the ECI Host

to set a data filter for security data

acquisition.

59 reqDcrFileKeyComp
Request key

computing
9.6.2.4.6.3 A H→C

Initiate any required computing or other

activity of the ECI Client to make a

control word with Key-ID available.

60 reqDcrFileStart
Decryption Media

File
9.6.2.4.4.2 A H→C

Requests ECI Client to descramble or

return the descramble status of a file or

stream.

61 reqDcrIpServer Re-encryption 9.7.2.6.5 A

C→H The Micro Client to request the ECI

Host to provide the Micro Server's IP

address for further communication

related to the Media Handle session.

62 reqDcrMhBcAlloc
MediaHandle

Decryption
9.6.2.2.5 A

C→H The ECI Client requests a Media

Handle session for its own broadcast

network access purposes.

63 reqDcrMhCancel
MediaHandle

Decryption
9.6.2.2.6 A

C→H The ECI Client cancels a media session

with the ECI Host.

64 reqDcrMhClose
MediaHandle

Decryption
9.6.2.2.4 A H→C

The ECI Host closes a media session

with an ECI Client.

65 reqDcrMhOpen
MediaHandle

Decryption
9.6.2.2.3 A H→C

The ECI Host requests the ECI Client

to open a media session of a specified

type using a Media Handle.

66 reqDcrMsgRecv Re-encryption 9.7.2.6.7 A H→C

The ECI Host provides the Micro

Client with a message from the Micro

Server of a Media Handle session.

67 reqDcrMsgSend Re-encryption 9.7.2.6.6 A C→H

The Micro Client requests the ECI

Host to send a message to the Micro

Server of a Media Handle session

68 reqDcrTargetCred Re-encryption 9.7.2.6.4 A H→C The ECI Host requests the ECI Client

to provide the initialization data for a

270 Rec. ITU-T J.1012 (04/2020)

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

Micro Server connection typically used

for authentication of the target.

69 reqDcrTargets Re-encryption 9.7.2.6.3 A H→C

The ECI Host requests the Micro

Client to provide the encryption targets

for which it can decrypt services.

70 reqDcrTsData Re-encryption 9.7.2.6.8 A

C→H The Micro Server provides the ECI

Host with data to be forwarded to the

Target Micro Client of a Media

Handle for decryption, including ECM

related synchronization information.

71 reqDcrTsDescrquit
TS content

Decryption
9.6.2.3.4.4 A

C→H The ECI Client reqests the ECI Host

to terminate the descrambling of a

Media Handle session.

72 reqDcrTsData
 Micro-Client De-

encryption
6.7.2.6.7 A H→C

The ECI Host to provide the Micro

Client with data required in the (near)

future for decrypting the content on

Media Handle.

73 reqDcrTsDescrStop
TS content

Decryption
9.6.2.3.4.3 A H→C

The ECI Host requests the ECI Client

to stop the descrambling of a Media

Handle session.

75 reqDcrTsDescrStart
TS content

Decryption
9.6.2.3.4.2 A H→C

Requests The ECI Client to descramble

or return the descramble status of a

programme in a TS.

76 reqDcrTsRelocate
Decryption TS

Source control
9.6.2.3.6.3 A C→H

The ECI Clients relocates the source of

the TS.

77 reqDcrTsSection
Decryption TS

data acquisition
9.6.2.3.5.5 A H→C

Forwards a acquired section to ECI

Client.

78 reqDcrTsSelectCancel
Decryption TS

Source control
9.6.2.3.6.6 A

C→H The ECI Client cancels its previous

program selection.

79 reqDcrTsSelectPmt
Decryption TS

Source control
9.6.2.3.6.5 A

C→H The ECI Client selects program in TS

by PMT.

80 reqDcrTsSelectPrg
Decryption TS

Source control
9.6.2.3.6.4 A

C→H The ECI Client selects program in TS

by program number.

81 reqDcrTsTable
Decryption TS

data acquisition
9.6.2.3.5.6 A

C→H The ECI Client acquires a table in the

stream.

82 reqEncrConnDrop Re-encryption 9.7.2.5.5 A H→C

The ECI Host requests the ECI Client

to drop any information on a previously

pre-authenticated re-encryption

connection.

83 reqEncrConnSetup Re-encryption 9.7.2.5.4 A H→C

The ECI Host requests the ECI Client

to create a re-encryption Target

connection and to pre-authenticate the

re-encryption Target for subsequent

reference in setting up a Media Handle

session.

84 reqEncrFileData Re-encryption 9.7.2.5.18 A C→H

The Micro Server provides the ECI

Host with a message to be forwarded to

the Target Micro Client of a Media

Handle for decryption, including

KeyID related synchronization

information.

85 reqEncrIpServer Re-encryption 9.7.2.5.13 A H→C

The ECI Host requests the IP server

address of a Micro Server so as to

permit Micro Clients to create IP

connections.

 Rec. ITU-T J.1012 (04/2020) 271

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

86 reqEncrMhCancel Re-encryption 9.7.2.5.9 A C→H

The ECI Client terminates the Import

Connection with the specified

exporting ECI Client.

87 reqEncrMhClose Re-encryption 9.7.2.5.8 A H→C
ECI Host closes the Re-encryption

Session with the ECI Client.

88 reqEncrMhOpen Re-encryption 9.7.2.5.7 A H→C

The ECI Host requests The ECI Client

to open a Media Handle session to

re-encrypt content from an incoming

Import Connection for an established

re-encryption connection.

89 reqEncrMhQuit Re-encryption 9.7.2.5.12 A C→H

The ECI Client informs the ECI Host

that the Media Handle re-encryption

operation was terminated.

90 reqEncrMhStart Re-encryption 9.7.2.5.10 A H→C

The ECI Host requests the ECI Client

to start the re-encryption operation for a

Media Handle session.

91 reqEncrMhStop Re-encryption 9.7.2.5.11 A H→C

The ECI Host requests the ECI Client

to stop a re-encryption operation for a

Media Handle session.

92 reqEncrMsgRecv Re-encryption 9.7.2.5.18 A H→C

The ECI Host provides the Micro

Server with a message from a Target

of a Media Handle session.

93 reqEncrMsgSend Re-encryption 9.7.2.5.14 A C→H

The Micro Server requests the ECI

Host to forward a message to the

Target of a Media Handle session.

94 reqEncrTargets Re-encryption 9.7.2.5.3 A H→C

The ECI Host requests the ECI Client

to provide the Target nodes it can

authenticate.

95 reqEncrTsData Re-encryption 9.7.2.5.16 A

C→H The Micro Server provides the ECI

Host with data to be forwarded to the

Target Micro Client of a Media

Handle for decryption, including ECM

related synchronization information.

