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Summary 
This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods 
for coding bi-level, continuous-tone grey-scale, palletized color, or continuous-tone colour digital still images. 

This Recommendation | International Standard: 
– specifies decoding processes for converting compressed image data to reconstructed image data; 
– specifies a codestream syntax containing information for interpreting the compressed image data; 
– specifies a file format; 
– provides guidance on encoding processes for converting source image data to compressed image data; 
– provides guidance on how to implement these processes in practice. 

 

 

Source 
ITU-T Recommendation T.800 was prepared by ITU-T Study Group 16 (2001-2004) and approved on 29 August 2002. 
An identical text is also published as ISO/IEC  15444-1. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing 
Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 
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INTERNATIONAL  STANDARD 
ITU-T  RECOMMENDATION 

Information technology – JPEG 2000 image coding system: Core coding system 

1 Scope 

This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods 
for coding bi-level, continuous-tone grey-scale, palletized color, or continuous-tone colour digital still images. 

This Recommendation | International Standard: 
– specifies decoding processes for converting compressed image data to reconstructed image data; 
– specifies a codestream syntax containing information for interpreting the compressed image data; 
– specifies a file format; 
– provides guidance on encoding processes for converting source image data to compressed image data; 
– provides guidance on how to implement these processes in practice. 

2 References 

The following Recommendations and International Standards contain provisions which, through reference in this text, 
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated 
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this 
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent 
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently 
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently 
valid ITU-T Recommendations. 

2.1 Identical Recommendations | International Standards 
– ITU-T Recommendation T.81 (1992) | ISO/IEC 10918-1:1994, Information technology – Digital 

compression and coding of continuous-tone still images: Requirements and guidelines. 
– ITU-T Recommendation T.88 (2000) | ISO/IEC 14492:2001, Information technology – Lossy/lossless 

coding of bi-level images. 
– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange. 
– ISO 8859-15:1999, Information technology – 8-bit single-byte coded graphic character sets – Part 15: 

Latin alphabet No. 9. 
– ITU-T Recommendation T.84 (1996) | ISO/IEC 10918-3:1997, Information technology – Digital 

compression and coding of continuous-tone still images: Extensions. 
– ITU-T Recommendation T.84 (1996)/Amd.1 (1999) | ISO/IEC 10918-3:1997/Amd.1:1999, Information 

technology – Digital compression and coding of continuous-tone still images: Extensions – 
Amendment 1: Provisions to allow registration of new compression types and versions in the SPIFF 
header. 

– ITU-T Recommendation T.86 (1998) | ISO/IEC 10918-4:1999, Information technology – Digital 
compression and coding of continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles, 
SPIFF Tags, SPIFF colour Spaces, APPn Markers, SPIFF, Compression types and Registration 
Authorities (REGAUT). 

– ITU-T Recommendation T.87 (1998) | ISO/IEC 14495-1:2000, Lossless and near-lossless compression 
of continuous-tone still images – Baseline. 

2.2 Additional references 
– Specification ICC.1:1998-09, File format for Color Profiles. 
– IEC 61966-2-1:1999, Multimedia systems and equipment – Colour measurement and management – 

Part 2-1: Colour management – Default RGB colour space – sRGB. 
– W3C REC-xml-19980210, Extensible Markup Language (XML 1.0). 
– IETF RFC 2279 (1998), UTF-8, a transformation format of ISO 10646. 
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– ISO/IEC 11578:1996, Information technology – Open Systems Interconnection – Remote Procedure 
Call. 

– IEC 61966-2-1:1999/Amd.1:2003, Multimedia systems and equipment – Colour measurement and 
management – Part 2-1: Colour management – Default RGB colour space – sRGB. 

3 Definitions 

For the purposes of this Recommendation | International Standard, the following definitions apply. 

3.1 x, floor function: This indicates the largest integer not exceeding x. 

3.2 x, ceiling function: This indicates the smallest integer not exceeded by x. 

3.3 5-3 reversible filter: A particular filter pair used in the wavelet transformation. This reversible filter pair 
has 5 taps in the low-pass and 3 taps in the high-pass. 

3.4 9-7 irreversible filter: A particular filter pair used in the wavelet transformation. This irreversible filter pair 
has 9 taps in the low-pass and 7 taps in the high-pass. 

