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Recommendation ITU-T J.343.1

Hybrid-NRe objective perceptual video quality measurement for HDTV and
multimedia IP-based video services in the presence of encrypted bitstream data

Summary

Recommendation ITU-T J.343.1 provides hybrid no-reference encrypted (Hybrid-NRe) objective
perceptual video quality measurement methods for HDTV and multimedia when encrypted bitstream
data are available. The following are example applications that can use this Recommendation:

potentially real-time, in-service quality monitoring at the headend,

video television streams over cable/IPTV networks including those transmitted over the
Internet using Internet protocol;

video quality monitoring at the receiver when encrypted bitstream data are available;

video quality monitoring at measurement nodes located between point of transmission and
point of reception when encrypted bitstream data are available;

quality measurement for monitoring of a transmission system that utilizes video compression
and decompression techniques, either a single pass or a concatenation of such techniques;

lab testing of video transmission systems.

This Recommendation includes an electronic attachment containing test vectors, including video
sequences, bitstream files and predicted objective model scores.

History
Edition Recommendation  Approval  Study Group Unique ID*
1.0 ITU-T J.343.1 2014-11-29 9 11.1002/1000/12316

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation’s unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.
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Recommendation ITU-T J.343.1

Hybrid-NRe objective perceptual video quality measurement for HDTV and
multimedia IP-based video services in the presence of encrypted bitstream data

1 Scope

This Recommendation! describes algorithmic models for measuring the visual quality of IP-based
video services.

The models are hybrid no-reference encrypted (Hybrid-NRe) models, which operate by analysing
packet header information and video image data captured at the video player. The models operate
without parsing or decoding the packet payload. Thus, these models can be used with encrypted
bitstream data as well as non-encrypted bitstream data.

As output, the models provide an estimate of visual quality on the [1,5] mean opinion score (MOS)
scale, derived from five-point absolute category rating (ACR) as in [ITU-T P.910]. The models
address low-resolution (VGA/WVGA) application areas, including services such as mobile TV, as
well as high-resolution (HD) application areas, including services such as IPTV.

This Recommendation is to be used with videos encoded using ITU-T H.264 and media payload
encapsulated in  RTP/UDP/IP packets for the low resolution and encapsulated in
MPEG-TS/RTP/UDP/IP for the high resolution.

The models in this Recommendation measure the visual effect of spatial and temporal degradations
as a result of video coding, erroneous transmission or video rescaling. The models may be used for
applications such as to monitor the quality of deployed networks to ensure their operational readiness
or to benchmark service quality. The models in this Recommendation can also be used for lab testing
of video transmission systems.

The models identified in this Recommendation have limited precision. Therefore, directly comparing
model results can be misleading. The accuracy of models has to be understood and taken into account
(e.g., using [ITU-T J.149]).

The validation test material consisted of video encoded using different implementations of
[ITU-T H.264]. It included media transmitted over wired and wireless networks, such as WIFI and
3G mobile networks. The transmission impairments included error conditions such as dropped
packets, packet delay, both from simulations and from transmission over commercially operated
networks.

The following source reference channel (SRC) conditions were included in the validation test:

. 1080i 60 Hz (29.97 fps);

. 1080p (25 fps);

. 1080i 50 Hz (25 fps);

. 1080p (29.97 fps);

. SRC duration: HD: 10 s, VGA/WVGA: 10 s or 15 s (rebuffering);
. VGA at 25 and 30 fps;

. WVGA at 25 and 30 fps.

[EEN

This Recommendation includes an electronic attachment containing test vectors, including video sequences,
bitstream files and predicted objective model scores.
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The following hypothetical reference circuit (HRC) conditions were included in the validation test
for each resolution:

Test factors

Video resolution: 1920 x 1080 interlaced and progressive

Video frame rates 29.97 and 25 fps

Video bitrates: 1 to 30 Mbit/s (HD), 100 kbit/s to 3 Mbit/s (VGA/WVGA)
Temporal frame freezing (pausing with skipping) of up to 50% of video duration

Transmission errors with packet loss
Rebuffering (VGQ/WVGA only): up to 50% of SRC

Coding technologies

ITU-T H.264/AVC (MPEG-4 Part 10)
Tandem coding

1.1 Applications

The applications for the estimation model described in this Recommendation include, but are not
limited to:

. potentially real-time, in-service quality monitoring at the headend,;

. video television streams over cable/IPTV networks including those transmitted over the
Internet using Internet protocol;

. video quality monitoring at the receiver when encrypted bitstream data and processed video
sequence (PVS) are available;

. video quality monitoring at measurement nodes located between point of transmission and
point of reception when encrypted bitstream data and PVS are available;

. quality measurement for monitoring of a transmission system that utilizes video compression
and decompression techniques, either a single pass or a concatenation of such techniques;

. lab testing of video transmission systems.

1.2 Limitations

The video quality estimation models described in this Recommendation cannot be used to fully
replace subjective testing.

When frame freezing was present, the test conditions had frame-freezing durations up to 50% of SRC
duration. The models in this Recommendation were validated for measuring video quality in a
rebuffering condition (i.e., video that has a steadily increasing delay or freezing without skipping)
only for VGA/WVGA. The models were not tested on other frame rates than those used in TV systems
(i.e., 29.97 fps and 25 fps, in interlaced or progressive mode).

If forward error correction techniques are employed, the models in this Recommendation may not be
used.

It is important that no additional transmission errors occur between the collection point of the
bitstream data and the capture point of the PVS.

It should be noted that in case of new coding and transmission technologies producing artifacts, which
were not included in this evaluation, the objective model may produce erroneous results. Here, a
subjective evaluation is required.

2 Rec. ITU-T J.343.1 (11/2014)



2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.264] Recommendation ITU-T H.264 (2014), Advanced video coding for generic
audiovisual services.

[ITU-T J.149] Recommendation ITU-T J.149 (2004), Method for specifying accuracy and cross-
calibration of Video Quality Metrics (VQM).

[ITU-T J.343] Recommendation ITU-T J.343 (2014), Hybrid perceptual bitstream models for
objective video quality measurements.

[ITU-T P.910] Recommendation ITU-T P.910 (2008), Subjective video quality assessment
methods for multimedia applications.

3 Definitions

3.1 Terms defined elsewhere
This Recommendation uses the following terms defined elsewhere:

3.1.1 hybrid no reference model [ITU-T J.343]: An objective video quality model that predicts
subjective quality using the decoded video frames, packet headers, and video payload. Such models
can be deployed in-service but cannot analyse encrypted video.

3.1.2 hybrid no reference encrypted model [ITU-T J.343]: An objective video quality model that
predicts subjective quality using the decoded video frames and packet headers. Such models can be
deployed in-service and are suitable for use with encrypted video.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:
CODEC COder-DECoder

HRC Hypothetical Reference Circuit

Hybrid-NR Hybrid No Reference

Hybrid-NRe  Hybrid No Reference encrypted

LUT Look-Up Table

MOS Mean Opinion Score

MPEG Moving Picture Experts Group
NR No (or Zero) Reference

PES Packetized Elementary bitStream
PVS Processed Video Sequence
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SRC Source Reference Channel or Circuit

VQEG Video Quality Experts Group
VQM Video Quality Metrics

5 Conventions

None.

6 Performance metrics

A summary of this and other hybrid models may be found in [ITU-T J.343]. See [b-VQEG Hybrid]
for a complete analysis of the models included in this Recommendation.

Note that the RST-V-model is referred to as "TVM-Hybrid Encrypted"” within [b-VQEG Hybrid].

7 Description of the hybrid no-reference methodology

This Recommendation specifies objective video quality measurement methods which use both
processed video sequences and bitstream data. The bitstream data may be provided in the forms of
elementary bitstream (ES), packetized elementary bitstream (PES) or packet video (Figure 1).

The Hybrid-NRe models use only PVS and bitstream data, as shown in Figure 1 and Figure 2. While
the hybrid no reference (Hybrid-NR) models have access to all of this data, the Hybrid-NRe models
do not have access to the video payload. Therefore, these models can be used with encrypted
bitstreams.

"Elementary stream (ES)"
D . D l:’ l:l I:' or "packetized elementary stream (PES)"

or "packet video"

"Elementary stream (ES)"

| || || H:H | |:| or "packetized elementary stream (PES)"

or "packet video"
Decoder

Received video
sequence.
q A 4

A

Hybrid perceptual/
bitstream model

J.343.1(14)_F01

Figure 1 — Block-diagram depicts the core concept of hybrid perceptual bitstream models
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1.343.1(14)_F02

Figure 2 — Block-diagram of the Hybrid-NRe model

8 Models

Annexes A and B contain full disclosures of all models included in this Recommendation. These

models are RST-V-model and YHyNRe.

Rec. ITU-T J.343.1 (11/2014)

5



Annex A

Hybrid-NRe model RST-V-model
(This annex forms an integral part of this Recommendation.)

Overview
The RST-V-model is composed of the following three modules:
1) packet header data extraction;

2) extraction of video frame feature statistics;
alignment of edited PVS to PVS;

3) hybrid core model.

Each of these modules is described in the following clauses, together with a clause describing
auxiliary functions and containers at the end.

The beginning of each clause contains a high level overview of the module.

The model takes as input the filename of a .pcap file containing the bistream and a filename of an .avi
file containing the captured video at the playback side. If the quality should be estimated for the
captured video with a pre- and post-roll cut (as it was used for the Video Quality Experts Group
(VQEGQG) evaluation), then additionally, the model takes as input the filename of an .avi file containing
the captured video with cut pre- and post-roll.

The modules 1 and 2 are independent. Their output is the input to the hybrid core module 3. The
output of the hybrid core module is given by:

HybridModel.predicted Quality,

and denotes the estimated video quality in the range (1, 51. Additional diagnostic information can be
retreived from the model, such as the individual coding and transmission quality estimates.

Al Packet header data extraction

Extract the packet header information from a pcap file.

MODULE INPUT:
pcap_filename -- name of the bitstream (pcap) file

MODULE OUTPUT:

transmitted frame height -- transmitted video frame height

daf -- data frame (matrix) containing packet header data, one
row per video frame

Perform the following processing steps:

In case Of rtsp/rtp/uap, derive the transmitted frame neignt from session description protocol (SDP),
otherwise set transmitted frame height = o.

Next perform
df p = parse bitstream(pcap_ filename)

In case of using transport streams (mp2t) do

df = per packet2per frame mp2t (df p)
df = correct large frames(df,len content)

else do

df = per packet2per frame rtp(df p)

The complete processing is described below in more detail:
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def

parse bitstream(filename) :

Parse a pcap file and extract information from the packet headers.

INPUT:
filename -- pcap file
OUTPUT:
df -- DataFrame, of the following form:
For 'rtsp/rtp/udp' or 'rtp/udp':
frame.number frame.time relative rtp.seq rtp.timestamp rtp.marker udp.length
0 5.00 115.00 60794.00 2130617091.00 0.00 841.00
1 6.00 115.00 60795.00 2130617091.00 0.00 1458.00
2 7.00 115.00 60796.00 2130617091.00 0.00 1458.00
3 8.00 115.00 60797.00 2130617091.00 0.00 1233.00
For 'mp2t/rtp/udp' or 'mp2t/udp':
frame.number frame.time relative mp2t.pid mp2t.pusi mp2t.cc mp2t.analysis.drops
0 1.00 0.00 17.00 1.00 0.00 0.00
1 2.00 0.00 0.00 1.00 0.00 0.00
2 3.00 0.00 4095.00 1.00 0.00 0.00
3 4.00 0.00 256.00 1.00 0.00 0.00
See https://www.wireshark.org/docs/dfref/m/mp2t.html for more information about the field names and

their meaning.

Remove duplicate elements in list a, without changing order of the elements.

def

def

remove duplicate(a):

wuon

OUTPUT:

(b, I) -- pair, b is the list with duplicates removed, I is the list of indices of
the elements in a, which are in b.

b =[]

I =1]

for i,x in enumerate(a) :
if x not in b:
b.append (x)
I.append (i)

return (array(b),array(I))

supported protocols():
return ['rtsp/rtp/udp', 'rtp/udp', 'mp2t/rtp/udp', 'mp2t/udp"']

The following functions

per

packet2per frame rtp, per packetlper frame mp2t

aggregate the packet header data given per-packet to data given per-video frame.

def

gen_per frame mp2t (packet data):
INPUT
packet data -- DataFrame containing data-rows corresponding to individual packets

OUTPUT
generates a tuple summarizing the packet data corresponding to a video frame

wun

time min = -1
time max = -1
size = 0
lost = 0
count = 0

ts_packet size = 188 - 4

# take payload start indicator with an offset of 1, i.e. this is the payload end indication, add
# an additional end indication to the very end:
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payload end = [packet data.col('mp2t.pusi')[i] for i in range(l,len(packet data))] + [1]
for 1 in range(len(packet data)):
count += 1

if time min<0:
time min = packet data.col('frame.time relative') [i]
else:
time min = min(time min,packet data.col('frame.time relative') [i])

time max = max(time max,packet data.col('frame.time relative') [i])
size += ts_packet size

# count lost packets

if i>0:
diff = packet data.col('mp2t.cc')[i] - packet data.col ('mp2t.cc') [i-1]
# compute mod 16
diff = mod(diff,16)

if diff>1:
if not packet data.col('mp2t.analysis.drops') [i]:
print ('!!! mp2t.analysis.drops says there is no drop !!!")

lost += diff-1

#-— if the end of a video frame is reached, 'yield' results:------—-—-—---——--
if payload end[i]:

yield (time min,\
time max, \
size, \
count, lost)

time min = -1
time max = -1
size = 0
lost = 0
count = 0

def gen per frame rtp(packet data,sampling rate=90000.):

wnn

INPUT
packet data -- DataFrame containing data-rows corresponding to individual packets

OUTPUT
generates a tuple summarizing the packet data corresponding to a video frame

wun

time max = -1
seq nr = -1
size = 0

for i in range (len(packet data)):

count += 1
time max = max(time max,packet data.col('frame.time relative') [i])

if seq nr<0:
seq_nr = packet data.col('rtp.seq') [i]

size += packet data.col('udp.length') [i]
is_rebuf = is rebuffering start(packet data.col('rtp.seq'),i)
rebuf flag = 0
if is_rebuf:
repbuf flag = 1
# count lost packets
if i>0 and not is_ rebuf:

diff = packet data.col('rtp.seq') [i] - packet data.col('rtp.seq') [i-1]
# compute mod 2**16, i.e. diff = 0 - 65535 is no packet loss, but restart

8 Rec. ITU-T J.343.1 (11/2014)



# of rtp.seq number:
diff = mod(diff,2**16)

if diff>1:
lost += diff-1

#-— if the end of a video frame is reached, 'yield' results:--—---—-——--——--——--
i next = min(i,len(packet data)-1)

ts = packet data.col('rtp.timestamp')

time_ stamp diff = ts[i_next] - ts[i]

is_before rebuf start = is rebuffering start (packet data.col('rtp.seq'),i next)

if packet data.col('rtp.marker') [i]==1 or time stamp diff>0 or is before rebuf start:
# note: compute relative time stamp in miliseconds

yield (time max,\
(packet data.col ('rtp.timestamp') [1])/sampling rate*1000,\

seq nr,\
packet data.col('rtp.seq') [i],
size, \
count, lost, \
rebuf flag)
time max = -1
seq nr = -1
size 0
lost = 0
count = 0

def extract video stream(packet data,verbose=False):

mown

INPUT

packet data -- DataFrame containing data-rows corresponding to individual packets of video and
audio streams

OUTPUT
packet data -- DataFrame containing data-rows corresponding to individual packets of the video
stream

wun

stream id = set (packet data.col ('mp2t.pid'))

# check for the largest stream

s = sorted(list(stream id))

bins = s + [s[-1]+1]

count, bins = histogram(packet data.col ('mp2t.pid'),bins=bins)
m = count.argmax ()

video stream id = s[m]

if verbose:
print ('video stream has id=%d' % video_stream id)

# assume, the largest stream is video:

I = where(packet data.col('mp2t.pid')==video stream id) [0]
data video = packet data.datalZI,:]

pd video = dfr.DataFrame (data video,packet data.col name)

return pd video

def per packetZper frame mp2t (packet data,verbose=False):

Convert packet data (mpeg2 ts) to frame data. Remove duplicates.