96 reqEncrTsEcm Re-encryption 9.7.2.5.17 A

C→H The Micro Server issues an ECM

section that is required by the Micro

Client to decrypt in the next crypto-

period.

97 reqExpConnCancel
Export

Connection
9.7.2.3.5 A

C→H The ECI Client terminates an

initialized Export Connection with an

importing ECI Client.

98 reqExpConnDrop
Export

Connection
9.7.2.3.4 A H→C

The ECI Hosts cancels any previously

initialized connection of an exporting

ECI Client to an importing ECI

Client.

99 reqExpConnNodes
Export

Connection
9.7.2.3.2 A H→C

The ECI Host requests export option

nodes from the ECI Client.

100 reqExpConnSetup
Export

Connection
9.7.2.3.3 A H→C

The ECI Host requests the ECI Client

to initialize an Export Connection to

an importing ECI Client based on an

Import Chain.

101 reqExpMhCancel
Export

Connection
9.7.2.3.8 A C→H

The ECI Client cancels an export

session.

102 reqExpMhClose
Export

Connection
9.7.2.3.7 A H→C The ECI Host closes an export session.

103 reqExpMhOpen
Export

Connection
9.7.2.3.6 A H→C

The ECI Host requests the ECI Client

to create an export session based on a

272 Rec. ITU-T J.1012 (04/2020)

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

previously initialized Export

Connection

104 reqFileClose File System 9.4.5.2.3 A C→H Closes an open file.

105 reqFileCreate File System 9.4.5.4.3 A C→H Create a new file.

106 reqFileDelete File System 9.4.5.4.4 A C→H Delete a file.

107 reqFileDir File System 9.4.5.4.5 A
C→H Lists file names of files available in the

ECI Clients file system.

108 reqFileOpen File System 9.4.5.2.2 A C→H Opens an ECI Client private file.

109 reqFileRead File System 9.4.5.3.3 A
C→H Reads consecutive bytes starting from

the present file location.

110 reqFileRemoveData File System 9.4.5.3.5 A
C→H Deletes data from a file at current

location.

111 reqFileSeek File System 9.4.5.3.4 A C→H Repositions the present file location.

112 reqFileStat File System 9.4.5.4.2 A
C→H Return size and modification time of

file.

113 reqFileWrite File System 9.4.5.3.2 A
C→H Writes consecutive bytes starting from

the present file location.

114 reqHCardConClose Smart Card 9.5.3.5.7 A

C→H Informs ECI Host that ECI Client

wishes to terminate a session with the

connected card.

115 reqHCountry Country 9.4.8.2.1 A
C→H Requests the actual ECI Host preferred

country setting.

116 reqHLanguage Language 9.4.8.2.3 A
C→H Requests the actual ECI Host preferred

language setting.

117 reqHttpGetData HTTP Get 9.4.4.6.3 A

C→H Performs an HTTP Get request on a

URL and passes the result as data to the

Client.

118 reqHttpGetFile HTTP Get 9.4.4.6.3 A
C→H Performs an HTTP Get request on a

URL and stores the result in a file.

119 reqIccPipeCancel
Inter Client

Communication
9.9.2.7 A

C→H
The ECI Client cancels the pipe.

120 reqIccPipeClose
Inter Client

Communication
9.9.2.8 A H→C

The ECI Host informs ECI Client that

the pipe with the counterpart was

closed.

121 reqIccPipeMsgRecv
Inter Client

Communication
9.9.2.10 A H→C

The ECI Client receives a message

from its pipe counterpart.

122 reqIccPipeMsgSend
Inter Client

Communication
9.9.2.9 A

C→H ECI Client sends a message to its pipe

counterpart.

123 reqIccPipeOpen
Inter Client

Communication
9.9.2.5 A

C→H Request to open a pipe to another ECI

Client.

124 reqIccPipeOpenReq
Inter Client

Communication
9.9.2.6 A H→C

Incoming request from another ECI

Client to open a pipe.

125 reqIccSystemReady
Inter Client

Communication
9.9.2.3 A H→C

The ECI Host informs the ECI Client

that all ECI Clients are initialized.

126 reqImpConnCancel
Import

Connection
9.7.2.4.6 A C→H

The ECI Client terminates the Import

Connection with the specified

exporting ECI Client.

127 reqImpConnChain
Import

Connection
9.7.2.4.3 A H→C

The ECI Host requests importing ECI

Client to provide input chain for a

specific import node.

128 reqImpConnChainRenew
Import

Connection
9.7.2.4.3 A C→H

The ECI Client requests the ECI Host

to reinitialize the connection using an

updated Import Chain.

 Rec. ITU-T J.1012 (04/2020) 273

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

129 reqImpConnDrop
Import

Connection
9.7.2.4.5 A H→C

The ECI Host drops the Import

Connection with the specified

exporting ECI Client.

130 reqImpConnNodes
Import

Connection
9.7.2.4.2 A H→C

The ECI Host requests importing ECI

Client to provide its import nodes.

131 reqImpConnSetup
Import

Connection
9.7.2.4.4 A H→C

The ECI Host requests importing ECI

Client to initialize an Import

Connection with a specific exporting

ECI Client through an import node.

132 reqIpAddrinfo IP sockets 9.4.4.3.4 A C→H Gets address of (remote) ECI Host.

133 reqIpClose IP sockets 9.4.4.3.3 A C→H Closes ECI IP Socket.

134 reqIpSocket IP sockets 9.4.4.3.2 A C→H Opens an ECI IP Socket.

135 reqIpTcpAccept TCP/IP Socket 9.4.4.5.5 A
C→H TCP server peer accepts connection

from TPC client peer.

136 reqIpTcpConnect TCP/IP Socket 9.4.4.5.2 A C→H TCP client connects to TCP server peer.

137 reqIpTcpRecv TCP/IP Socket 9.4.4.5.4 A C→H Receives data from connected peer.

138 reqIpTcpSend TCP/IP Socket 9.4.4.5.3 A C→H Sends data to connected peer.

139 reqIpUdpRecvMsg UDP/IP Socket 9.4.4.4.3 A
C→H Receives a message from peer UDP

port.

140 reqIpUdpSendMsg UDP/IP Socket 9.4.4.4.2 A C→H Sends message to peer UDP port.

141 reqParAuthChk Content Property 9.8.2.10.3 A

C→H Request to the ECI Host to perform a

parental authentication on behalf of the

ECI Client.

142 reqParAuthChkCan Content Property 9.8.2.10.4 A
C→H Cancels a preceding parental

authentication request to the Host.