3.5 AND: Bit wise AND logical operator. 

3.6 arithmetic coder: An entropy coder that converts variable length strings to variable length codes (encoding) 
and visa versa (decoding). 

3.7 auxiliary channel: A channel that is used by the application outside the scope of colourspace conversion. For 
example, an opacity channel or a depth channel would be an auxiliary channel. 

3.8 bit: A contraction of the term "binary digit"; a unit of information represented by a zero or a one. 

3.9 bit-plane: A two dimensional array of bits. In this Recommendation | International Standard a bit-plane refers 
to all the bits of the same magnitude in all coefficients or samples. This could refer to a bit-plane in a component, tile-
component, code-block, region of interest, or other. 

3.10 bit stream: The actual sequence of bits resulting from the coding of a sequence of symbols. It does not 
include the markers or marker segments in the main and tile-part headers or the EOC marker. It does include any packet 
headers and in stream markers and marker segments not found within the main or tile-part headers. 

3.11 big endian: The bits of a value representation occur in order from most significant to least significant. 

3.12 box: A portion of the file format defined by a length and unique box type. Boxes of some types may contain 
other boxes. 

3.13 box contents: Refers to the data wrapped within the box structure. The contents of a particular box are stored 
within the DBox field within the box data structure. 

3.14 box type: Specifies the kind of information that shall be stored with the box. The type of a particular box is 
stored within the TBox field within the box data structure. 

3.15 byte: Eight bits. 

3.16 channel: One logical component of the image. A channel may be a direct representation of one component 
from the codestream, or may be generated by the application of a palette to a component from the codestream. 

3.17 cleanup pass: A coding pass performed on a single bit-plane of a code-block of coefficients. The first pass 
and only coding pass for the first significant bit-plane is a cleanup pass; the third and the last pass of every remaining 
bit-plane is a cleanup pass. 

3.18 codestream: A collection of one or more bit streams and the main header, tile-part headers, and the EOC 
required for their decoding and expansion into image data. This is the image data in a compressed form with all of the 
signalling needed to decode. 

3.19 code-block: A rectangular grouping of coefficients from the same sub-band of a tile-component. 

3.20 code-block scan: The order in which the coefficients within a code-block are visited during a coding pass. 
The code-block is processed in stripes, each consisting of four rows (or all remaining rows if less than four) and 
spanning the width of the code-block. Each stripe is processed column by column from top to bottom and from left to 
right. 

3.21 coder: An embodiment of either an encoding or decoding process. 
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3.22 coding pass: A complete pass through a code-block where the appropriate coefficient values and context are 
applied. There are three types of coding passes: significance propagation pass, magnitude refinement pass and cleanup 
pass. The result of each pass (after arithmetic coding, if selective arithmetic coding bypass is not used) is a stream of 
compressed image data. 

3.23 coefficient: The values that are result of a transformation. 

3.24 colour channel: A channel that functions as an input to a colour transformation system. For example, a red 
channel or a greyscale channel would be a colour channel. 

3.25 component: A two-dimensional array of samples. A image typically consists of several components, for 
instance representing red, green, and blue. 

3.26 compressed image data: Part or all of a bit stream. Can also refer to a collection of bit streams in part or all 
of a codestream. 

3.27 conforming reader: An application that reads and interprets a JP2 file correctly. 

3.28 context: Function of coefficients previously decoded and used to condition the decoding of the present 
coefficient. 

3.29 context label: The arbitrary index used to distinguish different context values. The labels are used as a 
convenience of notation rather than being normative. 

3.30 context vector: The binary vector consisting of the significance states of the coefficients included in a 
context. 

3.31 decoder: An embodiment of a decoding process, and optionally a colour transformation process. 

3.32 decoding process: A process which takes as its input all or part of a codestream and outputs all or part of a 
reconstructed image. 

3.33 decomposition level: A collection of wavelet sub-bands where each coefficient has the same spatial impact or 
span with respect to the source component samples. These include the HL, LH, and HH sub-bands of the same two 
dimensional sub-band decomposition. For the last decomposition level the LL sub-band is also included. 

3.34 delimiting markers and marker segments: Markers and marker segments that give information about 
beginning and ending points of structures in the codestream. 

3.35 discrete wavelet transformation (DWT): A transformation that iteratively transforms one signal into two or 
more filtered and decimated signals corresponding to different frequency bands. This transformation operates on 
spatially discrete samples. 