INPUT

packet data -- DataFrame containing data-rows corresponding to individual packets
OUTPUT

frame data -- DataFrame containing data-rows corresponding to frames

col names = ['frame.timestamp min',\

'frame.timestamp max',\
'video frame size',\
'packet count',\
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'lost']

pd video = extract video stream(packet data,verbose=verbose)

# add +1 for the end indication at the end, see gen per frame mp2t
frame count = sum((1 for m in pd video.col ('mp2t.pusi') if m>0.5)) + 1
D =[]

for i, frame data in enumerate (gen per frame mp2t (pd video)) :
D.append (frame data)

return dfr.DataFrame (array(D),col names)
def skip delayed packets(t sent,t received,seq nr,max allowed delay=0.5,sampling rate=90000.):

Skip packets with a delay longer than 'max allowed delay' (s).

INPUT:

t_sent -- packet rtp time stamp (using sampling rate)

t received -- captured packet time stamp (in ms)

seq_nr -- rtp seq. number

max allowed delay -- float, allowed delay in sec, before packet is considered lost
sampling rate -- corresponding to rtp timestamp

OUTPUT:

array(I) -- ndarray (1-D), index, containing all non-delayed packets

n = len(t_sent)

I = [0]

for i,j in zip(range(n-1),range(l,n)):

if is rebuffering start(seq nr,j):
I.append(3)

elif (t_sent[j]-t sent[i])/sampling rate < (t received[j]-t received[i])/1000.0 +
max_allowed delay:
I.append(7J)

return array(I)

def is_rebuffering start(seq nr,1):
Check if at position i there is a start of rebuffering.
Note, after 'correct seq nr_at rebuffering', rebuffering is
determined by a jump of the seg number of 2**16.

wnn

is rebuf start = False
if i>0:
m = 2**16
n0 = seq nr[i-1]
nl = seq nr[i]

if nl-n0>=m:
is_rebuf start = True

return is_rebuf start

At rebuffering, the sequence number can jump to smaller or any other values. The sequence number
is limited to 2716. Then it restarts at 0. Correct the value of the sequence number such that it is
increasing, to avoid incorrect re-ordering later. Thus, add 216 to the sequence number at each
rebuffering and overflow position.

def correct seq nr at overflow and rebuffering(seq nr,t received,verbose=False):

INPUT:

seq_nr -- 1-D numpy array, rtp seq number

t received -- 1-D numpy array, captured packet time stamp (in ms)
OUTPUT:

seq nr -- the corrected seqg number
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def

N = len(seg_nr)

# window size
w = 10

# rebuffering limit, 500 ms
rebuff limit = 500
seq nr diff at rebuff = 1000

I rebuf = []
I overflow = []

for i in range(1l,N):
# check for overflow (check sequence number in a small window,
# in case of re-orderings
max before = max(seq nr[max(0,i-w):1])

min after = min(seq nr(i:min(i+w,N)])

if max before==2**16-1 and min after==0:
I overflow.append (i)

# check for rebuffering: a temporal gap in packet arrival and a Jjump
# (positive or negative) in seq number
delta t = t received[i] - t received[i-1]
if delta t > rebuff limit and abs(seq nr[i-1] - seq nr[i])> seq nr diff at rebuff:
I rebuf.append (i)
# adjust sequence number:
for 1 in sorted(set (I _rebuf+I overflow)):
if i in I_rebuf and i>0:
seq nr[i:] += seq nr[i-1] - seq nr[i] + (2**16)

else:
seq nr[i:] += (2**16)

return seq nr

per_ packet2per frame rtp(packet data,verbose=False):

wnn

Convert packet data (rtp) to frame data. Remove duplicates.

INPUT

packet data -- DataFrame containing data-rows corresponding to individual packets
OUTPUT

frame data -- DataFrame containing data-rows corresponding to frames

wnn

col names = ['frame.timestamp_max',\

'rtp.timestamp', \
'rtp.seq first',\
'rtp.seq last',\
'video frame size',\
'packet count’',\
'lost',\

'rebuf start']

# check for rebuffering

seq nr = packet data.col('rtp.seq')
seq_nr_cor =

correct_seq nr_at overflow and rebuffering(seq nr,packet data.col('frame.time relative'))

# remove duplicates and sort according to rtp.seq number
seq_nr no dup,I = remove duplicate(seq nr cor)
I _sorted = argsort(seq nr no_dup)

packet data.data = packet data.data[I[I sorted],:]
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# skip delayed packets

I skipped =
skip delayed packets(packet data.col('rtp.timestamp'),packet data.col('frame.time relative'),packet
data.col('rtp.seq'))

packet data.data = packet data.data[I_ skipped, :]

D = []

for i, frame data in enumerate(gen per frame rtp(packet data)):

D.append (frame data)

return dfr.DataFrame (array(D),col names)

A.2 Extraction of video frame feature statistics
This module computes statistics based on features of the video frames.
MODULE INPUT:

video filename -- name of the avi file of the video (PVS)

MODULE OUTPUT:

video result -- result list containing the feature statistic values

The following features are extracted:

. video frame resolution,

. motion statistics,

. interframe difference statistics,

. spatio-temporal complexity statistics,

. frame display time (inverse of frame rate),
. scene change statistics.

In more detail, the processing is as follows: The video frame features are stored in a dictionary,
video result, Of the form:

{'display time':[frameO display time, framel display time,...],
'complexity':[frame0 complexity, framel complexity,...],...}

For each frame in the srame seq cONtainer the following feature values of the above listed features are
kept, explicitly (for later reference), frame resolution:

video result['resolution'] = [(frame height, frame width),...],
motion statistics

video result['motion stat'] = [[m.avg stat(i,0),m.avg stat(i,1)],...]
video result['motion pred stat'] = [m.motion prediction stat(i)),...]

interframe difference

video result['interframe diff'] = [m.interframe diff stat(i)),...]
and complexity statistics

video result['complexity stat'] = [complexity stat (frame seq,i),...]1,

where i denotes the index running through all frames. As a final step, compute scene changes

video result['scene stat'] = scene.scene_change_statistic(frame_ seq)
video result['scene decomposition'] = scene.decompose (frame seq)

and add the display time of each frame (inverse of frame rate) to the result list,
video result['display time'] = frame seq.display time.

The main idea to compute the complexity and motion features is to observe 3x3 blocks of the video
frame and to compute the similarity of spatially and temporally adjacent blocks and to compute the
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predictability of a block, by blocks of the previous frame at the same and spatially adjacent locations
(see Figure A.1).

A
] 55 i =
Framei— 1 Frame i
B
Framei1—1 Frame i J.343.1(14)_FA1

Figure A.1 — Top A: For complexity statistics, similarity of a block (grey) to spatially or temporally adjacent

blocks (white) are computed.
Bottom B: For motion statistics, predictability of a block (grey) to spatially and temporally adjacent blocks
(white) are computed.

In the next clauses, the details of these computations are described.

Complexity

Compute complexity statistic of frame sequence, by computing local inter-frame and intra-frame
dissimilarity of frames i and i-1 using the function:

complexity stat (frame seq,1i)

def

def

dissim stat(S):

Compute dis-similarity statistics:

INPUT:
S -- numpy array (matrix) of local similarity wvalues

OUTPUT:
pair containing values, mean dissimilarity and probability of being equal.

# number of equal values (similarity==1) / number of values
prob _eq = len(np.where(S>(1.0-1e-3)) [0]) / float (np.product (S.shape))

return (1.0-np.mean(S),prob eq)

complexity stat inter intra(A YCbCr,B YCbCr,local sim par=5.0,verbose=False):
Compute a complexity statistic for the data corresponding
to 2 consecutive frames.

INPUT:

A YCbCr,B YCbCr -- triples of numpy arrays (matrices) containing frame data
OUTPUT:

c stat -- dict, containing inter and intra dict of sim stat results

wun

# compute similarity statistics at every 4th location
h,w = A YCbCr([0].shape

if verbose:
print ('complexity stat resolution (h,w)="',h,w)
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S _inter = np.zeros((40,40),dtype=np.float32)
S _intra = np.zeros((40,40),dtype=np.float32)

c_stat = dict()
c stat['inter'] = dissim stat(S_inter)
c stat['intra'] = dissim stat(S intra)

return c_stat

The function frameproc.local sim stat (a,B,s,c) chooses 40x40 equally spaced points in the frame
(ignoring a border of 4 to avoid border problems) and computes at each position (i, 5):

S[i,3j] = exp(-RMSE(a(i,3),b(i,3))/c)),

where a (i,5) denotes a 3x3 array in a around (i, 5), and ruse denotes the root mean square error.

def complexity stat (frame seq, i,verbose=False):
Compute complexity stat for frames i,i-1 at all levels of the pyramid.
Return a trivial result for frame O.

INPUT:

frame seq -- a FrameSeq instance

i -- int, frame number

verbose -- bool

OUTPUT :

result -- ndarray, of dim (each level) x (inter/intra) x (mean/prop eq)
mwwn

c rel = ['inter', 'intra']

c type = ['mean', 'prob eq']

result = np.zeros((frame seq.common pyramid height(),\
len(c rel),\
len(c_type)))

for level in np.arange (frame_ seq.common pyramid height ()) :
# compute complexity stat at this level:
# create trivial stat
c stat = {'inter':(0.0,0.0), "intra':(0.0,0.0)}

if i>0:

f = frame seq

A YCbCr = (f.Y[i-1][levell],f.Cb[i-1][level],f.Cr[i-1][levell])

B YCbCr = (f.Y[i][level], f.Cb[i][level], f.Cr[i][level])

c_stat = complexity stat inter intra(A YCbCr,B YCbCr,verbose=verbose)
result[level,0,:] = c_stat['inter']

result([level, 1, :] c stat['intra']

return result
Motion estimation
The following parameters are used for the motion estimation and are retrieved using the function:

def get parameters():
param = dict ()

# check for motion at this location if mean squared diff is
# larger than this limit
param['motion limit'] = 0.1

# conversion from dissimilarity values to probabilities:
# first compute entopy, then parametric conversion
param['entropy to prob'] = 4.0

# determine motion up to resolution having height < value below.
# NOTE: check that at these frame sizes the frame data is smoothed.
param['max_ frame height for mEstim'] = 60

# constant, to convert from rmse to probability value:
param['similarity const'] = 10.0
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return param

# utility functions
def shifted range (N):

return (array([0,0,1,..,N-2]),array([1,2,..,N=-1,N-1])

wun

r = np.arange(-1,N-1)
r[(0] =0

rl = np.arange(1,N+1)
rli[-1] = r1[-2]

return (r,rl)

An array of four displacement vectors axay are used in counter clockwise direction,

O—————- > dxdy[i+1]

in total for all four

directions counter clock-wise:
| o
0: | 1: ——> 2: | 3: <-—-
v |

then, the following quadrants are used for motion estimation:

class DxDy:
def getitem (self, key):

return self.dxdy[mod(key, len(self.dxdy)) ]

def len (self):
return len (self.dxdy)

The ppist container is used to hold the estimated motion values:

class PDist:
Container for estimated motion, estimated separately for each quadrant, together
with a probability distribution relating to the confidence in estimated motion.

p dist[1][:,1i,3] is the probability distribution at level 1 for motion
of a neighbourhood of (i,j) for each of the 4 quadrants around (i,7]).
The quadrants are defined by the class DxDy.

p_dist -- list of np.array of dim len(DxDy) x height x width, list length is pyramid level
r shift -- list of np.array of dim len(DxDy) x height x width, list length is pyramid level
s_shift -- list of np.array of dim len(DxDy) x height x width, list length is pyramid level
motion computed -- list of np.array of dim height x width, points, at which a motion

estimation was performed.

dx,dy -- list of np.array of dim height x width, for each pyramid level
estimated motion at this resolution

dx_prior,dy prior -- list of np.array of dim height x width, for each pyramid level, the
prior displacement used for motion estimation
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wun

def len (self):
return len(self.p dist)

def getitem (self, key):
return self.p dist[key]

def  setitem (self,key,item):
self.p dist[key] = item

def avg_stat(self, level):