143 reqParAuthCid Content property 9.8.2.10.5 A H→C

Requests parental pin code

authorization for a (future) content item

to be decoded. This may trigger a

parental authentication dialogue.

144 reqParAuthDel Content Property 9.8.2.11.2 A H→C
The ECI Host delegates a parental

authentication to an ECI Client.

145 reqParAuthDelCan Content Property 9.8.2.11.3 A H→C

The ECI Host cancels a preceding

parental authentication request to the

ECI Client.

146 reqPwrChange
Power

Management
9.4.7.2.4 A H→C Notice of power status change.

147 reqTimerCancel Timer 9.4.6.2.3 A C→H Cancels a previously set timer event.

148 reqTimerEvent Timer 9.4.6.2.2 A C→H Sets a timer event in the future.

149 reqUiClientQuery User Interface 9.4.3.4.8 A H→C

The ECI Client receives request from

the HTML application in the browser

and provides a (dynamic) response.

150 reqUiContainerMount User Interface 9.4.3.4.2 A C→H

Mounts a UI Application container with

HTML resources to support UI

sessions.

151 reqUiSessionCancel User Interface 9.4.3.4.7 A H→C
The ECI Host cancels a User interface

session.

152 reqUiSessionClose User Interface 9.4.3.4.6 A C→H
The ECI Client ends a User interface

session.

153 reqUiSessionCommence User Interface 9.4.3.4.4 A H→C
The ECI Host suggests the ECI Client

to open a UI session.

154 reqUiSessionOpen User Interface 9.4.3.4.5 A C→H

The ECI Client requests to open a User

interface session with the User and

present content on the screen.

274 Rec. ITU-T J.1012 (04/2020)

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

155 reqPwrWakeupEvent
Power

Management 9.4.7.3
A H→C Signals wakeup timer expiration.

156 setApiVersion
Interface

discovery
9.4.2.4 S C→H

Set the version of the Host API to be

used.

157 setAsPermitCPChange

Advanced

Security

Encryption

9.5.2.4 S

C→H Enable/disable imported content

property CP changes taking effect on

control word selection for encryption in

an encryption session.

158 setAsSC

Advanced

Security

Encryption

9.5.2.4 S C→H

Set scrambling control field of

encrypted content of an encryption

session.

159 setAsSessionLimitEvent
Advanced

Security General
9.5.2.5.11 S C→H

Set limit value for sending a

reqAsEventSessionLimit message to the

ECI Client.

160 setCardMatch Smart Card 9.5.3.5.2 S
C→H Set card identification specifier list for

ECI Client.

161 setCpSync Content Property 9.8.2 S

C→H ECI Client signals that the current set

of content properties is coherent and

can be applied to the content to be

descrambled by forthcoming control

word.

162 setDcrBasicUri Content property 9.8.2.5.1 S
C→H Set Basic URI for content to be

descrambled.

163 setDcrCustUri Content property 9.8.2.4.1 S
C→H Set custom URI for content to be

descrambled.

164 setDcrMarkBasic Content property 9.8.2.7.5 S
C→H Set basic marking payload for content

to be descrambled.

165 setDcrMarkExt Content property 9.8.2.7.6 S
C→H Set extended marking payload for

content to be descrambled.

166 setDcrMarkMeta watermarking 9.8.2.7.3 S C→H Set a marking system control value.

167 setDcrMhMatch
MediaHandle

Decryption
9.6.2.2.2 S

C→H Signals to ECI Host under which Ids

the ECI Client can be recognized for

descrambling content.

168 setDcrModes Re-encryption 9.7.2.6.1 S

C→H The Micro Client informs the ECI

Host about the modes (encryption-

modes, data-format-modes and

synchronization-modes) it supports.

170 setDcrOutputCtl Content property 9.8.2.6.1 S
C→H Set Output Control restrictions for

content to be descrambled.

171 setDcrParCtl Content property 9.8.2.8.1 S
C→H Set Parental Control conditions for

content to be descrambled.

172 setDcrStdUri Content property 9.8.2.8.1 S
C→H Set standard URI for content to be

descrambled.

173 setDcrTsSectionAcq
Decryption TS

data acquisition
9.6.2.3.5.4 S

C→H
Sets a filter for section acquisitions.

176 setDcrTsSectionAcqDefault
Decryption TS

data acquisition
9.6.2.3.5.3 S

C→H Sets a default filter for section

acquisition.

177 setEncrModes Re-encryption 9.7.2.5.2 S

C→H The Micro Server informs the ECI

Host about the modes (encryption-

modes, data-format-modes and

synchronization-modes) it supports.

178 setPwrInfo
Power

Management
9.4.7.2.3 S

C→H Requests event notices for changes in

power status.

 Rec. ITU-T J.1012 (04/2020) 275

Table I.2 – List of all API messages in alphabetic order

No. Message API Clause Type Dir. Description

179 setUiClientAttention User Interface 9.4.3.4.3 S

C→H ECI Client indicates a desire to start a

UI session without association to a

Media Handle.

180 setPwrWakeup
Power

Management
9.4.7.3 S

C→H
Sets wakeup time for ECI Client.

276 Rec. ITU-T J.1012 (04/2020)

Appendix II

Areas for further development

(This appendix does not form an integral part of this Recommendation.)

It has been identified that this Recommendation needs further development and validation for it to

meet the requirements set out in [ITU-T J.1010], and that [ITU-T J.1010] needs to be updated to

reflect the requirements of the MovieLabs Enhanced Content Protection (ECP) specification [b-ECP].

Recommendations [ITU-T J.1011], ITU-T J.1012, [ITU-T J.1013], [ITU-T J.1014], [ITU-T J.1015]

and [b-ITU-T J.1015.1] should in the future be updated to reflect those updates to [ITU-T J.1010].

A number of ITU Member States, as well as stakeholders from a variety of industries – including

manufacturers of devices and electronic components, owners and licensees of copyrighted content,

providers of over-the-top (OTT) and linear television services, and providers of conditional access

system (CAS) and digital rights management (DRM) solutions – based all around the world have

expressed concern that the Embedded Common Interface (ECI) does not fully meet the requirements

of ECP, nor wider industry content protection requirements.

More specifically, their concerns were raised in contributions to the ITU-T Study Group 9 (SG9)

meeting (16-23 April 2020). Contributions from Israel, Australia, ITU-T Sector Member Samsung,

and SG9 Associates Sky Group and MovieLabs proposed that a number of changes be included in

the ECI Recommendations, but agreement on them was not reached. These items are inventoried in

[b-SG9 Report 17 Ann.1].