3.36 encoder: An embodiment of an encoding process. 

3.37 encoding process: A process that takes as its input all or part of a source image data and outputs a 
codestream. 

3.38 file format: A codestream and additional support data and information not explicitly required for the 
decoding of codestream. Examples of such support data include text fields providing titling, security and historical 
information, data to support placement of multiple codestreams within a given data file, and data to support exchange 
between platforms or conversion to other file formats. 

3.39 fixed information markers and fixed information marker segments: Markers and marker segments that 
offer information about the original image. 

3.40 functional markers and functional marker segments: Markers and marker segments that offer information 
about the coding procedures. 

3.41 grid resolution: The spatial resolution of the reference grid, specifying the distance between neighboring 
points on the reference grid. 

3.42 guard bits: Additional most significant bits that have been added to sample data. 

3.43 header: Either a part of the codestream that contains only markers and marker segments (main header and 
tile-part header) or the signalling part of a packet (packet header). 

3.44 HH sub-band: The sub-band obtained by forward horizontal high-pass filtering and vertical high-pass 
filtering. This subband contributes to reconstruction with inverse vertical high-pass filtering and horizontal high-pass 
filtering. 
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3.45 HL sub-band: The sub-band obtained by forward horizontal high-pass filtering and vertical low-pass 
filtering. This sub-band contributes to reconstruction with inverse vertical low-pass filtering and horizontal high-pass 
filtering. 

3.46 image: The set of all components. 

3.47 image area: A rectangular part of the reference grid, registered by offsets from the origin and the extent of the 
reference grid. 

3.48 image area offset: The number of reference grid points down and to the right of the reference grid origin 
where the origin of the image area can be found. 

3.49 image data: The components and component samples making up an image. Image data can refer to either the 
source image data or the reconstructed image data. 

3.50 in-bit-stream markers and in-bit-stream marker segments: Markers and marker segments that provide 
error resilience functionality. 

3.51 informational markers and informational marker segments: Markers and marker segments that offer 
ancillary information. 

3.52 irreversible: A transformation, progression, system, quantization, or other process that, due to systemic or 
quantization error, disallows lossless recovery. An irreversible process can only lead to lossy compression. 

3.53 JP2 file: The name of a file in the file format described in this Recommendation | International Standard. 
Structurally, a JP2 file is a contiguous sequence of boxes. 

3.54 JPEG: Used to refer globally to the encoding and decoding process of the following Recommendations | 
International Standards: 

– ITU-T Rec. T.81 | ISO/IEC 10918-1, Information technology – Digital compression and coding of 
continuous-tone still images: Requirements and guidelines; 

– ITU-T Rec. T.83 | ISO/IEC 10918-2, Information technology – Digital compression and coding of 
continuous-tone still images: Compliance testing; 

– ITU-T Rec. T.84 | ISO/IEC 10918-3, Information technology – Digital compression and coding of 
continuous-tone still images: Extensions; 

– ITU-T Rec. T.84 | ISO/IEC 10918-3/Amd.1, Information technology – Digital compression and coding 
of continuous-tone still images: Extensions – Amendment 1: Provisions to allow registration of new 
compression types and versions in the SPIFF header; 

– ITU-T Rec. T.86 | ISO/IEC 10918-4, Information technology – Digital compression and coding of 
continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles, SPIFF Tags, SPIFF colour 
Spaces, APPn Markers, SPIFF, Compression types and Registration Authorities (REGAUT). 

3.55 JPEG 2000: Used to refer globally to the encoding and decoding processes in this Recommendation | 
International Standard and their embodiment in applications. 

3.56 LH sub-band: The sub-band obtained by forward horizontal low-pass filtering and vertical high-pass 
filtering. This sub-band contributes to reconstruction with inverse vertical high-pass filtering and horizontal low-pass 
filtering. 

3.57 LL sub-band: The sub-band obtained by forward horizontal low-pass filtering and vertical low-pass filtering. 
This sub-band contributes to reconstruction with inverse vertical low-pass filtering and horizontal low-pass filtering. 

3.58 layer: A collection of compressed image data from coding passes of one, or more, code-blocks of a tile-
component. Layers have an order for encoding and decoding that must be preserved. 

3.59 lossless: A descriptive term for the effect of the overall encoding and decoding processes in which the output 
of the decoding process is identical to the input to the encoding process. Distortion-free restoration can be assured. All 
of the coding processes or steps used for encoding and decoding are reversible. 