Compute average statistics of motion

INPUT

level -- int, resolution level, at which the statistics will
be computed

OUTPUT

(xfrac,yfrac,mx,my) -- tuple, 4 float values,

xfrac/yfrac, relative number of locations, at which
estimated x-/y-motion is larger than 0.1
mx/my, mean absolute motion in x-/y-direction at the

positions with motion larger than 0.1
mwwn

dx = self.dx[level]
dy = self.dyl[level]

ix = np.where (abs(dx)>0.1)

iy = np.where (abs(dy)>0.1)

xfrac,mx = 0.0,0.0

if len(ix[0])>0:
xfrac = len(ix[0])/float (np.prod (dx.shape))
mx = np.mean (abs (dx[ix]))

yfrac,my = 0.0,0.0

if len(iy[0])>0:
yfrac = len(iy[0])/float (np.prod(dx.shape))
my = np.mean (abs (dy[iy]))

return (round(xfrac,3),round(yfrac,3), round(mx,4),round(my,4))

def motion prediction stat (self):

wnn

OUTPUT
(frac_motion,mean_sim) -- pair of fraction of 'moving' local regions, and
mean 'confidence' (=similarity) in prediction.

wun

p = self.p dist[-1] # level of highest resolution
p_max = p.max(axis=0) # maximum among p values of different motion directions

m = self.motion computed[-1]
# fraction, where no motion estimate is computed
frac motion = sum(m) /float (prod (m.shape))

I = where(m>0.5)
mean sim = 1.0
if len(I[0])>0:
mean sim = mean (p max[I])
return (round(frac motion, 4),round(mean sim,4))
The function
def expect (level,bRound)

computes the expected motion as arrays (dx,dy) at the level 1eve1 of the pyramid together with a
confidence value. The estimate is given by

dx,dy = sum ( p_dist[m]* ( r[m]*dxdy[m] + s[m]*dxdy[m+1l] )),

where the sum runs over the four quadrants indexed by . Furthermore, the confidence value 5 is
computed as
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pli,j] = <p_dist[:,i,3] , log(p_dist[:,i,3]>,

where <., .> denotes the inner product. If bround=True the estimates of (ax,dy) are rounded to an

integer value. def expect(self,level,bRound=True):

def next level prior(self,level,dx,dy,dx prior,dy prior):
mwwn
At level 'level' the motion prior is (dx prior,dy prior) and
the estimated update is (dx,dy). Compute from these a motion

prior at level 'level+l' (higher resolution).
mwwn

if self. len ()>level+l:

np.where (self.motion computed[level]==1)
] = dx[I] + 2*dx prior[I]

] = dy[I]l + 2*dy prior[I]

# upsample to next level:

dim = self.p dist[level+1][0,:,:].shape
dx up = np.zeros(dim)

dy up = np.zeros (dim)
frameProc.upsample by2 smooth (dx,dx up)
frameProc.upsample by2 smooth (dy,dy_ up)

dx up = dx up.round()
dy up = dy up.round()

# store computed prior:
self.dx prior([level+1l] dx_up
self.dy prior[level+l] = dy up

return (dx_up,dy_up)

The motion container and its methods are used for performing the motion estimation. See the main

method
Motion.estimate ()
for the entry point.
class Motion:

wun

Motion estimation for a FrameSeqg object:

dx, dy -- list of matrices, estimated motion vectors

o) -- list of matrix, probability wvalue, confidence in estimate

p_dist -- list of objects of type PDist

motion estimated -- int, motion is estimated up to this frame

max_ topDown level -- max resolution used for motion estimation

min frame time diff -- int, min temp difference of two frames (in ms) for motion estimation
d max -- int, max motion at given resolution

wun

# max displacement for search
d max = 1 # nothing else supported for PDist!

# dx,dy measure displacement with respect to delta time (in ms):
dt_for motion = 40.0

# motion is estimated between two frames with a

# temporal difference of min frame time diff or larger

min frame time diff = 30

motion estim start level = 0

motion_half region_size =1
frames_for motion = list()

def determine max_level (self):
determine pyramid level corresponding to a resolution
with frame width smaller
than max_frame height for mEstim (skip highest
resolution of Y, in any case, as Cb, Cr planes do not have this).
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y _pyramid = self.frame seq.Y[0]

self.max topDown level = 0
for 1 in range(len(y pyramid)-1): # -1, as Cb, Cr planes have 1 level less
if y pyramid([i].shape[0] < get parameters() ['max frame height for mEstim']:
self.max topDown_ level = i
else:
break

def display time (self):
mwwn
Determine the display time of each frame.
The display time of the last frame is 0.

# time = self.frame_seq.time_stamp
# disp time = [time[i+l]-time[i] for i in range(len(time)-1)]
# disp_time.append(0) # display time of last frame

# self.disp time = disp time
# self.time = time
self.disp time = self.frame seq.display time
t = [0]
for d in self.disp time:
t.append(t[-1]1+d)
self.time = array(t[:-11)

def append zero motion estim(self):
Skip the first few frames for motion estimation, but append
'zero-arrays', such that all lists have the same length.
dim = self.frame seq.Y[0] [self.max topDown level].shape
self.dx.append(np.zeros (dim,dtype=np.float32))
self.dy.append(np.zeros (dim,dtype=np.float32))
self.p.append (np.zeros (dim,dtype=np.float32))
self.frames for motion.append((0,0))
pyramid dim = self.frame seq.Y[0].get dim() [:self.max topDown level+l]
self.p dist.append(PDist (pyramid dim))

def estimate(self,estim up to frame=5):

wun

Perform motion estimation for the video sequence self.frame seq.

wnn

estim up to frame = min(estim up to frame,len(self.frame seq)-1)
if self.motion estimated < len(self.frame seq)+1:

dx,dy = self.dx,self.dy

p_dist = self.p dist

# loop over all frames up to frame end
for t in range(self.motion_estimated,estim up to frame+l):

# do not perform motion estimation for first few frames
# (until self.min_ frame time diff)
if sum(self.disp time[:t]) <= self.min frame time diff:
self.append zero motion estim()
continue

# consider Y pyramid at time t0 and t
# determine t0,such that frames are > than min frame time diff apart
t0 = t-1
while self.time[t]-self.time[t0]<= self.min frame time diff:
t0 =1

self.frames for motion.append((t0,t))

Y0 = self.frame seq.Y[tO]

Yl = self.frame seq.Y[t]

# ... and analogously Cb, Cr

Cb0,Cbl = self.frame seq.Cb[t0],self.frame seq.Cb[t]
Cr0,Crl = self.frame seq.Cr[t0],self.frame seq.Cr[t]

m0 = self.motion estim start level
shift dx,shift dy = (0,0)

Dx = np.zeros(Y0[mO].shape,dtype=np.float32)+shift dx # matrix of dim of first
element in Y pyramid
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Dy = np.zeros(Y0[m0].shape,dtype=np.float32)+shift dy # matrix of dim of first
element in Y pyramid

# init probability pyramid (of same dim as YO)
pyramid dim = self.frame seq.Y[0].get dim() [:self.max topDown level+l]

p_dist per frame = PDist (pyramid dim)

# loop over resolution pyramid, from top down.
# stop at level self.max_topDown_level
for r in range(self.motion estim start level,self.max topDown level+l):

# determine global motion
shift dx,shift dy = (0,0)
Dx prior = Dx + shift dx
Dy prior = Dy + shift dy

YCbCr0 (YO[r],Cb0O[r],Cxr0[x])
YCbCrl = (Y1[r],Cbl[r],Crl([r])

delta = 1 # half region size used for motion estimation

self.estimate per frame (YCbCr0O,YCbCrl,Dx prior,Dy prior,p dist per frame.dxdy,\
p_dist per frame[r],\
p_dist per frame.motion computed[r],\

p_dist _per frame.r shift[r],p dist per frame.s_shift[r])
bRound = False
(Dx,Dy,P) = p_dist per frame.expect (r,bRound)

# prepare prior for next higher resolution
if r<self.max topDown level:
Dx,Dy = p dist per frame.next level prior(r,Dx,Dy,Dx prior,Dy prior)

else:
Dx

Dy

Dx + Dx prior
Dy + Dy prior

# normalise Dx,Dy with respect to dt_for motion

time fac = self.dt for motion/ (self.time[t]-self.time[t0])
Dx = Dx * time fac

Dy = Dy * time fac

# append motion estimates at time t to list
dx.append (Dx)

dy.append (Dy)

self.p.append(P)

self.p dist.append(p dist per frame)

self.motion_estimated = t+1

def
estimate per frame (self,YCbCr0,YCbCrl,Dx prior,Dy prior,dxdy,p dist,motion computed,r shift,s shift,
sim par=10) :

Estimate motion at given time and resolution.

INPUT:

YCbCr0, YCbCrl -- triple of numpy arrays, representing consecutive frames

Dx prior, Dy prior -- numpy array (matrix) of prior values for displacement

p_dist -- write here prob distribution of motion estimation

motion computed -- write here at which positions motion was estimated

r shift -- write here estimated shift in given direction, value in (0,1]
OUTPUT:

(dx,dy,p) -- triple of numpy arrays, representing motion vectors

at corresponding location and their probability of
being correct
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Y0,Cb0,Cr0 = YCbCrO
Y1l,Cbl,Crl = YCbCrl
bd = 2

delta =1

for i in range (bd,Y0.shape[0]-bd-1):
for j in range(bd,Y0.shape[l]-bd-1):

dx prior = int(Dx prior([i,j])
dy prior = int(Dy prior([i,j])
ri = i + np.arange(dx prior-delta, dx prior+delta+l)
rj = j + np.arange(dx prior-delta, dy prior+delta+l)

a = Y0[np.ix (ri,rj)]
b = Yl[np.ix (ri,rj)]
dab=b - a

# check for enough motion
msqd = np.mean(d_ab*d ab)

if msqgd > get parameters() ['motion limit']:

motion computed([i,j] =1
# loop over possible displacements
number dxdy = len (dxdy)
for m in arange (number dxdy) :

dxm, dym dxdy [m]
dxn,dyn = dxdy[m+1]

# -dxm, -dym, i.e. the minus is set, such that an object
# moving downwards (in +x direction), has a high value
# in p dist in +x direction

d0 = Y0[ix (ri-dxm,rj-dym)] - a

dl = Y0[ix (ri-dxn,rj-dyn)] - a

# Determine r,s as the least square estimates of the following
# equations:

# 1<d0,d0> <d1,d0>| |r| = |<d_ab,d0>|

# 1<d0,dl> <dl,dl>| |[|s| = |<d_ab,dl>|

# the implementation is straight forward

err = r*dO+s*dl-d _ab
p_dist[m,i,j] = np.exp(-np.mean(err*err)/sim par)

self.normalise (p _dist)

def interframe diff stat(self,frame nb):

wun

Compute interframe difference (difference to previous frame) at a low resolution level.
Return the mean and max interframe difference.

OUTPUT:

(if diff avg,if diff max) -- pair of float, average and max interframe
difference.

wun

if diff avg
if diff max

o o
o o

n = min(1l,len(self.frame seq.Y)-1) # select level 1 of pyramid

if frame nb>0 and len(self.frame seq.Y)>1:

Y0 = self.frame seq.Y[frame nb-1][1]
Yl = self.frame seq.Y[frame nb] [1]

d = (Yl-Yl.mean()) - (YO-YO0.mean())
d = d*d

if diff avg sgrt (d.mean () )
if diff max = sqgrt(d.max())

return (round(if diff avg,2),round(if diff max,2))

def avg_stat(self, frame nb, level):
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return self.p dist[frame nb].avg stat(level)

def motion prediction stat(self, frame nb):
return self.p dist[frame nb].motion prediction stat()

def normalise(self,p dist):
mwwn
normalise p dist, such that sum(p dist)<=1.
It could be that locally, an occlusion situation, or another image change happens,
which is not a translation, therefore, if at a point p all values in p _dist are
very small, keep them small, i.e. sum(p dist[:,:,px,pyl]) < 1.
Practically, use the constant 'max norm const'.
#

max_norm const = 0.2

for i in range(p dist.shape[l]):
for j in range(p dist.shape([2]):

p_local = p dist[:,i,]].squeeze()

# make sum(p local)<=1

p_local = p_local/np.maximum(max_norm const,np.sum(p_local))
p_dist[:,i,J] = p local

Scene decomposition of video sequence

Decomposition of a frame sequence into scenes. See the main method decompose below. The

following parameters are used for the scene decomposition and retrieved using the function:

def

def

def

get parameters() :

wuon

Return dict of parameters used for scene decomposition
mwwn

param = dict ()

# minimal resolution (height) of frame used for scene detection
param['frame height min'] = 30

# number of frames used for scene change detection:

# use more than two frames, to avoid scene change detection e.g. for a
# scene containing a flash light

param['number frames'] = 5

# number of tiles used for scene change detection
# i.e. n x n tiles will be used
param['number tiles'] 3

# minimal time interval between scenes in ms
param['min scene duration'] = 600

# increase factor for scene detection, of dis-similarity at current
# position in time with respect to average dis-similarity over
# current scene

param['scene detect fac'] = 5
# minimal dis-similarity for scene change:
param['scene detect thresh'] = 0.001

return param

pyramid level (frame seq,height min):

wun

Return the level 1 of the pyramid, such that for the height of
the frame

heigth(l1-1) < height min <= height (1)

dim frame seq.Y[0].get dim()
ind = [i for i in reversed(range(len(dim))) if dim[i][0] >= height min]

return ind[-1]

frame index given by duration(frame seq,i,duration):

Return the frame index j, such that either j=0 or j is displayed around
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'duration' before i.

3 =0

while sum(frame seq.display time[j:i])>duration:
J o= Jj+1

return j

def frame statistic(HO,H1,verbose=False):
mwwn
Return a dis-similarity of the frames, in [0, l+epsilon], (epsilon depend on
numerical accuracy).
The dis-similarity is the median of local dis-similarity values, computed
by comparing regularly spaced tiles.
For efficiency, instead of the frames/frame-tiles, pre-computed histograms
per tile are given:

INPUT:
HO,H1 -- histogram of tiled frames, numpy array of dim m x n x hist size

OUTPUT:
float, dissimilarity

wuon

m,n = HO.shape[:2]

# dissim will contain n x n values of local dissimilarities
dissim = zeros((m,n))

# n_bins = 10
bins = [0,50,75,100,125,150,175,200,255]
n bins = len(bins)-1

for i in arange (m) :
for j in arange(n):

hO = HO[i,],:]
hl = H1[i,],:]

# note: h0/sum(h0) is a vector in the n bins-dimensional
# unit cube
d = sqgrt(mean ((hO-hl)* (h0O-hl)))

dissim[i,j] = d/sqrt(n_bins)
# allow for some large changes in some tiles, thus
# return the median dis-similarity, as the frame statistic:
return median (sorted(dissim.flatten()))

def get frame seq tile hist (frame seq):

wun

Cut n x n tiles out of the frame sequence and compute a histogram over the tile.