They include proposals to:

1) Simplify the ECI system by reducing its scope;

2) Remove DRM;

3) Remove the re-encryption of content;

4) Remove software management;

5) Add APIs for secure storage and cryptographic operations;

6) Allow vendor-specific key ladders;

7) Use J.1207 TEE requirements;

8) Include TEE implementation for VM;

9) Upgrade the strength of the cryptographic algorithms, e.g. using SHA-384;

10) Use standard certificates, like ITU-T X.509;

11) Reconsider communications between clients;

12) Perform additional liaisons with ETSI;

13) Perform additional peer-review;

14) Explore alternatives to the Trust Authority model;

15) Define further the technical aspects of ECI compliance and robustness rules;

16) Add requirements for diversity, e.g., address space randomization;

17) Add requirements on runtime integrity checking.

These proposals reflect that content protection and the threats of its compromise are continuously

evolving. ECI was originally conceived nearly a decade before approval of this ITU-T

 Rec. ITU-T J.1012 (04/2020) 277

Recommendation. Systems like ECI need to be assessed on a regular basis against the current state-

of-the-art in both attack techniques and industry protection requirements.

Other mechanisms exist to enable interoperability. In particular for the DRM use case, most internet

video services have deployed other solutions to provide interoperability and to address their needs.

Further clarity is important as many Member States regard ITU standards as influential sources of

guidance for the development of their markets and industries. The list of concerns ensures ECI’s

implementation in their domestic markets can involve a full appreciation of implications of this ITU-

T Recommendation and ensure that the issues are considered when legislation, regulation or market

need requiring consumer digital television equipment to be interoperable are being considered. It

also ensures that technology equipment manufacturers, who may prefer to use a unique set of

requirements or other standards to design the products, can consider these issues in developing

products for different markets.

278 Rec. ITU-T J.1012 (04/2020)

Bibliography

[b-ITU-T J.1015.1] Recommendation ITU-T J.1015.1 (2020), Embedded common

interface for exchangeable CA/DRM solutions; Advanced security

system - Key ladder block: Authentication of control word-usage rules

information and associated data 1.

[b-ITU-T J Suppl. 7] Supplement 7 to the ITU-T J series Recommendation(2020),

Embedded Common Interface for exchangeable CA/DRM solutions;

Guidelines for the implementation of ECI.

[b-SG9 Report 17 Ann.1] ITU-T SG9 meeting report, SG9-R17-Annex 1 (2020), Annex 1 to

Report 17 of the SG9 fully virtual meeting held 16-23 April 2020.
https://www.itu.int/md/T17-SG09-R-0017/en

[b-ETSI GS ECI 001-1] ETSI GS ECI 001-1: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 1: Architecture, Definitions

and Overview".

[b-ETSI GS ECI 001-2] ETSI GS ECI 001-2: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 2: Use cases and

requirements".

[b- ETSI GS ECI 001-3] ETSI GS ECI 001-3 V1.1.1 (2017-07): "Embedded Common Interface

(ECI) for exchangeable CA/DRM solutions; Part 3: CA/DRM

Container, Loader, Interfaces, Revocation"

[b-ETSI GS ECI 001-4] ETSI GS ECI 001-4: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 4: The Virtual Machine".

[b-ETSI GS ECI 001-5-1] ETSI GS ECI 001-5-1: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions Part 5: The Advanced Security

System Sub-part 1: ECI specific functionalities".

[b-ETSI GS ECI 001-5-2] ETSI GS ECI 001-5-2: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 5: The Advanced Security

System; Sub-part 2: Key Ladder Block".

[b-ETSI TS 102 034] ETSI TS 102 034 (V1.4.1): "Digital Video Broadcasting (DVB);

Transport of MPEG-2 TS Based DVB Services over IP Based

Networks".

[b-Richardson] Richardson, S. Ruby: "RESTfull Web services", L. o'Reilly, 2007.

[b-DASH-IF V3] Dash Industry Forum (2015): "Guidelines for Implementation: Dash-

IF Interoperability Points version 3.0".

[b-DASH-IF ID] Dash Industry Forum: "Identifiers for protection".
http://dashif.org/identifiers/protection/.

[b-CA Browser] CA Browser Forum: "Baseline Requirements: Certificate Policy for

the Issuance and Management of Publicly-Trusted Certificates".
https://cabforum.org/.

[b-NIST SP 800-52r2] NIST SP 800-52 rev2 (August 2019): "Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS)

Implementations".

[b-CI Plus] CI Plus Specification V1.3.1 (2011-09).
Available at http://www.ci-plus.com.

https://www.itu.int/md/T17-SG09-R-0017/en
http://dashif.org/identifiers/protection/
https://cabforum.org/
http://www.ci-plus.com/

 Rec. ITU-T J.1012 (04/2020) 279

[b-DLNA] DLNA Networked Device Interoperability Guidelines, Digital Living

Network Alliance.
http://www.dlna.org/guidelines

[b-HbbTV] Hybrid Broadcast Broadband Television (HbbTV®) Operator

Applications.

 [b-ETSI GS ECI 001-6] ETSI GS ECI 001-6: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 6: Trust Environment".

[b-ETSI GS ECI 002] ETSI GS ECI 002: "Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; System validation".

[b-IETF RFC 8259] IETF RFC 8259 (2017), The JavaScript Object Notation (JSON) Data

Interchange Format.

[b-IANA] IANA "Media Types" database.
http://www.iana.org/assignments/media-types/media-types.xhtml

[b-HDCP2.3] Digital Content Protection LLC, “High Bandwidth Digital Content

Protection System, Mapping HDCP to HDMI” revision 2.3., Feb 28,

2018
 https://www.digital-
cp.com/sites/default/files/HDCP%20on%20HDMI%20Specification%20Rev2_3.pdf

[b-Illgner] Klaus Illgner, Christoph Schaaf, Marnix Vlot: "Embedded Common

Interface (ECI) for Digital Broadcasting Applications: Security and

Interoperability combined", Broadband Journal of the SCTE, Vol. 38,

No. 3, August 2016.

[b-Menezes] Menezes, A., van Oorschot, P. and Vanstone, S: "Handbook of

Applied Cryptography", CRC Press, 1996.