3.60 lossy: A descriptive term for the effect of the overall encoding and decoding processes in which the output of 
the decoding process is not identical to the input to the encoding process. There is distortion (measured 
mathematically). At least one of the coding processes or steps used for encoding and decoding is irreversible. 

3.61 magnitude refinement pass: A type of coding pass. 

3.62 main header: A group of markers and marker segments at the beginning of the codestream that describe the 
image parameters and coding parameters that can apply to every tile and tile-component. 
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3.63 marker: A two-byte code in which the first byte is hexadecimal FF (0xFF) and the second byte is a value 
between 1 (0x01) and hexadecimal FE (0xFE). 

3.64 marker segment: A marker and associated (not empty) set of parameters. 

3.65 mod: mod(y,x) = z, where z is such that 0 ≤ z < x, and such that y – z is a multiple of x. 

3.66 packet: A part of the bit stream comprising a packet header and the compressed image data from one layer of 
one precinct of one resolution level of one tile-component. 

3.67 packet header: Portion of the packet that contains signalling necessary for decoding that packet. 

3.68 pointer markers and pointer marker segments: Markers and marker segments that offer information about 
the location of structures in the codestream. 

3.69 precinct: A one rectangular region of a transformed tile-component, within each resolution level, used for 
limiting the size of packets. 

3.70 precision: Number of bits allocated to a particular sample, coefficient, or other binary numerical 
representation. 

3.71 progression: The order of a codestream where the decoding of each successive bit contributes to a "better" 
reconstruction of the image. What metrics make the reconstruction "better" is a function of the application. Some 
examples of progression are increasing resolution or improved sample fidelity. 

3.72 quantization: A method of reducing the precision of the individual coefficients to reduce the number of bits 
used to entropy-code them. This is equivalent to division while compressing and multiplying while decompressing. 
Quantization can be achieved by an explicit operation with a given quantization value or by dropping (truncating) 
coding passes from the codestream. 

3.73 raster order: A particular sequential order of data of any type within an array. The raster order starts with the 
top left data point and moves to the immediate right data point, and so on, to the end of the row. After the end of the 
row is reached the next data point in the sequence is the left-most data point immediately below the current row. This 
order is continued to the end of the array. 

3.74 reconstructed image: An image that is the output of a decoder. 

3.75 reconstructed sample: A sample reconstructed by the decoder. This always equals the original sample value 
in lossless coding but may differ from the original sample value in lossy coding. 

3.76 reference grid: A regular rectangular array of points used as a reference for other rectangular arrays of data. 
Examples include components and tiles. 

3.77 reference tile: A rectangular sub-grid of any size associated with the reference grid. 

3.78 region of interest (ROI): A collections of coefficients that are considered of particular relevance by some 
user-defined measure. 

3.79 resolution level: Equivalent to decomposition level with one exception: the LL sub-band is also a separate 
resolution level. 

3.80 reversible: A transformation, progression, system, or other process that does not suffer systemic or 
quantization error and, therefore, allows lossless signal recovery. 

3.81 sample: One element in the two-dimensional array that comprises a component. 

3.82 segmentation symbol: A special symbol coded with a uniform context at the end of each coding pass for 
error resilience. 

3.83 selective arithmetic coding bypass: A coding style where some of the code-block passes are not coded by 
the arithmetic coder. Instead the bits to be coded are appended directly to the bit stream without coding. 

3.84 shift: Multiplication or division of a number by powers of two. 

3.85 sign bit: A bit that indicates whether a number is positive (zero value) or negative (one value). 

3.86 sign-magnitude notation: A binary representation of an integer where the distance from the origin is 
expressed with a positive number and the direction from the origin (positive or negative) is expressed with a separate 
single sign bit. 

3.87 significance propagation pass: A coding pass performed on a single bit-plane of a code-block of 
coefficients. 
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3.88 significance state: State of a coefficient at a particular bit-plane. If a coefficient, in sign-magnitude notation, 
has the first magnitude 1 bit at, or before, the given bit-plane it is considered "significant". If not, it is considered 
"insignificant". 

3.89 source image: An image used as input to an encoder. 

3.90 sub-band: A group of transform coefficients resulting from the same sequence of low-pass and high-pass 
filtering operations, both vertically and horizontally. 