INPUT:

frame seq -- frame sequence

OUTPUT:

tile hist -- numpy array of dimension n x n x len(frame seq) x n bins

wun

param = get parameters ()
1 = pyramid level (frame seq,param['frame height min'])

bins = [0,50,75,100,125,150,175,200,255]
n bins = len(bins)-1

# init tiles:
n = get parameters() ['number tiles']

h,w = frame seq.Y[0].P[1l].shape
len_ h = h/n

len w = w/n

# n x n tiles
tile hist = zeros((n,n,len(frame seq),n bins))

for i in arange(n):
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for j in arange(n):
# cut a rectangular tile from the frames
r h = arange(i*len h, (i+1) *len h)
r w = arange (i*len w, (i+1l)*len w)

for k in arange(len(frame seq)):

M = frame seq.Y[k].P[1l]

v = M[ix (r_h,r w)].flatten()
h,b = histogram(v,bins,density=True)
tile hist[i,j,k,:] = h

return tile hist

def scene change statistic(frame seq,verbose=False):
mwwn

Compute a statistic, having high values at scene changes

INPUT:

frame seq -- frame sequence

OUTPUT:

scene stat -- array (1-D) of float, scene change statistic per frame

wun

param = get parameters ()

scene stat = zeros(len(frame seq))

# compute histogram per tile

tile hist = get frame seq tile hist (frame seq)

for 1 in range(l,len(frame seq)):
# compute dissimilarity between frame i and i-1,i-2,...
# then store the minimal dissimilarity

frame stat = []

for j in range (min(i,param['number frames'])):

s = frame statistic(tile hist[:,:,1i,:].squeeze(),tile hist[:,:,i-j-1,:].squeeze())
frame_ stat.append(s)
scene_stat[i] = min(frame_ stat)

return scene_stat

def decompose (frame seq, verbose=False, scene_stat=zeros((0))):

wnn

Detect scene changes in frame sequence

INPUT:

frame seq -- a frame sequence

OUTPUT:

(scene_start,scene_end) -- pair of lists of frame numbers of first frames of scenes

and last frames of scenes, both have same length

wun

param = get parameters ()

if len(scene_stat)==
scene stat = scene change statistic(frame seq)

# by definition, there is a scene start at the beginning
scene_start = [0]

# decompose sequence according to scene statistic:
i last = frame index given by duration(frame seq,len(frame seq)-1,2*param['min scene duration'])
for 1 in arange(i_last):

# check if minimal scene duration has exceeded:

scene duration = sum(frame seqg.display time[scene start[-1]:1i])
if scene duration > param['min scene duration']:
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j = frame index given by duration(frame seq,i,2*param['min scene duration'])

# median dissimilarity over last part of current scene
m = median(scene stat[max(j,scene start[-1]):1i])
if scene stat[i] > m * param['scene detect fac'] and\
scene_stat[i] > param['scene detect thresh']:
# scene start detected
# for fading:
# check if dissimilarity increases, take the scene start at the max position,
# but check for increase only up to half 'min_scene_duration' after time of frame i:
ii =1
while scene stat[ii+l]>scene stat[i] and\
i>frame index given by duration(frame seq,ii,0.5*param['min scene duration']):
ii +=1
scene_start.append(ii)

# if nothing is skipped:
scene_end = [i-1 for i1 in scene start[l:]] + [len(frame seq)-1]

return (scene start,scene end)

A.2.1 Alignment of edited PVS to PVS

As the video sequence (edited PVS), for which the quality is predicted, is only a part of the complete
PVS, an alignment step is needed, which determines the start and end frame of the edited PVS.

MODULE INPUT:

video pvs -- the video sequence (complete)
video edited pvs -- the edited (shorter) video sequence

MODULE OUTPUT:
frame start,frame end -- indices in longer sequence of the start/end of shorter sequence.

The start and end frames are determined as follows:

First take the middle frame k in the longer sequence L.
Match it to all frames in the shorter sequence S.

If it matches exactly one frame, say r, then k-r is the start of the shorter sequence in L, and k-
r+length(S) is the end.

Else, loop over all frames f r in shorter sequence S:
match frame r of S, f r with all frames in longer sequence L.

If exactly one match can be found, say with frame k in L, then the position of S in L is
determined as above.

Else if for each frame f r more than one matches are possible, store for each f r the set
start position of S in L corresponding to each match,

and take the intersection of the possible start positions.
Select the first element of this intersection as start position of S in L.

A3 Hybrid core model
Hybrid model core module

MODULE INPUT:

video result -- video frame feature statistics, from process_video module 2
bitstream data —-- packet header data from pcap_extractor
transmitted frame height -- from pcap extractor

frame start -- first frame and...

frame end -- ...last frame of edited PVS in PVS

MODULE OUTPUT:

HybridModel.qg -- the estimated quality in the range [1,5]

All processing is performed by calling

HybridModel.process (video result,bitsteam data,transmitted frame height, frame start, frame end),

which calls the estimation of coding and transmission quality

24 Rec. ITU-T J.343.1 (11/2014)



HybridModel.coding quality ()
HybridModel.transmission quality ()

The final quality estimate is the product of coding and transmission quality in the [0,1] range,
re-scaled to the [1,5] MOS range, explicitly

qg=4 * gcod * g trans + 1.

The estimation of coding quality is based mainly on complexity and motion statistics — derived from
the video frames — and on the total frame-size per scene — derived partly from the packet headers of
the bitstream.

On the other hand, the estimation of transmission quality is based heavily on the bitstream. Still,
statistics from video frames are needed, e.g., in case of repeated frames, to link rebuffering to packet
loss.

In both cases, some correspondence of the packet data to the video frames is needed; this is estimated
in the function

align bitstream content ()

by matching scene changes to large frames in bitstream (see Figure A.2):

Framei—1 Frame i Frame i+ 1

Video frames Scene start Scene start

»

Time
v (video playback)

Frame size —‘
_ [ |

Time
(packet capture)
1.343.1(14)_FA2

Figure A.2 — The bitstream and the video frames have their own time scale. The video frames
are aligned by matching scene changes to large frames in bitstream
All the remaining details of the hybrid core model are following:
Model parameters for the core model are retrieved using the following function:

def get hybrid parameters():
param = dict ()

# fade out time constant for temporal processing of per-frame degradations

param['deg temp_ fade out'] = 1.0
# time interval used for temporal smoothing of degradations
param['deg temp smooth dt'] = 0.08

# content to bitstream frame alignment: search in bitstream at
# content scene start location +- 'bitstr content delta time' for scene start I-frame
param['bitstr content delta time'] = 0.3 # in seconds

# content to bitstream frame alignment: minimisation tradeoff between frame size
# and mis-alignment

param['misalign tradeoff'] = 1.0/ (4.0*param['bitstr content delta time'])

# map content to bitstream frames, max. offset at beginning (i.e. frames not captured)
param['start offset max'] = 10

param['unrepeated frame limit'] = 0.5

# set a priori maximum motion masking effect (reduction of degradation)
param['max motion masking'] = 0.5

Rec. ITU-T J.343.1 (11/2014) 25



# max length of B-frame interval
param['max BFrame interval'] = 3
return param

Hybrid model core methods and container are described in detail below:
class HybridModel:

The main function is process, Which performs initial processing and calls the quality estimation
functions, which are

coding quality()
transmission quality ()

computing the quality factors, which are finally multiplied to yield overall quality.

def process(video result,bitsteam data,transmitted frame height, frame start, frame end)
v = video result
self.frame start = frame_ start
self.frame _end = frame end

self.scene = v['scene decomposition’]
self.scene stat = v(['scene stat']

# complexity statistics

complex stat = array(v['complexity stat'])
self.cplx inter avg = complex stat[:,-1,0,0]
self.cplx inter eq = complex stat[:,-1,0,1]
self.cplx intra avg = complex stat[:,-1,1,0]
self.cplx intra eq = complex stat[:,-1,1,1]

# motion statistics
motion pred = v['motion pred stat']

self.frac motion = array([ m[0] for m in motion pred]) # fraction of moving blocks
self.conf motion = array([ m[l] for m in motion pred]) # confidence in motion estimate
motion stat = v['motion stat']

low_res = 0 # motion stat at lowest resolution

self.frac motion dx = array([m[low res][0] for m in motion_ stat]

)
self.frac motion dy = array([m[low res][1l] for m in motion_ stat])
self.motion dx = array([m[low res][2] for m in motion stat])

self.motion dy = array([m[low res][3] for m in motion stat])

self.frame height = v['resolution']|
self.frame width = v['resolution'] [0

01[0]
101]

# interframe difference
f diff = array(v['interframe diff'])
self.frame diff = £ diff[:,0]
self.frame diff max = £ diff[:,1]
self.dt = array(v['display time'])/1000.0 # store display time in seconds
# get bitstream data
N = len(self.dt)
self.transmitted frame height = transmitted frame height
if self.transmitted frame height==0:
self.transmitted frame height = self.frame height
N b = len(bitstream data)
self.loss b = bitstream data.col('lost')
self.frame size b = scale frame size(bitstream data.col('video frame size'))

self.packet count b = bitstream data.col ('packet count')

t b = bitstream data.col('frame.timestamp max')/1000.0 # store time stamp in seconds
t b -= min(t_b)

# add additional time stamp at end

dt mean = mean(t _b[l:]-t b[:-1])

t b = array( list(t b) + [t b[-1]+dt mean] )
self.frame t b = t b

# add rebuffering start flag
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self.rebuf b = zeros(len(bitstream data))
if 'rebuf start' in bitstream data.col name:
self.rebuf b bitstream data.col('rebuf start')

# add rtp timestamp
t sent b = arange(len(t_b))*dt mean

if 'rtp.timestamp' in bitstream data.col name:
t sent b = bitstream data.col('rtp.timestamp')/1000.0 # store time stamp in seconds
t sent b = correct sent timestamp(t sent b,self.rebuf b)

# add additional time stamp at end
dt sent mean = mean(t sent b[l:]-t sent b[:-1])
t sent b = array( list(t_sent b) + [t _sent b[-1]+dt sent mean] )

self.frame t sent b = t sent b

# estimate frame types
ret val =
get frame type bstr(self.frame size b,self.frac motion,self.conf motion,sum(self.dt))

prob_key frame b = ret val[O0]
self.prob key frame b no adj = prob key frame b

self.prob b frame b = ret val[l]

# adjust frame type estimation using knowledge from content
self.prob key frame b =
adjust frame type at scene change (self.frame size b,self.loss b,self.scene,self.dt,prob key frame b)

# key frames are frames with prob(of key frame)>0.5
self.key frame b where (self.prob key frame b>0.5) [0]

# estimate loss

self.eff loss b,self.eff loss key b =
get eff loss bstr(self.loss b,self.prob key frame b,self.prob b frame b,self.frame size b,self.packe
t count b,self.is mp2t)

# for jerkiness, freezing, use knowledge from bitstream:
self.rep frame = jrk.repeated frame(self.frame diff max,self.dt)

# correct video display time (e.g. for offline simulation, in case of skipping without
freezing)

self.dt no corr

self.dt,self.dt
correct content duratio

b =
n(self.dt,self.rep frame,self.frame t sent b,self.loss b,verbose=False)
self.delay b = check delay in packet arrival(self.frame t b,self.frame t sent b,self.dt)
self.jerk motion weight prior = jrk.get motion weighting(self.frame diff max)
self.jerk motion weight =

link freezing to bitstream stat(self.loss_b,self.delay b,self.rebuf b,self.dt b,self.rep frame,self.
dt,self.jerk motion weight prior)

self.jerk =
jrk.jerkiness(self.dt,self.rep frame,self.jerk motion weight,self.get viewing distanceZheight())
self.estimate quality()

The function estimate qua1ity COmbines coding and transmission quality. Note that the value factors
q cod @Nd g trans are on a (o, 1) scale and have to be re-scalled to the (1, s; scale,

Q = 4* g cod*g_trans + 1.
The value o is the final output of the model.
def estimate quality(self):

self.coding quality ()
self.transmission quality ()

self.q = self.q cod*self.q trans
self.predicted Quality = 4*self.q + 1

Coding quality estimates the perceived degradations due to encoding of the video and resizing.
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def coding quality(self):

# do not count repeated frames

lim = get hybrid parameters() ['unrepeated frame limit']

non rep = [1 if self.rep frame[i]<lim else 0 for i in range(len(self.rep frame))]
nr_frame s = sum_per_ scene(non_rep,self.scene)

self.nr frame s = nr_ frame_ s

scene start = self.scene[0]
scene_end = self.scenell]

dt = dt _no_rep(self.rep frame,self.dt)
f s = average per scene(self.frac motion,scene start,scene end,dt)

c_s = average per_ scene(self.conf motion,scene start,scene end,dt)
self.frac motion s = f s

p_s = average per scene(self.conf motion,scene start,scene end,dt)
self.conf motion s = p s
p_s = self.get conf motion estim(f s,p_s)

dt s = sum per scene(self.dt,self.scene)
self.dt s = dt_s

b s,fsize eff b =

get bitrate per scene(self.frame size b,self.key frame b,scene start,scene end,dt s)

28

self.frame size eff b = fsize eff b
nr_pixels = self.frame height*self.frame width

# check if transmitted frame resolution was different:
upscale fac = 1.0

if self.transmitted frame height > 0:
upscale fac = self.frame height/float (self.transmitted frame height)
upscale fac lim = 2.25
upscale fac = min(upscale fac lim,max(l/upscale fac lim,upscale fac))
nr pixels /= upscale fac*upscale fac

unscaled = b_s

b_s
b s =b s * (480*852) / nr_pixels

self.bitrate per scene = b s

CpxX_s = average per scene(self.cplx intra avg,scene start,scene_end,dt)
cpx_inter s = average per scene(self.cplx inter avg, scene_start,scene_end,dt)
self.cpx intra s = cpx_ s

self.cpx inter s = cpx inter s

# avoid division by 0 for exceptional cases, i.e. freezing of a whole scene
# of either first scene (first frame complexity is not computed) or first