[b-ECP] MovieLabs Specification for Enhanced Content Protection –

Version 1.2
https://movielabs.com/ngvideo/MovieLabs_ECP_Spec_v1.2.pdf

While any hyperlinks included in this clause were valid at the time of publication, their long-term

validity cannot be guaranteed.

http://www.dlna.org/guidelines
http://www.iana.org/assignments/media-types/media-types.xhtml
https://www.digital-cp.com/sites/default/files/HDCP%20on%20HDMI%20Specification%20Rev2_3.pdf
https://www.digital-cp.com/sites/default/files/HDCP%20on%20HDMI%20Specification%20Rev2_3.pdf
https://movielabs.com/ngvideo/MovieLabs_ECP_Spec_v1.2.pdf

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other

multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T J.1012(04/2020) – Embedded common interface for exchangeable CA/DRM solutions; CA/DRM container, loader, interfaces, revocation
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 ECI Certificate System
	5.1 Introduction
	5.1.1 Scope
	5.1.2 Notation and conventions of fields
	5.1.3 Extension field

	5.2 ECI Certificates
	5.3 ECI Revocation List
	5.4 Certificate Chains and Revocation List Trees
	5.4.1 Data structure definitions
	5.4.2 Processing rules for Certificate Chains

	5.5 Revocation tree sets and revocation data files
	5.6 Large data item signatures
	5.7 Root Certificates
	5.7.1 Definition of a Root Certificate
	5.7.2 ECI Host Root Certificate Management

	6 ECI Host Loader
	6.1 Introduction
	6.2 Storage, verification and activation
	6.2.1 Principles of operation
	6.2.2 Credential definition
	6.2.2.1 ECI Host Image related Certificates
	6.2.2.2 ECI Host Image Signatures
	6.2.2.3 ECI Host Credentials

	6.2.3 Loading process of ECI Host Image file

	6.3 ECI Host related file formats
	6.4 ECI Host Image transport protocols
	6.4.1 Introduction
	6.4.2 ECI Host broadcast transport protocol
	6.4.2.1 General and profiling
	6.4.2.2 CPE Manufacturer to Operator handover
	6.4.2.3 DVB SI Signalling
	6.4.2.3.1 Download location signalling
	6.4.2.3.2 Emergency updates

	6.4.2.4 PSI signalling
	6.4.2.5 UNT option
	6.4.2.6 Carousel structure
	6.4.2.7 ECI Host downloading operation
	6.4.2.8 Operator carousel schedules
	6.4.2.9 User interface aspects

	6.4.3 ECI Host Internet Transport Protocol
	6.4.3.1 IP Protocol
	6.4.3.2 Online Loader Operation

	6.4.4 Alternative transport protocols

	7 ECI Client Loader
	7.1 Introduction
	7.2 Discovery of ECI Clients
	7.2.1 Introduction
	7.2.2 Transport stream-based networks
	7.2.2.1 Common signalling
	7.2.2.2 ECI_ platform_operation _descriptor
	7.2.2.3 ECI_base_url_descriptor
	7.2.2.4 Manual installation
	7.2.2.5 Self-discovery installation
	7.2.2.6 ECI service tag descriptor
	7.2.2.7 ECI platform list descriptor

	7.2.3 IP network based client discovery
	7.2.3.1 Manual installation
	7.2.3.2 Web-page based installation

	7.3 Storage, verification and activation
	7.3.1 General update policies
	7.3.2 ECI Client Image download and storage
	7.3.3 ECI Client validation and activation

	7.4 ECI Client Chain structure formats
	7.4.1 Introduction to ECI Client Chain structure formats
	7.4.2 Security Vendor Certificate
	7.4.3 ECI Client series Certificate and series target id
	7.4.4 ECI Client Image signature

	7.5 ECI Platform Operation Chain formats
	7.5.1 Overview
	7.5.2 Operator Certificate
	7.5.3 Platform Operation Certificate
	7.5.4 Platform Operation client revocation list
	7.5.5 Platform Operation client cosignature

	7.6 File formats
	7.6.1 ECI Client Image File Format
	7.6.2 Platform Operation Chain data
	7.6.3 Revocation data files

	7.7. ECI Client resources transport protocols
	7.7.1 General and profiling
	7.7.2 Broadcast transport protocol
	7.7.2.1 Introduction
	7.7.2.2 Credential and revocation data handover to Operator
	7.7.2.3 Security Vendor to Operator handover
	7.7.2.4 PSI signalling
	7.7.2.5 SI signalling
	7.7.2.5.1 Data Carousel location Signalling via Data Location Linkage Descriptor

	7.7.2.5.2 ECI Client emergency download descriptor
	7.7.2.6 Carousel compatibility descriptor
	7.7.2.7 Carousel DSI
	7.7.2.8 Carousel DDB
	7.7.2.9 Dynamic carousel behaviour

	7.7.3 Web transport protocols
	7.7.3.1 Introduction
	7.7.3.2 ECI Web API overview
	7.7.3.3 Web API ECI Host related requests
	7.7.3.4 Web API Platform Operation related requests
	7.7.3.5 Web API client requests
	7.7.3.6 Web API AS_setup requests

	7.8 Platform Operation ECI Client installation
	7.8.1 Scope and Profiling
	7.8.2 ECI Client installation mode with unencrypted ECI Client Image file
	7.8.3 ECI Client installation mode with encrypted ECI Client Image file
	7.8.4 Transport protocol
	7.8.4.1 Broadcast protocol
	7.4.8.2 Online protocol

	7.8.5 Target ID presentation to user

	8 Revocation
	8.1 Introduction
	8.2 CPE revocation
	8.3 Generic revocation process
	8.4 Revocation Lists based ECI Host Revocation
	8.5 ECI Platform Operation Revocation
	8.6 ECI Client Revocation

	9 ECI Client interfaces
	9.1 Introduction
	9.1.1 Architecture of the ECI Client interfaces
	9.1.2 Media Handle

	9.2 ECI virtual machine interface
	9.2.1 Principles
	9.2.2 Instructions and data (static resources)
	9.2.3 Interaction with ECI Host
	9.2.4 Dynamic resources provided for ECI Client's
	9.2.5 API version management
	9.2.6 Responsiveness monitoring

	9.3 Mechanism for ECI Client APIs
	9.3.1 Asynchronous message syntax
	9.3.2 Asynchronous message layout definition convention
	9.3.2.1 Syntax of message definitions
	9.3.2.2 Basic message parameter types
	9.3.2.3 Message payload to message parameter mapping
	9.3.2.4 Naming convention for asynchronous messages

	9.3.3 Synchronous messages
	9.3.4 Error codes in Return
	9.3.5 Secure Authenticated Channel
	9.3.6 Message verification by ECI Host
	9.3.7 Message processing by ECI Clients

	9.4 APIs for general ECI Host resources
	9.4.1 List of APIs defined in clause 9.4
	9.4.2 API for the access to the ECI Host interface discovery resource
	9.4.2.1 Introduction
	9.4.2.2 getApis Message
	9.4.2.3 getApiVersions() Message
	9.4.2.4 setApiVersion() Message