3.91 sub-band coefficient: A transform coefficient within a given sub-band. 

3.92 sub-band decomposition: A transformation of an image tile-component into sub-bands. 

3.93 superbox: A box that itself contains a contiguous sequence of boxes (and only a contiguous sequence of 
boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a superbox. When 
used as part of a relationship between two boxes, the term "superbox" refers to the box which directly contains the other 
box. 

3.94 tile: A rectangular array of points on the reference grid, registered with and offset from the reference grid 
origin and defined by a width and height. The tiles which overlap are used to define tile-components. 

3.95 tile-component: All the samples of a given component in a tile. 

3.96 tile index: The index of the current tile ranging from zero to the number of tiles minus one. 

3.97 tile-part: A portion of the codestream with compressed image data for some, or all, of a tile. The tile-part 
includes at least one, and up to all, of the packets that make up the coded tile. 

3.98 tile-part header: A group of markers and marker segments at the beginning of each tile-part in the 
codestream that describe the tile-part coding parameters. 

3.99 tile-part index: The index of the current tile-part ranging from zero to the number of tile-parts minus one in a 
given tile. 

3.100 transformation: A mathematical mapping from one signal space to another. 

3.101 transform coefficient: A value that is the result of a transformation. 

3.102 XOR: Exclusive OR logical operator. 

4 Abbreviations and symbols 

4.1 Abbreviations 

For the purposes of this Recommendation | International Standard, the following abbreviations apply. 
CCITT International Telegraph and Telephone Consultative Committee, now ITU-T 
ICC International Colour Consortium 
ICT Irreversible Component Transform 
IEC International Electrotechnical Commission 
ISO International Organization for Standardization 
ITTF Information Technology Task Force 
ITU International Telecommunication Union 
ITU-T International Telecommunication Union – Telecommunication Standardization Sector (formerly 

the CCITT) 
JPEG Joint Photographic Experts Group – The joint ISO/ITU committee responsible for developing 

standards for continuous-tone still picture coding. It also refers to the standards produced by this 
committee: ITU-T Rec. T.81 | ISO/IEC 10918-1, ITU-T Rec. T.83 | ISO/IEC 10918-2, ITU-T 
Rec. T.84 | ISO/IEC 10918-3 and ITU-T Rec. T.87 | ISO/IEC 14495. 

JURA JPEG Utilities Registration Authority 
1D-DWT One-dimensional Discrete Wavelet Transformation 
FDWT Forward Discrete Wavelet Transformation 
IDWT Inverse Discrete Wavelet Transformation 
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LSB Least Significant Bit 
MSB Most Significant Bit 
PCS Profile Connection Space 
RCT Reversible Component Transform 
ROI Region Of Interest 
SNR Signal-to-Noise Ratio 
UCS Universal Character Set 
URI Uniform Resource Identifier 
URL Uniform Resource Locator 
UTF-8 UCS Transformation Format 8 
UUID Universal Unique Identifier 
XML Extensible Markup Language 
W3C World-Wide Web Consortium 

4.2 Symbols 

For the purposes of this Recommendation | International Standard, the following symbols apply. 
0x---- Denotes a hexadecimal number 
\nnn A three-digit number preceded by a backslash indicates the value of a single byte within a character 

string, where the three digits specify the octal value of that byte 

εεεεb Exponent of the quantization value for a sub-band defined in QCD and QCC 

µµµµb Mantissa of the quantization value for a sub-band defined in QCD and QCC 
Mb Maximum number of bit-planes coded in a given code-block 
NL Number of decomposition levels as defined in COD and COC 
Rb Dynamic range of a component sample as defined in SIZ 
COC Coding style component marker 
COD Coding style default marker 
COM Comment marker 
CRG Component registration marker 
EPH End of packet header marker 
EOC End of codestream marker 
PLM Packet length, main header marker 
PLT Packet length, tile-part header marker 
POC Progression order change marker 
PPM Packed packet headers, main header marker 
PPT Packed packet headers, tile-part header marker 
QCC Quantization component marker 
QCD Quantization default marker 
RGN Region-of-interest marker 
SIZ Image and tile size marker 
SOC Start of codestream marker 
SOP  Start of packet marker 
SOD Start of data marker 
SOT Start of tile-part marker 
TLM Tile-part lengths marker 
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5 General description 

This Recommendation | International Standard describes an image compression system that allows great flexibility, not 
only for the compression of images, but also for the access into the codestream. The codestream provides a number of 
mechanisms for locating and extracting portions of the compressed image data for the purpose of retransmission, 
storage, display, or editing. This access allows storage and retrieval of compressed image data appropriate for a given 
application, without decoding. 