# frame of scene is homogeneous

acc = 0.01

I cpx = [1 for i in range(len(cpx_s)) if cpx s[i]<acc and f s[i]<acc]

if len(I cpx)>0:
cpx_s[I cpx] = 1.0

v_s = ((l-c)+c*(1l-p_s)*cpx_s)
bbar s = b s * dt s / (cpx_s+nr frame s*f s* v _s)**0.95

self.bbar s = bbar s
self.cpx s = cpx_s

jerk s = ustat.trimmed mean(self.jerk, (0.25,0.25)) # trimmed mean jerkiness
g cod s = strans.STransform((0.3,0.3,1.0)) .map (bbar s/100.0)

# adjust visibility: distortions in high motion scenes are less visible
self.motion mask fac = self.motion masking()
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g cod s = 1-(1-g cod_s)*self.motion mask fac
self.q cod s = g cod_s

dt s = sum per scene(self.dt,self.scene)
g _cod = mean over scene(q cod s,dt s)

# adjust for viewing conditions:
# 1. adjustment for better degradation visibility (artifacts are larger)
if upscale fac>1.0:
g_cod *= g_cod** (upscale fac*1.5)
# 2. adjustments for blurriness
g _cod *= self.get view condition adjustment ()

self.q cod = g _cod
def dt with cutted prepost roll (self):

dt = self.dt.copy()
if self.frame end>0:

dt[self.frame end+1:] = 0.0001
if self.frame start>0:
dt[:self.frame start] = 0.0001

return dt

def get conf motion estim(self, frac_motion,conf motion):
e vec = array([.5,1])
e vec /= sqrt (sum(e_vec*e vec))
z = (e _vec[O]*frac motion + e_vec[l]*conf_motion)/sqrt(Z)
return z

def get viewing distanceZheight (self):

vd_fac = 3
if self.frame height<500:
vd fac = 5

return vd_fac

def get view condition_adjustment (self):

vertical resolution self.transmitted frame height

# 1if transmitted frame height is not known:
if vertical resolution==0:

vertical resolution = self.frame height

# viewing distance, in multimples of display height
viewing distance = self.get viewing distanceZheight ()

return self.get viewing condition factor(vertical resolution,viewing distance)

def get viewing condition factor(self,vertical resolution,viewing distance):

wun

INPUT:

vertical resolution -- float, vertical resolution (transmitted)

viewing distance -- float, multiples of display height (use viewing distance=5 for WVGA and
3 for HD)

OUTPUT :

max_score -- float in [0,1], max score of a video having 'vertical resolution' under

given viewing conditions.
viewing angle = arctan(0.5/viewing distance)*2

pix per arc = vertical resolution/viewing angle
s = strans.STransform([1,0.5,0.4])
max_score = s.map (pix _per arc/1000.0)

return max_ score
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Observation: degradations in high motion areas are less visible. Therefore, determine fraction of
blocks of high motion, and their average displacement. Using these values, determine a correction
factor.

def motion masking(self):

wun

OUTPUT :

fac -- float, motion masking correction factor
s _frac = strans.STransform([0.1,0.3,6])

s _motion = strans.STransform([0.2,0.1,4])

scene start = self.scene[0]
scene_end = self.scenel[l]

dt = dt _no_rep(self.rep frame,self.dt)

f dx s = average per_scene(self.frac motion_ dx, scene_start,scene_end,dt)
f dy s = average per scene(self.frac motion dy,scene start,scene end,dt)
m dx s = average per_ scene(self.motion dx,scene start,scene end,dt)

m dy s = average per scene(self.motion dy,scene start,scene end,dt)

fac dx = s frac.map(f dx s) * s motion.map(m dx s)
fac dy = s _frac.map(f dy s) * s motion.map(m dy s)

c = get hybrid parameters() ['max motion masking']
return 1.0-c*maximum(fac_dy, fac_dy)

Transmission quality estimates the perceived degradations due to transmission errors, such as packet
loss. It is mainly based on the estimation of effective loss derived from packet header information,
together with jerkiness estimation, derived from the video frames.

def transmission quality (self):
N b = len(self.dt b)

Eloss = stepf.StepFunc(self.dt b,self.eff loss b)
eff loss = stepf.resample step func(Eloss,self.dt).y

Eloss key = stepf.StepFunc(self.dt b,self.eff loss key b)
eff loss key = stepf.resample step func(Eloss_key,self.dt).y

c s =20.5

p=1.0

# slicing degradation

slicing = (1.0 - exp(-eff loss*p)) * (c_s + (l-c_s)*self.frac motion)

# add slicing at key frames (no motion correction term for slicing in key frames
g_slicing = (1.0-slicing) *exp(-eff loss_key*p)

self.q slicing = g_slicing

g _loss = (l-self.jerk)*q slicing

dt = self.dt with cutted prepost roll()

g _loss = 1.0 - deg temp fade out(1l.0-g loss,dt)
self.q loss = g loss

g _trans = sum(q loss*dt/sum(dt))

self.q trans = self.qg trans

def mean_over_ scene (x,duration) :

30

Calculate feature mean over scenes

INPUT

x —-- array (1-D), feature values per sample and per scene
duration -- array (1-D), duration of scenes

OUTPUT

ms -- float, mean of x per scene
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def non rep frame index(rep frame):
return where (rep frame<get hybrid parameters () ['unrepeated frame limit']) [0]
def dt no rep(rep_ frame,dt):
mwwn
Compute a display time, such that repeated frames have display time equal to 0, and the
non-repeated frames have display time as the sum of all subsequent repetitions.
mwwn
# index of non-repeated frames
I = non_rep frame index(rep_ frame)
# index of next non-repeated frames
# e.g. for 5 frames with non-repeated frames [0,2,4] there is:
# I =10,2,4], J = 12,4,5]
J = array(list(I[1:])+[len(rep_frame)])
dt no rep = zeros(len(dt))
dt no rep[I] = array([sum(dt{i:j]) for i,J in zip(I,J)])
return dt no_rep
def average per scene (x,scene start,scene end,dt):
mown
Compute the mean feature value of x per scene over un-repeated frames.
INPUT:
X -- 1-D ndarray of feature values
scene_start -- list of scene starts
scene_end -- list of scene ends
dt -- 1-D ndarray of display time
OUTPUT :
am -- array with len(am)=len(scene_start), of mean values
m = []
for start,end in zip(scene_start,scene_end) :
x s = x[start:end+1]
dt_s = dt[start:end+1]
m.append(sum(xis*dtis)/sum(dtis))
return array (m)
def correct large frames(df,len content,verbose=False) :
If the PES packet size is limited, a video frame can be in more than one
PES packet. Check if frames are within the limit of PES packet size, and check
if more frames in bitstream are present than in content, and thus, join frames
together.
# check for columns in df:
# 1f columns changed: do nothing:
if not df.col name == ['frame.timestamp min', 'frame.timestamp max', 'video frame size',
'packet count', 'lost']:
if verbose:
print ('correct large frames : no correction due to non-consistent col-names')

xT = x
mx = sum(xT*duration) /sum(duration)

return mx

return df

pes_limit min = 65500
pes limit max = 65750

nr diff = len(df)-len content
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if nr diff>0:
f size = df.col('video frame size')

I larger min = where(f size>pes limit min) [0]
I_smaller max = where(f_ size<pes_limit max) [0]

I very large = where(f size>=pes limit max) [0]
I large = intersectld(I_larger min,I smaller max)

# only make adjustments, if some large frames within PES limit
# are detected, but no frame is substantially larger (which

# indicates that PES packet size is not limited)

if len(I_large)>0 and len(I_very large)==

if verbose:
print ('correct frames with index: ',I large)
print ('but correct max. ',nr diff,' frames')

# join the first nr diff many frames
I large = I large[:nr diff]

data cor = []
for i in arange (len(df)):
data row = df.datali,:].copy()

if i-1 in I_large:
# modify last data_row
last row = data cor[-1]
last row[l] = data row[1]
last row[2] += data row[2]
last row[3] += data row[3]

else:
data cor.append(data row)

df cor = dfr.DataFrame (array(data cor),df.col name)
return df cor

return df

def scale frame size(fs):

wun

Convert from bytes to kbits

wnn

return £s/1000.0*8

def get bitrate per scene(frame size b,key frame b, scene_ start,scene_end,duration,verbose=False) :

wnn

compute the kbit/s of data (from bitstream) per scene and return it in a list.

INPUT:
frame size b -- arrays (1-D), containing bitstream frame size
key frame -- array (1-D) of indices of key frames
scene_start, scene end -- arrays (1-D) of same length containing scene start/end
content frame numbers.
scene_duration -- arrays (1-D) of same length containing duration of scenes (in s)
OUTPUT:
(b, fsize eff b) -- pair of array (1-D), len(b)== number scenes, average bitrate per scene and
array (1-D), frame size, with additional size of 'redundant' key frames
removed
b = []

scene_start bstr,scene_end bstr =
align bitstream content (frame size b, scene start,scene end,duration)

# correct frame size by removing size of key frames, which are not at scene changes, as these
# are for robustness only:
fsize eff b =

get frame size non redundant (frame size b, key frame b,scene start bstr,scene end bstr)

if verbose:
print ('scene start=',6scene_ start)
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def

def

def

def

print ('scene start bstr=',scene start bstr)
for 1 in range(len(scene_start bstr)):

start = scene start bstr[i]

end = scene_end bstr[i]

# frame size of frames in this scene:
fs = fsize eff b[start:end+1l]

#
bitrate = 0

if duration[i]>0:
bitrate = sum(fs) /duration[i]

b.append (bitrate)

if verbose:
print ('bitrate per scene=',Db)

return (array(b),fsize eff b)

sum_of vec per scene (x,scene):

wuon

Compute the mean per scene.

INPUT:

X —-- numpy array of floats

scene start end -- pair of arrays containing scene start, end
OUTPUT:

X _sum -- array, mean per scene

mon

x sum = [sum(x[start:end+1l]) for start,end in zip(scene[0],scene[l])]

return array(x_sum)

sum_per_scene (X, scene) :

if isinstance(x[0],ndarray) :
x_sum = []

for i in range(len(x)):

x sum 1 = sum of vec per scene(x[i],scene[i])
x_sum.append (x_sum 1)

return array(x_sum)
else:
return sum of vec per_ scene (x,scene)

get scene align range (n,scene start,seq length,delta):

s = scene_start[n] - delta
e = scene_ start[n] + delta

s = max (0, s)
e = min(seq length-1,e)

if n>0:
d = scene_start[n] - scene_start[n-1]
s = max (scene_start[n-1]+d/2,s)

if n<len(scene start)-1:
d = scene_start[n+l] - scene start[n]

e = min(scene start[n]+d/2,e)

return range (s,e+1)

check transmission rate(t,t _b):

wun

Check, if the stream is streamed in real-time, or faster

INPUT:

(can be used in simulations)
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t -- ndarray (1-D), video content frame time stamp

t b -- ndarray (1-D), bitstream frame time stamp (max per video frame)
OUTPUT:
t scale -- float, time rescale factor, to rescale t b to the scale of t.

t scale = mean(t)/mean(t b-min(t b))

return t_scale

def get index of frac(frac,t):

frac -- float in [0,1)

t -- ndarray (1-D) of monotone increasing values

i -- index, such that t[i]/t[-1l]<=frac<t[i+1]/t[-1]
mwwn

i =0

frac = min(1.0,max (0.0, frac))
for t i in t[l:]:
if t i/t[-11>frac or t i/t[-1]==1.0:
break

i4=1

return i

def correct sent timestamp(t sent,rebuf start):

wuon

Adjust sent timestamp, such that it is monotonically increasing, and starts

at 0.

INPUT:

t sent -- ndarray (1-D), time stamp

rebuf start -- ndarray (1-D), indicator for rebuffering start
OUTPUT:

t _sent corr -- ndarray (1-D), time stamp

t_sent corr = t sent - min(t_sent)

I rebuf start = where(rebuf start>0.5) [0]

# if rebuffering
if len(I_rebuf start)>0:

I rebuf start = [0]+list(I rebuf start)+[len(rebuf start)]

# loop over rebuf start positions (including position 0, len(rebuf start))
for i1, in zip(I_rebuf start[:-1],I rebuf start[l:]):

t sent corr[i:j] -= min(t sent[i:j])

if i>0:
t sent corr[i:j] += t sent[i-1]

return t_sent corr

def correct content duration(dt,rep frame, frame t b,loss b,verbose=False):

If duration of video < duration of bitstream:
Correct video time stamps, by introducing freezing at 'skip positions'.
Skip positions are estimated by loss positions in bitstream:

|—=—————= X———— - —— oo —— XX———————————————— \ bitstream duration, x : loss positions

|- | video duration
| —————- I |---—————————————— 1= corrected video duration, by introduction
>|..|< correction at first loss

|..| delta due to first loss
D |< correction for second loss
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Note: sum of corrections(||||..) = duration bitstream - duration video
# compute expected number of frames:
nr_frames b = len(loss_b)

# count frames in video, but removing repeated frames due to frame rate reduction
dt_nr = dt_no_rep(rep_frame,dt)
dt m = ustat.trimmed mean(dt nr[dt nr>0.0], (0.1,0.1))

nr_frames = len(dt)
# better estimate, i.e. skipping repeated frames due to frame rate reduction:
if dt. m > 0.01:

nr frames = sum(dt)/dt m
missing frames = nr_frames b - nr_frames
dt_cor dt

dt b = ones(nr_ frames b)*sum(dt)/float (nr frames b)
if missing frames>3:

# estimate fps of content, and estimate duration of video as
# number of frames in bitstream * estimated fps:
duration = sum(dt)

duration b = ustat.trimmed mean(dt, (0.3,0.3))*nr frames b

# duration b > duration-epsilon
# otherwise, it might be that it was streamed faster?
if duration/duration_b>1.1:
if verbose:
print ('duration=%1.2f,duration b=%1.2f --PVS longer than bitstream' %
(duration,duration b))

duration b *= max(l.0,duration/duration b)

# due to skipping, bitstream duration can be longer than video duration:
delta duration = duration b-duration

# re-distribute difference delta duration among lost packets

t _cor = stepf.cumulative t(dt)

# make only correction if bitstream duration longer than content and loss occurred
if delta duration>0.0 and sum(loss b)>0.5:

# compute de per loss, i.e. delta of display time, which will be added at each
# loss position

d per loss = delta duration/sum(loss_b)
# compute corrected time stamps (putting freezing into skip positions)
n b = len(loss_Db)

# assume that up to first loss, frames in bitstream and frames in content
# are aligned:

# start at the first loss
i first loss b = n b-1

I loss = where(loss b>0.0) [0]

if len(I_loss)>0:
i first loss b = I _loss[0]

if i first loss b<len(t cor):

for i,nr_loss in enumerate(loss_b):
if nr_loss>0 and i>=i first loss b:

frac = (i-i_first loss b) / float(n b-i first loss Db)
j = get index of frac(frac,t cor[i first loss b:])
t cor[i first loss b+j+1:] += nr loss*d per loss

dt cor = t cor[l:]-t cor[:-1]

dt b = ones(nr_frames_b)*sum(dt_cor)/float(nr_frames_b)

return (dt cor,dt b)

def align bitstream content (frame size b,scene start,scene_end, scene duration,verbose=False) :
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Match scene changes to large frames in bitstream:

content: scene start

bitstream: frame size

for all scenes n and i in [k-delta, k+deltal:

minimise £ j/f i + ¢ * abs(j - i)
where f i : size of bitstream frame i
j : 'scene start prior' in bitstream of scene n

i : position (of frames) in bitstream

at the moment, these will be optimised independently for each scene.