	9.4.3 API for the access to the ECI Host User interface resource
	9.4.3.1 Introduction
	9.4.3.2 User Interface environment
	9.4.3.2.1 Browser Profile
	9.4.3.2.2 Constraints
	9.4.3.2.3 Browser capabilities
	9.4.3.2.3.1 Display model
	9.4.3.2.3.2 Text and fonts
	9.4.3.2.3.3 Graphic formats
	9.4.3.2.3.4 User input
	9.4.3.2.3.5 Persistence
	9.4.3.2.3.6 ECI Application access to static HTML resources
	9.4.3.2.3.7 Communication between the ECI Client and ECI Applications

	9.4.3.3 Application lifecycle
	9.4.3.3.1 Launch of an ECI Application

	9.4.3.3.2 Termination of an ECI Application
	9.4.3.4 APIs related to the User communication
	9.4.3.4.1 List of User communication API messages
	9.4.3.4.2 reqUiContainerMount Message
	9.4.3.4.3 setUiClientAttention Message
	9.4.3.4.4 reqUiSessionCommence Message
	9.4.3.4.5 reqUiSessionOpen Message
	9.4.3.4.6 reqUiSessionClose message
	9.4.3.4.7 reqUiSessionCancel Message
	9.4.3.4.8 reqUIClientQuery mMessage
	9.4.3.4.9 Error codes for the User communication API

	9.4.4 API for the access to the ECI Host IP stack resource
	9.4.4.1 Introduction
	9.4.4.2 Basic specifications
	9.4.4.3 ECI IP sockets
	9.4.4.3.1 General
	9.4.4.3.2 reqIpSocket message
	9.4.4.3.3 reqIpClose Message
	9.4.4.3.4 reqIpAddrInfo message

	9.4.4.4 ECI UDP/IP
	9.4.4.4.1 General
	9.4.4.4.2 reqIpUdpSendMsg message
	9.4.4.4.3 reqIpUdpRecvMsg message

	9.4.4.5 ECI TCP/IP
	9.4.4.5.1 General
	9.4.4.5.2 reqIpTcpConnect message
	9.4.4.5.3 reqIpTCPSend message
	9.4.4.5.4 reqIpTCPRecv message
	9.4.4.5.5 reqIpTCPAccept message

	9.4.4.6 API for HTTP(S) get services
	9.4.4.6.1 General
	9.4.4.6.2 Applicable specifications
	9.4.4.6.3 The reqHttpGetFile and reqHttpGetData message
	9.4.4.6.4 Error codes for the HTTP Get API

	9.4.4.7 Error codes for the IP Socket API

	9.4.5 API for access to the file system
	9.4.5.1 Introduction
	9.4.5.2 File opening and closing
	9.4.5.2.1 General
	9.4.5.2.2 reqFileOpen message
	9.4.5.2.3 reqFileClose message

	9.4.5.3 File access
	9.4.5.3.1 General
	9.4.5.3.2 reqFileWrite message
	9.4.5.3.3 reqFileRead message
	9.4.5.3.4 reqFileSeek message
	9.4.5.3.5 reqFileRemoveData Message
	9.4.5.3.6 callFileDataLog message

	9.4.5.4 Directory services
	9.4.5.4.1 General
	9.4.5.4.2 reqFileStat Message
	9.4.5.4.3 reqFileCreate Message
	9.4.5.4.4 reqFileDelete Message
	9.4.5.4.5 reqFileDir message

	9.4.5.5 Error codes for the file system API

	9.4.6 API for access to the Time/Clock resource
	9.4.6.1 Introduction
	9.4.6.2 Timer API
	9.4.6.2.1 General
	9.4.6.2.2 reqTimerEvent message
	9.4.6.2.3 reqTimerCancel message

	9.4.6.3 Clock API
	9.4.6.3.1 General
	9.4.6.3.2 getTime message
	9.1.1.1.1 callLocaltime message

	9.4.6.4 Error codes for the Time and Clock API

	9.4.7 API for access to the power management
	9.4.7.1 Introduction
	9.4.7.2 Power transition API messages definition
	9.4.7.2.1 General
	9.4.7.2.2 getPwrStatus message
	9.4.7.2.3 setPwrInfo message
	9.4.7.2.4 reqPwrChange message

	9.4.7.3 Wakeup from Standby messages definition
	9.4.7.3.1 General
	9.4.7.3.2 setPwrWakeup message
	9.4.7.3.3 reqPwrWakeupEvent message

	9.4.7.4 Error codes for the power transitions API

	9.4.8 API for access to the country/language setting resource
	9.4.8.1 Introduction
	9.4.8.2 Country/Language API message definitions
	9.4.8.2.1 reqHCountry setting message
	9.4.8.2.2 reqCCountry setting message
	9.4.8.2.3 reqHLanguage setting message
	9.4.8.2.3.4 reqCLanguage setting message
	9.4.8.2.3.5 Error codes for the country/language setting API

	9.5 APIs for ECI specific ECI Host resources
	9.5.1 List of APIs for ECI specific ECI Host resources
	9.5.2 Advanced Security API
	9.5.2.1 Introduction
	9.5.2.2 Advanced Security General API message definitions
	9.5.2.2.1 General
	9.5.2.2.2 reqAsInitSlot message
	9.5.2.2.3 callAsNextKeySession Message
	9.5.2.2.4 reqAsStopSession Message
	9.5.2.2.5 reqAsLoadSlotLk message
	9.5.2.2.6 reqAsComputeAkClient message
	9.5.2.2.7 reqAsClientChalResp Message
	9.5.2.2.8 getAsSlotRk message
	9.5.2.2.9 getAsSessionRk message
	9.5.2.2.10 getAsSessionLimitCounter message
	9.5.2.2.11 setAsSessionLimitEvent message
	9.5.2.2.12 reqAsEventSessionLimit message
	9.5.2.2.13 getAsClientRnd message
	9.5.2.2.14 getAsSC message
	9.5.2.2.15 reqAsEventSC message
	9.5.2.2.16 getChipsetId message
	9.5.2.2.17 getImageTargetId message

	9.5.2.3 Advanced Security Decryption API message definitions
	9.5.2.3.1 General
	9.5.2.3.2 reqAsStartDecryptSession message
	9.5.2.3.2 reqAsComputeDecrCw Message
	9.5.2.3.3 reqAsAuthDecrSlotConfig Message

	9.5.2.4 Advanced Security Export API
	9.5.2.4.1 General
	9.5.2.4.2 reqAsExportConnSetup message
	9.5.2.4.3 reqAsExportConnEnd message