The division of both the original image data and the compressed image data in a number of ways leads to the ability to 
extract image data from the compressed image data to form a reconstructed image with lower resolution or lower 
precision, or regions of the original image. This allows the matching of a codestream to the transmission channel, 
storage device, or display device, regardless of the size, number of components, and sample precision of the original 
image. The codestream can be manipulated without decoding to achieve a more efficient arrangement for a given 
application. 

Thus, the sophisticated features of this Recommendation | International Standard allow a single codestream to be used 
efficiently by a number of applications. The largest image source devices can provide a codestream that is easily 
processed for the smallest image display device, for example. 

In general, this Recommendation | International Standard deals with three domains: spatial (samples), transformed 
(coefficients), and compressed image data. Some entities (e.g., tile-component) have meaning in all three domains. 
Other entities (e.g., code-block or packet) have meaning in only one domain (e.g., transformed or compressed image 
data, respectively). The splitting of an entity into other entities in the same domain (e.g., component to tile-components) 
is described separately for each of the domains. 

5.1 Purpose 

There are four main elements described in this Recommendation | International Standard: 
– Encoder: An embodiment of an encoding process. An encoder takes as input digital source image data 

and parameter specifications, and by means of a set of procedures generates as output a codestream. 
– Decoder: An embodiment of a decoding process. A decoder takes as input compressed image data and 

parameter specifications, and by means of a specified set of procedures generates as output digital 
reconstructed image data. 

– Codestream syntax: A representation of the compressed image data that includes all parameter 
specifications required by the decoding process. 

– Optional file format: The optional file format is for exchange between application environments. The 
codestream can be used by other file formats or stand-alone without this file format. 

5.2 Codestream 

The codestream is a linear stream of bits from the first bit to the last bit. For convenience, it can be divided into (8-bit) 
bytes, starting with the first bit of the codestream, with the "earlier" bit in a byte viewed as the most significant bit of 
the byte when given e.g., a hexadecimal representation. This byte stream may be divided into groups of consecutive 
bytes. The hexadecimal value representation is sometimes implicitly assumed in the text when describing bytes or group 
of bytes that do not have a "natural" numeric value representation. 

5.3 Coding principles 

The main procedures for this Recommendation | International Standard are shown in Figure 5-1. This shows the 
decoding order only. The compressed image data is already conceptually assigned to portions of the image data. 
Procedures are presented in the Annexes in the order of the decoding process. The coding process is summarized below.  

NOTE 1 – Annexes A through I are considered normative to this Recommendation | International Standard. Certain denoted 
sub-clauses and notes and all examples are informative, however. 

Many images have multiple components. This Recommendation | International Standard has a multiple component 
transformation to decorrelate three components. This is the only function in this Recommendation | International 
Standard that relates components to each other. (See Annex G.) 

The image components may be divided into tiles. These tile-components are rectangular arrays that relate to the same 
portion of each of the components that make up the image. Thus, tiling of the image actually creates tile-components 
that can be extracted or decoded independently of each other. This tile independence provides one of the methods for 
extracting a region of the image. (See Annex B.)  
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The tile-components are decomposed into different decomposition levels using a wavelet transformation. These 
decomposition levels contain a number of sub-bands populated with coefficients that describe the horizontal and 
vertical spatial frequency characteristics of the original tile-components. The coefficients provide frequency information 
about a local area, rather than across the entire image like the Fourier transformation. That is, a small number of 
coefficients completely describe a single sample. A decomposition level is related to the next decomposition level by a 
spatial factor of two. That is, each successive decomposition level of the sub-bands has approximately half the 
horizontal and half the vertical resolution of the previous. Images of lower resolution than the original are generated by 
decoding a selected subset of these sub-bands. (See Annex F.) 