INPUT:

frame size b -- arrays (1-D), containing bitstream frame size

scene_start, scene end -- arrays (1-D) of same length containing scene start/end
content frame numbers.

scene duration -- arrays (1-D) of same length containing duration of scenes (in s)

OUTPUT:

scene s -- array (1-D) of bitstream frame numbers of scene start (corresponding

to scene start in content

wun

# scene start in bitstream:

nr frames content = scene end[-1] - scene start[0]
nr frames bitstr = len(frame size b)

d = nr_frames_bitstr - nr frames content

duration = sum(scene duration)

# init scene start in bitstream

scene s b = [int(nriframesibitstr*sum(sceneiduration[:i])/duration) for i,si in
enumerate (scene_ start) ]

# get optimisation parameters

fps = nr_frames content/duration
delta = int(get_hybrid parameters() ['bitstr content delta time'] * fps + 0.5)
c = get hybrid parameters() ['misalign tradeoff'] /fps

for n in range(len(scene_s Db)):
j_range = get scene align range (n,scene s b,nr frames bitstr,delta)
z = zeros(len(j_range))
i = scene_ s bln]
for k,Jj in enumerate(j_range):
z[k] = c*abs(i-j) + frame size b[i]/frame size b[]j]
scene_s b[n] = j range[z.argmin()]

if verbose:
print ('scene[n]=%d' % i)

print ('j _range=',Jj range)
print ('frame size b=', frame size b[]j range])
print('z="',z)
scene_start bitstr = scene s b
scene_end bitstr = [nr_ frames bitstr-1]
if len(scene start bitstr)>1l:
scene_end bitstr = list(array(scene s b[l:])-1) + scene end bitstr

return (array(scene_ start bitstr),array(scene end bitstr))
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def

def

def

def

def

get _key frame in content (dt,dt b,key frame b):
Map the estimated key frames from the bitstream time scale to the content
time scale

INPUT:

dt -- ndarray (1-D), content display time

dt b -- ndarray (1-D), bitstream display time

key frame b -- ndarray (1-D), key frames in bitstream
OUTPUT:

key frame -- ndarray (1-D), key frames in content

kf b = stepf.StepFunc(dt b,key frame b)
key frame = stepf.resample step func(kf b,dt).y

return key frame

scale peak fsize(fsize):

wuon

Filter to enhance peaks.

fsize -- array (1-D), bitstream frame size

mown

# use asymmetric filter: put more weight on right side, as by scene changes
# frame size of right side determines statistics of current scene

filt = array([-0.5,-1,-1.5,-2,15,-4,-3,-2,-1],dtype=float)

filt = filt/sqgrt(sum(filt*filt))

filt = flipud(filt)

return maximum (0.0, convolve (fsize, filt, 'same'))

smooth with gaussian(x):

wun

Smooth vector x using gaussian smoothing filter

wnn

if len(x)>=3:

n = min(len(x)/3,10)

filt = exp (- (arange (n+l))**2/(n*n/2.0))
filt = concatenate ((flipud(filt[1:]1),£filt))
filt = filt/sum(filt)

convolve (x, filt, 'valid")
concatenate ( (ones (n) *y[0],y,ones (n) *y[-1]))

Yy
Z

else:
print (mean(x))

z = ones (len(x)) *mean (x)
return z

get sliding window indices (vector length,window size):

wun

Determine start and end indices of sliding window. The window size is constant,
and is centered in the middle, and it is on the right/left at the beginning/end.

OUTPUT:
(I_start,I _end) -- pair of 1-D numpy arrays with start,end index

wun

d = min(vector length/2,window size/2)

I start = maximum(0,arange (vector length)-d)
I end = minimum(vector length,I start+2*d+l)
I start = I end-2*d

return (I_start,I end)

kbit per I frame(fsize b, frac motion,conf motion,duration):

Estimate I-frame size using a simplified formula, similar in spirit to the
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one used for coding quality estimation.
Use features within a sliding window of temporal size 'sliding window_temp size'.

INPUT:

fsize b -- vector (numpy array), bistream frame size in kbit
frac motion -- vector (numpy array),

conf motion -- vector (numpy array),

duration -- total video duration in seconds

OUTPUT:

bbar -— float, estimate of I frame size

wun

# sliding window size in sec:
sliding window temp size = 4.0

N = len(frac motion)
N b = len(fsize b)

# determine window size

n =N * sliding window temp size / duration

n b =NDb * sliding window temp size / duration
start,end = get_sliding window_indices (N, n)

start b,end b = get sliding window indices (N b,n b)

frac motion m = array([mean(frac motion[i:j]) for i,Jj in zip(start,end)])
conf motion m = array([mean(conf motion[i:j]) for i,3j in zip(start,end)])

# resample to length of bitstream:
FF = stepf.StepFunc (ones (N) *duration/N, frac_motion m)
frac_motion m b = stepf.resample step func(FF,ones (N b)*duration/N b).y

FC = stepf.StepFunc (ones (N)*duration/N, conf motion m)
conf motion m b = stepf.resample step func(FC,ones (N b)*duration/N b).y

# compute mean frame size (non-redundant) over sliding window) :
fsize b m = []

tm_all = []

for i,j in zip(start b,end b):

# compute mean non-redundant frame size: mean of frame size max (an I-frame) and
# trimmed mean of frame size, ignoring the largest frames (redundant I-frames):
tm = ustat.trimmedimean(fsizeib[i:j],[0.0,l.O/25.0])

tm_all.append (tm)
fsize b m.append( max(fsize b[i:j]) + (n_b-1)*tm )
fsize b m = array(fsize b m)

# estimate I-frame size using formula similar to coding quality (simplified)
c =0.5

bbar = fsize b m /(l+n _b*frac motion m b*((l-c)+c* (l-mean(conf motion m b))))
return bbar

def next element larger(i,J):

Return the first element in J, that is larger than i.
J larger = [j for j in J if j>i]
return J larger([0]

def convert to prob partial lin(x,p0,pl):
Convert x to values in [0,1] using partial linear function, such that
x<=p0 ry =1
x>=pl 'y =20
p0<x<pl : linear
acc = 1.0e-4
y zeros (len(x))
T where ((pl-p0)>acc)

if len(I)>0:
y[I] = (pl[I]-x[I])/(pl[I]1-pO0[I])

v [x<=p0] 1

38 Rec. ITU-T J.343.1 (11/2014)



def

def

def

y[x>=pl] = 0

return y

get prob of B frame(frame size b,P size b,B size b):

Compute for each frame a probability of being NOT a B-frame.

INPUT:

frame size b -- ndarray (1-D), bitstream frame size

P size b -- ndarray (1-D), local mean of larger frames
B size b -- ndarray (1-D), local mean of small frames
OUTPUT:

prob b -- ndarray (1-D), prob of being b frame

n = len(P_size b)

prob_b = zeros(n)

I = where(B size b < P size b/2.0)
if len(I)>0:

PB mean = (P_size b+B size b)/2.0

prob b[I] = convert to prob partial lin(frame size b[I],B size b[I],PB mean[I])

return prob b

compute local trimmed mean(fsize b,q min,q max,window size=10):

wun

Compute local trimmed mean

INPUT:

fsize b -- ndarray (1-D)

OUTPUT:

fs low -- ndarray (1-D), local trimmed mean

wun

N = len(fsize D)
bf = zeros (N)

# use sliding window to determine trimmed mean
d = min(N/2,window size/2)

I _start = maximum(0,arange (N)-d)

I end = minimum(N,I start+2*d+1)

I start = I end-2*d

# compute trimmed mean in window [i:]]

fs low = array ([ ustat.trimmed mean(fsize b[i:j], (g_min,q max)) for i,j in zip(I_start,I end)

return fs low

adjust frame type at scene change (frame size b,loss b, scene,dt,prob key frame Db):

wun

Adjust frame type estimation (performed using mainly bitstream), using content scene changes.

INPUT:

fsize b -- vector (numpy array), frame size in bitstream

loss_b -- vector (numpy array), number of lost packets per frame
scene -- pair of vector (numpy array), scene start/scene end

dt -- vector (numpy array), display time

prob key frame b -- vector (numpy array), probability of being a key frame
OUTPUT :

prob key frame b -- vector (numpy array), adjusted prob of key frame

prob _key adj b = prob_key frame b.copy()
scene start,scene end = scene
# duration per scene

duration s = sum per scene(dt, scene)

scene_start bstr,scene end bstr =

align bitstream content (frame size b,scene start,scene end,duration_s)

# for scene start, if there is no loss (strong loss can make false scene start estimation
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def

40

for s in scene_start bstr:

if loss b[s]==

# estimated scene start is at index s (in bitstream)
# thus, prob of key frame at s should be equal to 1
#

is prob of key frame at s very low, maybe something with the alignment

# went wrong, therefore, do not change too much
# i.e. linear from [0,0.17],
prob key adj b[s] = min(10*prob key frame b[s],1.0)

return prob key adj b

detect regular key frames(frame size b,prob key frame b,verbose=False):

wun

INPUT:

fsize b -- vector(numpy array), frame size in bitstream

scene_start b -- vector(numpy array), scene start indices in bitstream

prob key frame b -- vector(numpy array), probability of being a key frame

OUTPUT:

prob key frame b,scene start bitstr) -- vector (numpy array), adjusted prob of key frame

wuon

prob key adj b = prob key frame b.copy ()

P size

compute local trimmed mean (frame size b,q min=0.6,9 max=0.1,window size=12)

peak index = where(frame size b > 2*P size) [0]

if verbose:
print ('peak index=',peak index)

if len(peak index) > 1:

inter peak dist = peak index[1l:] - peak index[:-1]

max_

key dist = ustat.trimmed mean(inter peak dist,[.2,.2])

# count how many times inter peak distance is close to estimated max key dist
sum _close = sum([1 for d in inter peak dist if abs(d-max_key dist)<2])

if verbose:

# only make adjustment,

print ('max key dist=',max key dist)
print ('sum close=',sum close)
print ('len(inter peak dist)',len(inter peak dist))

if sum close > len(inter peak dist)/2:

# if estimated key frames have a realistic value
if max key dist > 5:

if many peaks are around 'max key dist'

key index = array([pind for i,pind in enumerate(peak index[1:]) if peak index[i]-
peak index[i-1] >= (max_key dist-1) 1)

if len(key index)>0:

prob_key adj bl[key index] += 1.0
prob key adj b = minimum(1.0,prob key adj b)

return prob_key adj b

get frame type bstr(fsize b, frac motion,conf motion,duration,verbose=False) :

INPUT:

fsize b -- vector (numpy array),

frac motion -- vector (numpy array),

conf motion -- vector (numpy array),

duration -- float,total video duration in seconds
verbose -- bool

wun

# number frames in bitstream
N = len(fsize b)
dt = duration/float (N)

# rough

content-dependent estimation of I-frame size

I size content = kbit per I frame(fsize b, frac motion,conf motion,duration)

# in case the estimation is completely wrong,
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I size content = minimum(max(fsize b),I size content)

P size = compute local trimmed mean(fsize b,q min=0.6,g max=0.1,window_ size=12)
B _size = compute_ local trimmed mean(fsize b,q min=0.0,g max=0.6,window_size=5)

# compute relative frame size, i.e. subtract frame size of small frames in neighbourhood
rel fsize = maximum(fsize b - B_size,0.0) #scale peak fsize(fsize_ D)

# compute relative I size content:

I size content -= mean (B size)

I size content = minimum(max(rel fsize),I size content)

I size limit = zeros(len(rel fsize))
prob b frame = get prob of B frame(fsize b,P size,B size)

I size min limit = I size content/4.0
I size med limit = I size content*3/4.0

# define lower limit (on the relative scale) of I-frames by:
low_lim = maximum(I_size min limit,minimum( I _size med limit, (2*(P_size-
B size)+I size med limit)/3.0 ))

I size 1imit[0] = max (I _size min 1imit[0],rel fsize[0])
for i in range(l,len(fsize b)):

# if last frame was above limit, take its size
I size limit[i] = max(rel fsize[i-1],I size limit[i-1])

# exponential decay of size limit

# constant chosen, such that in 1 second limit drops
# to about 0.5 of initial value

I size limit[i] *= exp(-dt/1.44)

# avoid decay to value too small, by imposing to be above low lim
I size limit[i] = max(low 1lim[i],I size limit[i])

prob key frame = zeros(N)
prob key frame = minimum(1l.0,maximum(0.0,rel fsize-I size limit)/low_lim)
prob key frame[0] = 1.0

# make adjustement in case of regular key frames
prob key frame = detect regqular key frames(fsize b,prob key frame)

return
(prob_key frame,prob b frame,rel fsize,I size limit,I size content,I size min limit,I size med limit
,P_size,B size)

def get frame size non_redundant (fsize b, key frame b,scene start b,scene end b):

wnn

Estimate frame sizes excluding redundant key frames.