	9.5.2.5 Advanced Security Encryption API
	9.5.2.5.1 General
	9.5.2.5.2 Target client chain definition
	9.5.2.5.3 reqAsStartEncryptSession message
	9.5.2.5.4 reqAsComputeEncrCw message
	9.5.2.5.5 reqAsAuthEncrSlotConfig message
	9.5.2.5.6 reqAsLdUssk message
	9.5.2.5.7 reqAsMInikLk1 message
	9.5.2.5.8 reqAsEventCpChange message
	9.5.2.5.9 setAsPermitCPChange message
	9.5.2.5.10 setAsSC message
	9.5.2.5.11 Error codes for the advanced security (AS) API

	9.5.3 Smart Card API
	9.5.3.1 Introduction
	9.5.3.2 Base specifications
	9.5.3.3 Smart Card access management
	9.5.3.4 Smart Card reader contention management
	9.5.3.5 Smart Card session management API
	9.5.3.5.1 General
	9.5.3.5.2 setCardMatch message
	9.5.3.5.3 callCardSessionPrio message
	9.5.3.5.4 getCardConnStatus message
	9.5.3.5.5 reqCCardConOpen message
	9.5.3.5.6 reqCCardConClose message
	9.5.3.5.7 reqHCardConClose message

	9.5.3.6 Smart Card Communication API message definitions
	9.5.3.6.1 General
	9.5.3.6.2 reqCardCmdRes message
	9.5.3.6.3 reqCardReInit message
	9.5.3.6.4 callCardSetProp message
	9.5.3.6.5 callCardGetProp message

	9.5.3.7 Error codes for the Smart Card API

	9.5.4 Data Carousel Acquisition API
	9.5.4.1 General
	9.5.4.2 reqDCAcqGroupInfo message
	9.5.4.3 reqDCAcqModule Message
	9.5.4.4 Error Codes for the Data Carousel Acquisition API

	9.6 APIs for access to the ECI Host decryption resource
	9.6.1 ECI Host decryption API
	9.6.2 Definition of the ECI Host decryption API
	9.6.2.1 Introduction
	9.6.2.2 Media Session API
	9.6.2.2.1 General
	9.6.2.2.2 setDcrMhMatch API message
	9.6.2.2.3 reqDcrMhOpen message
	9.6.2.2.4 reqDcrMhClose message
	9.6.2.2.5 reqDcrMhBcAlloc message
	9.6.2.2.6 reqDcrMhCancel message
	9.6.2.2.7 Error codes for the Media Session API

	9.6.2.3 Descrambling transport stream data
	9.6.2.3.1 Introduction
	9.6.2.3.2 Transport Stream format and session versions
	9.6.2.3.3 ECI Host processing requirements
	9.6.2.3.4 Starting and stopping Transport Stream decryption
	9.6.2.3.4.1 General
	9.6.2.3.4.2 reqDcrTsDescrStart Message
	9.6.2.3.4.3 reqDcrTsDescrStop message
	9.6.2.3.4.4 reqDcrTsDescrQuit message

	9.6.2.3.5 ECI Client decryption data acquisition in TS
	9.6.2.3.5.1 General
	9.6.2.3.5.2 Section Filter Specification
	9.6.2.3.5.3 reqDcrTsSectionAcqDefault message
	9.6.2.3.5.4 reqDcrTsSectionAcq Message
	9.6.2.3.5.5 reqDcrTsSection message
	9.6.2.3.5.6 reqDcrTsTable message

	9.6.2.3.6 ECI Client source control
	9.6.2.3.6.1 General
	9.6.2.3.6.2 getDcrTsSource message
	9.6.2.3.6.3 reqDcrTsRelocate message
	9.6.2.3.6.4 reqDcrTsSelectPrg message
	9.6.2.3.6.5 reqDcrTsSelectPmt message
	9.6.2.3.6.6 reqDcrTsSelectCancel message

	9.6.2.3.7 Error codes for the Media Session API for TS media

	9.6.2.4 Decrypting file and stream based content
	9.6.2.4.1 Introduction
	9.6.2.4.2 Applicable specifications
	9.6.2.4.3 ECI Host processing requirements
	9.6.2.4.3.1 Decryption System Identification detection
	9.6.2.4.3.2 Scrambling type detection
	9.6.2.4.3.3 Default content container security data filtering
	9.6.2.4.3.4 Descrambling of content

	9.6.2.4.4 Media Session API for file-based and streamed media
	9.6.2.4.4.1 General
	9.6.2.4.4.2 reqDcrFileStart Message
	9.6.2.4.4.3 reqDcrFileStop message
	9.6.2.4.4.4 reqDcrFileQuit Message

	9.6.2.4.5 ECI Client Specific Security Data Acquisition
	9.6.2.4.5.1 General
	9.6.2.4.5.2 File filter specification
	9.6.2.4.5.2.1 Generic file filter definition
	9.6.2.4.5.2.2 ISOBMFF specific File Filter Definition
	9.6.2.4.5.2.3 reqDcrFileFilter Message
	9.6.2.4.5.2.4 reqDcrFileAcqData message

	9.6.2.4.6 File descrambling control word API
	9.6.2.4.6.1 General
	9.6.2.4.6.2 ECI Host processing requirements
	9.6.2.4.6.2.1 ISOBMFF CENC format content
	9.6.2.4.6.2.2 MPEG DASH format content

	9.6.2.4.6.3 reqDcrFileKeyComp message

	9.6.2.4.7 Error codes for the decrypting file and stream based content API

	9.7 APIs for access to the ECI Host re-encryption resources
	9.7.1 Introduction to the re-encryption APIS
	9.7.1.1 List of APIs defined in clause 9.7
	9.7.1.2 General concept of re-encryption
	9.7.1.3 Re-encryption API structure overview

	9.7.2 ECI Export Control API
	9.7.2.1 Introduction
	9.7.2.2 Export Certificate structures
	9.7.2.2.1 Overall structure
	9.7.2.2.2 Export Certificate definitions
	9.7.2.2.2.1 Export Group Certificate and Revocation List
	9.7.2.2.2.2 Third party Export Group Certificate and Revocation List
	9.7.2.2.2.3 Root Revocation List for Export Authorization Operator Certificates
	9.7.2.2.2.4 Export Authorization Operator Certificate
	9.7.2.2.2.6 Export System Certificate

	9.7.2.2.3 Validation of Export Certificate Chains
	9.7.2.2.4 Transport protocols for export credentials
	9.7.2.2.4.1 General
	9.7.2.2.4.2 Export Tree File format