Although there are as many coefficients as there are samples, the information content tends to be concentrated in just a 
few coefficients. Through quantization, the information content of a large number of small-magnitude coefficients is 
further reduced (Annex E). Additional processing by the entropy coder reduces the number of bits required to represent 
these quantized coefficients, sometimes significantly compared to the original image. (See Annexes C, D, and B.) 
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Figure 5-1 – Specification block diagram 

The individual sub-bands of a tile-component are further divided into code-blocks. These rectangular arrays of 
coefficients can be extracted independently. The individual bit-planes of the coefficients in a code-block are coded with 
three coding passes. Each of these coding passes collects contextual information about the bit-plane compressed image 
data. (See Annex D.) An arithmetic coder uses this contextual information, and its internal state, to decode a 
compressed bit stream. (See Annex C.) Different termination mechanisms allow different levels of independent 
extraction of this coding pass compressed image data. 

The bit stream compressed image data created from these coding passes is grouped in layers. Layers are arbitrary 
groupings of coding passes from code-blocks. (See Annex B.) 

NOTE 2 – Although there is great flexibility in layering, the premise is that each successive layer contributes to a higher quality 
image.  

Sub-band coefficients at each resolution level are partitioned into rectangular areas called precincts. (See Annex B.) 

Packets are a fundamental unit of the compressed codestream. A packet contains compressed image data from one layer 
of a precinct of one resolution level of one tile-component. Packets provide another method for extracting a spatial 
region independently from the codestream. These packets are interleaved in the codestream using a few different 
methods. (See Annex B.) 

A mechanism is provided that allows the compressed image data corresponding to regions of interest in the original tile-
components to be coded and placed earlier in the bit stream. (See Annex H.) 

Several mechanisms are provided to allow the detection and concealment of bit errors that might occur over a noisy 
transmission channel. (See D.5 and J.7.) 

The codestream relating to a tile, organized in packets, are arranged in one, or more, tile-parts. A tile-part header, 
comprised of a series of markers and marker segments, contains information about the various mechanisms and coding 
styles that are needed to locate, extract, decode, and reconstruct every tile-component. At the beginning of the entire 
codestream is a main header, comprised of markers and marker segments, that offers similar information as well as 
information about the original image. (See Annex A.) 



ISO/IEC 15444-1:2002 (E) 

10 ITU-T Rec. T.800 (08/2002 E) 

The codestream is optionally wrapped in a file format that allows applications to interpret the meaning of, and other 
information about, the image. The file format may contain data besides the codestream. (See Annex I.)  

In review, procedures that divide the original image are the following: 
– The components of the image are divided into rectangular tiles. The tile-component is the basic unit of 

the original or reconstructed image. 
– Performing the wavelet transformation on a tile-component creates decomposition levels. 
– These decomposition levels are made up of sub-bands of coefficients that describe the frequency 

characteristics of local areas (rather than across the entire tile-component) of the tile-component. 
– The sub-bands of coefficients are quantized and collected into rectangular arrays of code-blocks. 
– Each bit-plane of the coefficients in a code-block are entropy coded in three types of coding passes. 
– Some of the coefficients can be coded first to provide a region of interest. 

At this point the image data is fully converted to compressed image data. The procedures that reassemble these bit 
stream units into the codestream are the following: 

– The compressed image data from the coding passes are collected in layers. 
– Packets are composed compressed image data from one precinct of a single layer of a single resolution 

level of a single tile-component. The packets are the basic unit of the compressed image data. 
– All the packets from a tile are interleaved in one of several orders and placed in one, or more, tile-parts. 
– The tile-parts have a descriptive tile-part header and can be interleaved in some orders. 
– The codestream has a main header at the beginning that describes the original image and the various 

decomposition and coding styles. 
– The optional file format describes the meaning of the image and its components in the context of the 

application. 

6 Encoder requirements  
An encoding process converts source image data to compressed image data. Annexes A, B, C, D, E, F, G, and H 
describe the encoding process. All encoding processes are specified informatively.  

An encoder is an embodiment of the encoding process. In order to conform to this Recommendation | International 
Standard, an encoder shall convert source image data to compressed image data, that conform to the codestream syntax 
specified in Annex A. 

7 Decoder requirements  
A decoding process converts compressed image data to reconstructed image data. Annexes A through H describe and 
specify the decoding process. All decoding processes are normative. 

A decoder is an embodiment of the decoding process. In order to conform to this Recommendation | International 
Standard, a decoder shall convert all, or specific parts of, any compressed image data that conform to the codestream 
syntax specified in Annex A to a reconstructed image. 