INPUT:

fsize b -- vector (numpy array),

keyif;ameib -- array, indices of key frames

scene_start b -- array, indices of scene starts

scene_end_b -- array, same length as scene start b, indices of scene ends

OUTPUT:

fsize eff b -- vector, equal to fsize b, except at positions of redundant key frames.

fsize eff b = fsize b.copy()
for s,e in zip(scene start b,scene end b):
# determine key frames in scene [s,e]
kf scene = [i for i in key frame b if i>=s and i<=e]
# list of redundant key frames are all key frames per scene except the first
kf red = kf scene[l:]
if len(kf red)>0:
for k in kf red:

# indices of neighbouring non-key frames
I = [i for 1 in range(k-4,k+4) if i>0 and i<len(fsize b) and (not i in key frame b)]

if len(I)>0:
fsize eff b[k] = max(fsize b[I])
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return fsize eff b

def
get eff loss bstr(loss count b,prob key frame b,prob b frame b, frame size b,packet count b,is mp2t,v

erbose=False) :
mwwn

INPUT:

loss b -- vector (numpy array),

prob_key frame b -- vector (numpy array),

prob b frame b -- vector (numpy array),

verbose -- bool

OUTPUT:

eff loss -- vector (numpy array), estimated effective loss

eff loss key -- vector (numpy array), estimated effective loss, that occurs in key frames

# number frames in bitstream
N = len(loss count b)

loss_b = loss _count b

eff loss = zeros(N)
eff loss_key = zeros(N)

# add additional probability of 'hypothetical' key frame at end, used for later processing:
prob key frame b = array(list(prob_key frame b)+([1.0])

prob nonB = 1.0 - prob b frame b
delta B = get hybrid parameters() ['max BFrame interval']

for i in range(N):
if loss b[i]>0:

# check if loss is likely to occur in B-frame, then loss is likely stop at next P-frame:
next nonB = 1
p =20.0

if prob b frame b[i] > 0.001:

next nonB = i+l
p=1
if len(prob nonB[i+l:i+delta B])>0:
next nonB = argmax (prob nonB[i+l:i+delta B])+ (i+1)

# p is the probability of frame next nonB is not a B-frame:
p = prob nonB[next nonB]
eff loss[i:next nonB] += prob b frame b[i] * p*loss b[i]

if verbose:
print('loss at b-frame %d up to %d with prob %$1.2f' %
(i,next nonB,prob b frame b[i]*p))

# otherwise, loss is likely to propagate until next I-frame:
prob next key frame = 1.0-prob b frame b[i]

# add a hypothetical key frame at end, for easier processing in loop
I key f = where(prob key frame b[i+1:]>0.01) [0] + (i+1)

if verbose:
print (I_key f)

# loop over all possible next key frames and add loss
for k in I key f:

if prob next key frame < 0.01:
break

# p is prob that loss propagates from frame i to frame k
p = prob next key frame * prob key frame b[k]

# 1if loss starts in key frame
if prob key frame b[i]>0.5:
eff loss key[i:k] += p * loss b[i]

else:
eff loss[i:k] += p * loss b[i]
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def

prob_next key frame *= (l-prob key frame b[k])

return (eff loss,eff loss key)

deg temp fade out (v,dt):

Calculate a temporal (perceptually motivated) degradation fade out and smoothing.

Such that:

* the relative impact of a degradation (local in time) is smaller if it
occurs after a previous degradation

* degradations occuring for very short time are attenuated (due to a
temporal smoothing

INPUT:

v -- numpy array (vector) of per frame degradations
dt -- numpy array (vector) display time (in s)

OUTPUT:

w -- array (vector), of 'faded out' degradation values
mwwn

w = zeros (len(v))

t_const = get hybrid parameters () ['deg temp_ smooth dt']
par dt = get hybrid parameters() ['deg temp fade out']

fv = stepf.StepFunc(dt,v)
for i in arange(l,len(v)):
a = exp(-dt[i-1]/par dt)

# compute the average of v over the last t const seconds:
v_avg = stepf.eval step func(fv, (fv.t[i+1l]-t const,fv.t[i+1]))

# note: w[i] depends on v[i] only through the average v_avg.
# therefore, very short very strong degradations are attenuated.
wl[i] = max(v_avg,a * w[i-1] + (l-a) * v_avg)

return w

check delay in packet arrival (frame t b, frame t sent b,video dt):
Check for delays in packet arrival, which could result in
discarding the packets by the video player, or which could
result in rebuffering.

INPUT:
frame t b -- bitstream time stamp of arrival of last packet of a frame
NOTE: reception time of the first packet of first frame is set to 0.
frame t sent b -- bitstream sent time stamp of last packet of a frame
NOTE: sent time of the first packet of the first frame is set to O.
video dt -- display time of video frame (e.g. for a 25fps video this is
a vector with entries 0.04)
OUTPUT:
delay -- 1-D numpy array, delay
delay = zeros(len(frame t b)-1)

return delay

Link freezings to bitstream statistics, either to delay or to packet loss. Remove freezings (longer than

those due to frame rate reduction) in case no degradation of the bitstream can be observed.

Overview of types of frame repetitions:

Thus, frame repetitions larger than 4 frames are a degradation in case of packet loss/delay.

low frame rate (min 8 fps, i.e., max 4 equal consecutive frames);
repetition in source (still image, cartoon);
freezing due to packet loss/delay.
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Short frame repetitions should be penalized if not present in bitstream.

def
link freezing to bitstream stat(lost b,delay b,rebuf b,dt b,rep frame,dt,jerk weight prior,verbose=F

alse):
mwwn

INPUT:

lost b -- 1-D numpy array, lost frames

delay b -- 1-D numpy array, lost frames

rebuf b -- 1-D numpy array, lost frames

dt b -- 1-D numpy array, bitstream dt, corrected, to match video content dt

rep frame -- 1-D numpy array, repeated frames

dt -- 1-D numpy array, frame display time

jerk weight prior -- 1-D numpy array, prior values for jerkiness weight in [0,1], has

len(rep frame)+1

OUTPUT :
jerk weight -- 1-D numpy array, weightings, used for jerkiness calculation

jerk weight = jerk weight prior.copy()

I non rep = non rep frame index(rep frame)
I non rep = array(list (I non rep)+[len(rep frame)])

stepf.cumulative t(dt)
= stepf.cumulative t(dt b)

# loop over start,end of repetition intervals (note: max(j)==len(rep frame))

for 1,J in zip(I_non rep[:-1],I non rep[l:]):

# determine indices (i b,j b) in bitstream corresponding to indices (i,Jj) in content
i b = argmin(array([abs(tk-t[i]) for tk in t b]l))
j_b = argmin (array([abs(tk-t[]j]) for tk in t b]l))

j lim = min(j, len(rep frame)-1)
j b lim = min(j_b,len(lost b)-1)
if verbose:
if §-i>1:
print ('i=%d,j=%d,1i b=%d,j b=%d' % (i,3j,1i b,j b))

# in the error free case
if sum(lost b[i b:j b 1im])<0.001 and sum(delay b[i b:j b 1im])<0.001 and sum(rebuf b)<0.5:

if verbose and j-i>1:
print ('no loss case')

jerk weight[i+1:j lim+1l] /= max(1l,Jj b-i b)
else:

# saturate linearly, i.e. [0.100,0.200] --> [prior value,1l], delta --> weight
delta = t[j]-t[i]

if verbose and j-i>1:
print ('delta="',delta)
print ('jerk weight[j 1im]=%1.3f' % jerk weight[j lim])

if delta>=0.2:
jerk weight[i:j lim+1] = 1.0

elif delta>0.1:
jerk weight([i:j lim+1l] = jerk weight[j lim]+(l1-jerk weight([j])*(delta-0.1)/0.1

return jerk weight
Jerkiness
Compute perceived jerkiness, using the details explained below
def is new frame(frame diff, frame diff prior):

Partial linear function taking values in [0,1], the probability of a new frame.

wun

new frame = zeros (len(frame diff))
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def

Il = where(frame diff>frame diff prior*3.0/2.0) [0]
I0 = where(frame diff<=frame diff prior*3.0/2.0) [0]

if len(I1)>0:
new_ frame[Il] = 1.0

if len(I0)>0:
new frame[IO] = (frame diff[I0]-frame diff prior([I0]/2.0)/frame diff prior[IO]
new frame = maximum(0.0,new_frame)

# the first frame is always a new frame
new_frame[0] = 1.0

return new_ frame

get _interframe prior(frame diff,display time,time const = 0.05, frame diff max=10.0):

wun

Determine a frame-difference prior, used for detection of repeated frames.
mown

N = len(frame diff)

acc = 0.001
f diff prior = zeros(N)+acc

for i in range(1,N):

d = min(frame diff[i-1], frame diff max)

# divide by 4.0, such that for constant motion, the prior is at half the motion * exp(...

d prior = (f diff prior[i-1]+d)/4.0
f diff prior[i] = d prior * exp(-display time([i]/time const)

return £ diff prior

repeated frame (frame diff,display time):

wun

Probabilistic computation of repeated frames.

wnn

f diff prior = get interframe prior (frame diff,display time)
new frame = is new frame (frame diff,f diff prior)

return 1.0-new_ frame

get motion weighting(motion intensity):

wnn

INPUT:
motion intensity -- numpy array (1-D), global motion intensity, such that
motion intensity[i] corresponds to motion from frame i-1 to i.
OUTPUT:
motion weight -- numpy array (1-D), has length(motion intensity)+l, rescaled

motion intensity to [0,1]

def

# parameters for motion part
pmu = (2, 0.5, 0.5)
mu = strans.STransform(p_mu)

# add a motion intensity value to end
motion intensity = array(list (motion intensity)+[motion intensity.max()])

motion weight = mu.map (motion intensity)

return motion_weight

jerkiness (display time,rep frame,jerk motion weight,viewing distanceZheight=3, verbose=False) :

wun

Compute perceived jerkiness.

INPUT:

display time -- numpy array (1-D), in seconds(!)

rep frame -- numpy array (1-D)

jerk motion weight -- numpy array (1-D), weighting, taking motion into account

viewing distanceZheight -- relation between viewing distance and display height of video
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(=3 for std. HD viewing settings)

OUTPUT :
jerkiness -- numpy array (1-D). Note: add jerkiness to whole repetition
interval, to easier create per-frame quality value

# viewing angle factor
c = 2.54 * 3.0/viewing distance2height

# parameters for time part
p tau = (0.12/c,0.05,1.5%c)

tau = strans.STransform(p_tau)

# skip computations with very low probability
p_low = 0.01

N = len(display time)
jerk = zeros(N)

# add a no repetition value to end
rep frame array (list (rep frame)+[0.0])
new frame l-rep frame

if verbose:
print ('new frame=',new frame)

#look for frame repetitions starting at position j
for j in range(N):
if new frame([j]>p low:

# look for frame repetition intervals (=~ display time) of length i
for i in range(1,N-j+1):

# 1f one of the repeated frames in the interval has a very low prob.
# of being repeated, skip interval
if i>1:
if min(rep_ frame[j+1:3+1i])<p_low:
break

# 1if at the end of the repetition interval, the probability of a new frame
# is very low, skip computation
if new frame[i+j]<p low:

continue

# compute probability of frame repetition interval
prob = new frame[j] * new_ frame[j+i]

if i>1:
prob *= prod(rep frame[j+1:j+1i])

if prob<p_ low:
continue

# display time of frame repetition
dt = sum(display time[j:j+i])

# jerk([j:j+i] += prob * dt * tau.map(dt) * mu.map (motion intensity[j+i])
jerk[j:j+1] += prob * tau.map(dt) * jerk motion weight[j+i]

return jerk

A4 Additional information

For ease of presentation, this detailed description uses for the algorithmic parts the syntax of the
python programming language. In addition, to avoid repeating the description of basic functions and
containers, this description references those of (www.python.org) and the numerical python library
(www.numpy.org).

In the remaining part of this clause, functions and containers are presented that are used in the model
description above.
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Step functions
Step functions are functions of the form

t -->vy

——————————————————————————— >t
i.e., constant over an interval at = (to,t17.
def cumulative t(dt):
Compute cumulative t
INPUT:
dt -- vector (numpy array)
OUTPUT:
t -- vector with len(t)=len(dt)+1
t = [0]

for d in dt:
t.append (t[-1]+d)
return array(t)

class StepFunc:

wuon

A step function is defined by a pair of vectors

or a pair of vectors
len(t)=len(y)+1.

(t,y) of

wuon

def init (self,dt,y):

wun

INPUT:
dt -- numpy array with len(dt)==len(y),
y —-- numpy array of step values
self.dt = array(dt)
self.t = self.cumulative t(dt)
self.y = array(y)

def len (self):

;gturﬁ_len(self.y)

def cumulative t(self,dt):

wun

Compute cumulative t

INPUT:

dt -- vector (numpy array)
OUTPUT:

t —-- vector with len(t)=len(dt)+1

return cumulative t(dt)

(dt,y)

of interval length dt and step values vy,

interval start/end positions and step values, where

of t intervals of constant values of step function.

def eval step func(f step,t interval,verbose=False):

Evaluate step function given by
position [t0,tl].
Make a zero-padding of f step,

(y,dt)

INPUT:

f step -- StepFunc

t interval -- pair of float, defining interval [t0,tl]
OUTPUT:

y —- value of the step function with sampling positions

at

if t0 or tl are outsize of f step.t

(t0,tl1)
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t0,tl = t interval

delta t = tl1-t0

t0 = max(t0,f step.t[0])
tl = min(tl,f step.t[-11)
i=20

t = f step.t

while f step.t[i+1]<=t0:

i4+=1

=1

while f step.t[j+1]<tl:
Jo4+=1

if verbose:
print ('t interval start %1.2f' % f step.t[i])
print ('t interval stop %1.2f' % £ 1)

y =0

for k in range (i, j+1):
dt = min(tl,f step.t[k+1])-max(t0,f step.t[k])
y += dt/delta t*f step.yl[k]

return y

def resample step func(f step,dt new):
mwwn

Given a step function f step=(dt,y) compute a new step function given by (dt new,y new)
using the intervals of constant value given by dt new.

INPUT:

f step -- StepFunc

dt new -- numpy array (vector) with len(dt new)==len(f step)
OUTPUT:

g _step -- StepFunc with g step.dt == dt new

wuon

t new = cumulative t(dt new)
y new = []

for 1 in range(len(dt _new)):
t0,tl = t new[i],t new[i+1]
y new.append (eval step func(f step, (t0,tl)))

return StepFunc (dt_new,array (y_new))

Frame pyramid and frame sequence

Video sequences are stored in frame sequences, where each frame is kept in a multi-resolution
pyramid. The details are described below:

class FramePyramid:

self.P -- a list of subsampled frames (numpy arrays)
self.height -- a list of the frame height
self.width -- a list of the frame width

def init (self,F,empty=False,skip level=0):

wun

construct the multi-scale pyramid starting

from F.