	9.7.2.2.4.3 Import Chains File format
	9.7.2.2.4.4 Export Authorization File format
	9.7.2.2.4.5 Broadcast Carousels carrying export credentials
	9.7.2.2.4.6 Online provisioning of export credentials

	9.7.2.3 Export Connection API
	9.7.2.3.1 General
	9.7.2.3.2 reqExpConnNodes message
	9.7.2.3.3 reqExpConnSetup message
	9.7.2.3.4 reqExpConnDrop message
	9.7.2.3.5 reqExpConnCancel message
	9.7.2.3.56 reqExpMhOpen message
	9.7.2.3.7 reqExpMhClose message
	9.7.2.3.8 reqExpMhCancel message
	9.7.2.3.9 Error Codes for the Export Connection API

	9.7.2.4 Import Connection API
	9.7.2.4.1 General
	9.7.2.4.2 reqImpConnNodes message
	9.7.2.4.3 reqImpConnChain and reqImpConnChainRenew messages
	9.7.2.4.4 reqImpConnSetup message
	9.7.2.4.5 reqImpConnDrop message
	9.7.2.4.6 reqImpConnCancel message
	9.7.2.4.7 Error codes for the Export Connection API

	9.7.2.5 Re-encryption API
	9.7.2.5.1 General
	9.7.2.5.2 setEncrModes message
	9.7.2.5.3 reqEncrTargets message
	9.7.2.5.4 reqEncrConnSetup message
	9.7.2.5.5 reqEncrConnDrop message
	9.7.2.5.6 reqEncrConnCancel message
	9.7.2.2.7 reqEncrMhOpen message
	9.7.2.5.8 reqEncrMhClose message
	9.7.2.5.9 reqEncrMhCancel message
	9.7.2.5.10 reqEncrMhStart message
	9.7.2.5.11 reqEncrMhStop message
	9.7.2.5.12 reqEncrMhQuit message
	9.7.2.5.13 reqEncrIpServer message
	9.7.2.5.14 reqEncrMsgSend message
	9.7.2.5.15 reqEncrMsgRecv message
	9.7.2.5.16 reqEncrTsData message
	9.7.2.5.17 reqEncrTsEcm message
	9.7.2.5.18 reqEncrFileData message
	9.7.2.5.19 Error codes for the Re-encryption API

	9.7.2.6 Micro Client De-encryption API
	9.7.2.6.1 General
	9.7.2.6.2 setDcrModes message
	9.7.2.6.3 reqDcrTargets message
	9.7.2.6.4 reqDcrTargetCred message
	9.7.2.6.5 reqDcrIpServer message
	9.7.2.6.6 reqDcrMsgSend message
	9.7.2.6.7 reqDcrMsgRecv message
	9.7.6.2.8 reqDcrTsData message
	9.7.2.6.9 reqDcrFileData message
	9.7.2.6.10 Error codes for the Micro Client De-encryption API

	9.8 APIs for content property related resources
	9.8.1 List of APIs defined in clause 9.8
	9.8.2 APIs for access to the usage rights and parental control resource
	9.8.2.1 Introduction
	9.8.2.2 Security aspects and synchronization
	9.8.2.3 Standard URI message API
	9.8.2.3.1 setDcrStdUri Message
	9.8.2.3.2 getEncrStdUri message

	9.8.2.4 Customer URI API
	9.8.2.4.1 setDcrCustUri message
	9.8.2.4.2 getEncrCustUri message

	9.8.2.5 Basic URI API
	9.8.2.5.1 setDcrBasicUri message
	9.8.2.5.2 getEncrBasicUri message

	9.8.2.6 Output control API
	9.8.2.6.1 setDcrOutputCtl message
	9.8.2.6.2 getEncrOutputCtrl message

	9.8.2.7 Watermarking API
	9.8.2.7.1 General
	9.8.2.7.2 getDcrMarkSyst message
	9.8.2.7.3 setDcrMarkMeta message
	9.8.2.7.4 getDcrMarkMeta message
	9.8.2.7.5 setDcrMarkBasic message
	9.8.2.7.6 setDcrMarkExt message

	9.8.2.8 Parental Control API
	9.8.2.8.1 setDcrParCtl message
	9.8.2.8.2 getEncrParCtrl message

	9.8.2.9 Control Property Sync API
	9.8.2.9.1 setCpSync message
	9.8.2.9.2 reqCpChange message

	9.8.2.10 Parental Authentication API
	9.8.2.10.1 General
	9.8.2.10.2 Standard parental authentication function
	9.8.2.10.3 reqParAuthChk Message
	9.8.2.10.4 reqParAuthChkCan message
	9.8.2.10.5 reqParAuthCid message

	9.8.2.11 Parental Authentication delegation API
	9.8.2.11.1 General
	9.8.2.11.2 reqParAuthDel message
	9.8.2.11.3 setParAuthDelCan message

	9.8.2.12 Protection System Control API
	9.8.2.12.1 Introduction
	9.8.2.12.2 getProtSystCtrl Message
	9.8.2.12.3 reqSrmMsg message
	9.8.2.12.4 reqInfoDevId message
	9.8.2.12.5 reqBlockDevId message
	9.8.2.12.6 setBlockProtSyst message
	9.8.2.12.7 Error codes for the Protection System Control API

	9.9 APIs for ECI Client and Application communication
	9.9.1 List of APIs defined in this clause
	9.9.2 Inter client communication API
	9.9.2.1 General
	9.9.2.2 getIccMaxClients message
	9.9.2.3 reqIccSystemReady message
	9.9.2.4 getIccClientInfo message
	9.9.2.5 reqIccPipeOpen message
	9.9.2.6 reqIccPipeOpenReq message
	9.9.2.7 reqIccPipeCancel message
	9.9.2.8 reqIccPipeClose message
	9.9.2.9 reqIccPipeMsgSend message
	9.9.2.10 reqIccPipeMsgRecv message
	9.9.2.11 Error codes for the inter client communication

	10 Mandatory and optional ECI Host functionalities
	10.1 Introduction
	10.2 List of mandatory and optional ECI functionalities for different types of CPE devices

	Annex A – Cryptographical functions of the ECI host
	A.1 Hash function
	A.2 Asymmetrical cryptography
	A.3 Symmetrical cryptography
	A.4 Random number generation

	Annex B – Interoperability parameters
	B.1 Introduction
	B.2 Revocation list length
	B.3 ECI client image size
	B.4 Broadcast carousel configuration parameters

	Annex C – ECI Host API overview
	Annex D – Forward compatibility of content property definitions
	Appendix I – List of all available API messages in alphabetic order
	Appendix II – Areas for further development
	Bibliography