INPUT:

F  -- numpy array (matrix) of frame data

empty -- boolean, if true, create a pyramid of =zeros.

skip_ level -- positive int, the number of high-res level of the pyramid to skip

wun

self.P = list()
self.height = 1list()
self.width = list()

self.smooth height max = 60
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def

def

def

def

def

def

class Fr

self.

self
self
self
self

count level = 0

F sub = F.astype(np.float32)
h,w = F_sub.shape

while min(h,w)>=10:

if count level >= skip level:
if empty:
F sub = np.zeros((h,w),dtype=np.float32)

self.P.append(F_sub)
self.height.append (h)
self.width.append (w)

if empty:
h,w = ((h+1)/2, (w+l1)/2)
else:

smooth frame data before subsampling, but for low resolution
store the smoothed data (as this will be used for motion

In addition, for larger formats, do not smooth at the first iteration

#
#
# estimation), i.e. smooth after subsampling.
#
i

f h>self.smooth height max and h<F.shape[0]
F_sub = self.smooth (F_sub)

F sub = self.subsample (F_sub)

h,w = F_sub.shape
if h<=self.smooth height max:
F sub = self.smooth (F_sub)

count level += 1

# make low resolution first
self.height.reverse()
self.width.reverse ()
self.P.reverse ()

__getitem (self, key):
return self.P[key]

__setitem (self,key,item):
self.P[key] = item
len (self):

Egturﬁilen(self.P)

get dim(self):
return list of tuples, the height x width of the array
at each level.

wnn

return [self.P[i].shape for i in range(len(self.P))]

subsample (self,F):

wun

Subsample frame F by 2x2.

return F[::2,::2].copy() # use copy!

smooth (self,F):

# Filter the array F using the filter

# filt = np.array([1,2,11)/4.0

# and using padding of the array borders.
# Return the filtered array.

ameSeq:

Y -- list of frame pyramid

.Cb -- list of frame pyramid

.Cr -- list of frame pyramid

.display time -- list of frame display times (in ms)

.name -- name of the sequence, if read form file, the filename
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def  len (self):
return len(self.Y)

def iter (self):
return self

def next (self):
if self.iter index >= len(self.Y)-1:
raise StopIteration
self.iter index += 1
iter_index = self.iter index
return (self.Y[iter index],self.Cb[iter index],self.Cr[iter index])

def common pyramid height (self):

Return the height of the pyramid of Cb,Cr (note, Y has one additional level)

wun

return self.Cb[0]. len ()

def from avi(self, fn,frame start=0, frame end=-1, frame step=1,skip level=0):

wuon

Read frames from avi-file into lists of FramePyramids

INPUT:

fn -- filename

frame start -- start frame

frame end -- end frame, if -1 read to end

skip level -- positive int, the number of high-res level of the pyramid to skip
OUTPUT:

nb_frames -- int,number frames in file

wun

# The implementation of this method is straight-forward, but may depend on
# additional libraries to read the video frames. For each read video frame F
# the method append_ frame (F) is called.

def diff (self):

wnn

Compute frame difference between consecutive frames
for 1 in range(len(self.Y[0])):
for i in reversed(range(l,len(self.Y))):
self.Y[i][1] = 128.0+0.5*np.abs(self.Y[i][1l]-self.Y[i-1]1[1])
self.Y[0][1l] = np.zeros(self.Y[0][1l].shape,dtype=np.float32)

def append frame (self, frame YCbCr,display time=40,skip level=0):
Convert frame data in triple frame YCbCr into
FramePyramid's and append to lists.

wun

self.Y.append (FramePyramid (frame YCbCr[0],skip level=skip level))
self.Cb.append (FramePyramid (frame YCbCr([1l],skip level=skip level))
self.Cr.append (FramePyramid (frame YCbCr([2],skip level=skip level))

self.display time.append(display time)
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Annex B

YHyNRe
(Hybrid-NRe model)

(This annex forms an integral part of this Recommendation.)

B.1 Introduction

The YHYNR model first computes a video quality metrics (VQM) value using the total number of
packets and number of packet loss using a pre-defined look-up table (LUT). Then, post-processing is
applied to reflect the various impairments due to transmission errors.

B.2 Hybrid-NRe VQM computation
B.2.1 Feature computation

B.2.1.1  Total number of packets and number of packet loss
The total number of packets (TotalPacket) is computed as follows:

TS packet number  if TS protocol

TotalPacket = {% RTP PayloadSize  otherwise

The number of packet loss (TotalPacketioss) is computed as follows:

TS loss packet number if TS protocol

TotalPacket, o5, = {% (RTPloss packet number x Average RTP : packet size)  otherwise

Then two features (Xenc, Yenc) are computed by taking a log function as follows:

Xenc =109 (TotalPacket)
Y.ne = log; o(TotalPacket, ggs +1)

B.2.1.2 Green block feature

Some videos may contain mono-color blocks due to severe transmission errors. A feature (Greenblk)
reflecting this impairment is computed as follows:

U ivel (i, J,K) = i
Z€r0 piel (1, J,K) {O otherwise
1 V(,j,k)=0

Vzero ... (i, j, k) = .
pit (1 1, k) {0 otherwise

width

Uzeroyine (J,k) = D" Uzero i (i, . k)

i=1

width
VZerojine (j, k) = > Vzero i (i, j,k)

i=1
. 1 Uzerojj,.(j, k) > width/8

Uzero k) =
nag (1K) {0 otherwise

1 Vzeroj,.(j,k) > width/8

VZero g4 (J, k) = {0 otherwise
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NumFrameheight

Uzero = z ZUzeroﬂag(j,k)

k=L j=L
NumFrameheight
Vzero = Z ZVzero flag (1, K)
k=1 j=

Greenblk = —~ (Uzero +Vzero)
NumFrame

Here, U is the u channel and V is the v channel in the yuv video format.

B.2.1.3  Freeze feature
To compute a freeze feature ( FRZ,,,,,), the frame difference is calculated using the luminance channel

as follows:

1

FrameDiff (k)= —
FramePixel Size

DIYG 0K =Y G k=)
@i.1)

1 if FrameDiff (k) <Thy,

FreezeFlag (k) =
9 {O otherwise

FRZ a1 = z FreezeFlag (k)
k

B.2.1.4  Features for blocking, blur metric, freeze and repeating blocks

B.2.1.4.1 Blocking metric
To compute the blocking metric, the absolute horizontal difference is first computed as follows:

dplj, k] = |Avg, — Avggl|
where Avg, = %Zgz_l Frame[j + p, k], Avgg = %Zfo:l Frame[j + p, k].

v A
B, flxy) | fixtly) By
S rd
dh(,‘:, »n= ‘BL - BR| i

J.343.1(14)_FBA

Figure B.1 — Computing the absolute horizontal difference (d[j, k])
Then, the sum of horizontal blockiness (SB},) at position j is computed as follows:

SB,[j] = z (|Frame[j, k] — Frame[j + 1, k]| X u(d,[j, k] — CD(Ang)))
1<k<height

where u(-) represents the unit step function and
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D(s) = 17(1_\/%)” ifss127.

3(s—127)
128

+ 3 otherwise

After repeating the procedure for the entire frames, the frame horizontal blockiness (FB},) is computed

as follows:
1
2

1<sjswidth
j=0 (mod8)

FBh=| > SBh[i])

For each frame, the column difference (NFB;,) excluding every 8-th column is computed as follows:

(|Frame[/', k] — Framel[j + 1, k]|

1=1\ 1<jswidth \ 1<k<height
Jj=l(mod8)

2

x u(dnlj, k] — ®(4vg,)) | |

Then, the final horizontal blocking feature (BLK}) is computed as follows:
BLKy; = In(FB,,/NFB;,)

The vertical blocking feature (BLKy) is computed similarly. For interlaced video sequences, the
vertical blocking feature is computed in the field sequence. The i-th frame blocking score is computed
as follows:

FrameBLK[i] = 0.5 x BLKy, + 0.5 X BLK;,

The final blocking score (BlockingScore) is computed by averaging the top 10% frame blocking
scores.

B.2.1.4.2 Blurring metric

While blurring artifacts are not always visible in flat (homogeneous) regions, they are mostly
recognizable in edge areas. Based on this observation, the frames are divided into a number of blocks
and each block is classified as a flat or edge block. Then, the blur radius is computed for the edge
blocks. To classify each block as a flat (homogeneous) or edge block, the variance is computed at

each pixel position (x, y) as follows:
N/2 L/2

1
vE=ro O D (fa+iy+) - B

j=—N/2i=-L/2

where v(x, y) represents the variance value at (x, y), L is the width of the window, N is the height of
the window, and E is the mean of the window. Then each pixel is classified using the following
equations:

Flat, v(x,y) <th

Edge, th<v(x,y)’ th = 400.

Pixel type = {
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A block is classified as flat or edge block by pixel classification results. If there is at least one edge
pixel in a block, the block is classified as an edge block. Otherwise, the block is classified as a flat
block. An edge e(x) is modeled as a step function:

A+ B, x=>0
e(x)—{B’ x <0

where A is an amplitude and B is an offset. When the edge is blurred with an unknown Gaussian blur
radius o, the blurred edge is modeled as follows:

X
A
E(1+ Z g(n,c))+B, x=0

b(x) = p vy
E(l_ z g(n,0)>+B, x<0
n=x+1

2

. . 1 _n
where g(n, o) represents a normalized Gaussian kernel (g(n, o) = NP4 202, € Z).

Two re-blurred edges (b, (x), b, (x)) are obtained with two blur radii (o, and o, (6, < 6})). Then,
the difference r(x) is calculated as follows:
_ b(x) = by (x)
r(x) =—————=
bq(x) — by (x)
The blur radius o is estimated as follows:
Oq " Op

(Gb - Ga) ' r(x)max + 0p

O =

where o, and o, are empirically set to 1 and 4. The blur radius o is calculated only for the edge
blocks and Fg; ; is obtained as follows:

1

N_BZ Gi ) NB > O

i

1 , Nz =0

Fpir =

where o; is the blur radius of the i, block and Ny is the total number of edge blocks in the frame.
The i, frame blurring score is computed as follows:

FrameBLR[i] = Fg.z
The final blurring score (BlurringScore) is computed by averaging the frame blurring scores.
B.2.1.4.3 Freezing metric
To detect irregular frame freezing, all frozen frames are detected as follows:

W H

1

Diff (i) = 7o~ = D ufiey) = fia@yI =T
x=0y=0

1 if Diff(i) > 0.99

FreezeFlag(i) = {0 otherwise

where Dif f (i) represents a portion of pixels that have the same value between adjacent frames, i is
the frame index, W is the width of the frame, H is the height of the frame, and u(t — T) is the shifted
unit step function for a thresholding operation.
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In order to measure irregular frame freezing, the regularly repeated frame freezing is first detected as
follows:

Repeat[i mod M| + +, if (FreezeFlag(i) = 1) {ij1 <i <N}
where Repeat[k] represents the histogram of the frozen frames, and M represents the initial assumed
freeze duration. The repeated freeze duration and the freeze flag are modified as follows:
FreezeFlag(i) = 0, if (Repeat[i mod M] > m and v > 4.0), {ill1 <i <N}
M

M
1
v= M;(Repeat[k] —m)?

The final freezing score (FreezingScore) is computed as follows:

1
N X (30 X l0g30(1 + xk)), 0<x,<29
FreezingScore =

1
NXSO, Xk230

N
X = Z FreezeFlag (i)

=1

where N represents the total number of frames in the video sequence.

B.2.1.4.4 Repeating block metric

Compressed video sequences may contain repeating blocks when the video sequence is highly
compressed. To count the number of repeating blocks, the pixel difference between adjacent frames
is computed as follows:

PixelFlag(bx, by) = {(1) ;]; hIeBri;igl;x, by) — B;(bx,by)| = 0

where bx and by represent the index value of the 4 x 4 block and B(bx, by) is the 4 x 4 block. Then
the homogeneous block (HB) is defined as follows:

4 4
HB = z Z PixelFlag(bx,by) =0
bx=1by=1
In each frame, the portion of homogeneous blocks (Pyg) is calculated as follows:
_ NHB
HB — TB

where NHB represents the total number of repeating blocks whose averaging luminance ranges from
60 to 200 and TB represents the total number of 4 x 4 blocks. The final repeating block score
(SameblockScore) is computed by averaging the top 10% of Pyjp.

B.2.2 VQM Computation

B.2.2.1 VQM computation using encrypted bitstream data and LUT
Using LUT, HNR1enc is computed as follows:

HNRL, = LUT, (X,...Yoro)
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The function (LUTenc) uses the bilinear interpolation. The LUT for HD and the LUT for
VGA/WVGA are provided electronically in the Excel file attached to this Recommendation.

A

Log (The number of error packets + 1)

Log (The number of packets) -
J.343.1(14)_FB.2

Figure B.2 — A look-up table for VQM computation

B.222 PVSVQM

The PVS VQM (PVQM) is computed as a weighted summation of the blocking score, blurring score,
freezing score and repeating block score as follows:

PVQM = —3.09977 X BlockingScore — 0.9942 X BlurringScore — 1.83274
X FreezingScore — 0.72623 X SameblockScore + 4.175739

For HD, the following adjustment is made to HNRL,,.:
if (Resolution = HDand PVQM > HNR_ . +0.5 and PVQM > 2.7)

HNRL,,, =%(HNR1W +PVQM)

B.2.3 Post-processing

The VQM value computed using encrypted bitstream data and LUT (HNRL, ) is used as input
(vgm,,) for the post-processing in this clause.

First, the green block impairment is reflected as follows:

MIN (vgm,,,1.6) if Greenblk >1.0
vgm, =4 MIN (vgm;,,2.5) if Greenblk > 0.0
vgm;;, otherwise
Second, the frame rate is considered for VGA/WVGA as follows:

MIN (vqm,,3.2) if fps<6
vgm, =< MIN(vgm,,3.5) if fps<10.
vgm, otherwise

Finally, the freeze impairment is reflected as follows:
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fps . . . .
FRZ (11 —| 1— P x fPSyriginarx VideoSec if Resolution =VGA or Resolution =WVGA
FRZtemp = 1:psoriginal
FRZ ial otherwise

FRZ 0y = MIN(10g34(FRZ gp +1.0), 2.3)

.. — MIN (vgm,, 4—log,o(FRZ oy —0.3)x3.8) if FRZ|,q >1.3
Maut = vgm, otherwise

This vgm,,, value is outputted as the final VQM.
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