There is no normative or required implementation for the encoder or decoder. In some cases, the descriptions use 
particular implementation techniques for illustrative purposes only. 

7.1 Codestream syntax requirements 

Annex A describes the codestream syntax that defines the coded representation of compressed image data for exchange 
between application environments. Any compressed image data shall comply with the syntax and code assignments 
appropriate for the coding processes defined in the Recommendation | International Standard. 

This Recommendation | International Standard does not include a definition of compliance or conformance. The 
parameter values of the syntax described in Annex A are not intended to portray the capabilities required to be 
compliant. 
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7.2 Optional file format requirements 

Annex I describes the optional file format containing metadata about the image in addition to the codestream. This data 
allows, for example, screen display or printing at a specific resolution. The optional file format, when used, shall 
comply with the file format syntax and code assignments appropriate for the coding processes defined in the 
Recommendation | International Standard. 

8 Implementation requirements 

There is no normative or required implementation for this Recommendation | International Standard. In some cases, the 
descriptions use particular implementation techniques for illustrative purposes only. 
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Annex A 
 

Codestream syntax 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining 
an output that alternative implementations shall duplicate. 

This annex specifies the marker and marker segment syntax and semantics defined by this Recommendation | 
International Standard. These markers and marker segments provide codestream information for this Recommendation | 
International Standard. Further, this annex provides a marker and marker segment syntax that is designed to be used in 
future specifications that include this Recommendation | International Standard as a normative reference. 

This Recommendation | International Standard does not include a definition of compliance or conformance. The 
parameter values of the syntax described in this annex are not intended to portray the capabilities required to be 
compliant. 

A.1 Markers, marker segments, and headers 

This Recommendation | International Standard uses markers and marker segments to delimit and signal the 
characteristics of the source image and codestream. This set of markers and marker segments is the minimal 
information needed to achieve the features of this Recommendation | International Standard and is not a file format. A 
minimal file format is offered in Annex I. 

Main and tile-part headers are collections of markers and marker segments. The main header is found at the beginning 
of the codestream. The tile-part headers are found at the beginning of each tile-part (see below). Some markers and 
marker segments are restricted to only one of the two types of headers while others can be found in either. 

Every marker is two bytes long. The first byte consists of a single 0xFF byte. The second byte denotes the specific 
marker and can have any value in the range 0x01 to 0xFE. Many of these markers are already used in ITU-T Rec. T.81 | 
ISO/IEC 10918-1 and ITU-T Rec. T.84 | ISO/IEC 10918-3 and shall be regarded as reserved unless specifically used. 

A marker segment includes a marker and associated parameters, called marker segment parameters. In every marker 
segment the first two bytes after the marker shall be an unsigned value that denotes the length in bytes of the marker 
segment parameters (including the two bytes of this length parameter but not the two bytes of the marker itself). When a 
marker segment that is not specified in the Recommendation | International Standard appears in a codestream, the 
decoder shall use the length parameter to discard the marker segment. 

A.1.1 Types of markers and marker segments 

Six types of markers and marker segments are used: delimiting, fixed information, functional, in-bit stream, pointer, and 
informational. Delimiting markers and marker segments are used to frame the main and tile-part headers and the 
bit-stream data. Fixed information marker segments give required information about the image. The location of these 
marker segments, like delimiting marker and marker segments, is specified. Functional marker segments are used to 
describe the coding functions used. In-bit-stream markers and marker segments are used for error resilience. Pointer 
marker segments provide specific offsets in the bit stream. Informational marker segments provide ancillary 
information. 

A.1.2 Syntax similarity with ITU-T Rec. T.81 | ISO/IEC 10918-1 

The marker and marker segment syntax uses the same construction as defined in ITU-T Rec. T.81 | ISO/IEC 10918-1. 

The marker range 0xFF30 to 0xFF3F is reserved by this Recommendation | International Standard for markers without 
marker segment parameters. Table A.1 shows in which specification these markers and marker segments are defined. 
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Table A.1 – Marker definitions 

Marker code range Standard definition 

0xFF00, 0xFF01, 0xFFFE, 0xFFC0 to 0xFFDF Defined in ITU-T Rec. T.81 | ISO/IEC 10918-1 
0xFFF0 to 0xFFF6 Defined in ITU-T Rec. T.84 | ISO/IEC 10918-3 
0xFFF7 to 0xFFF8 Defined in ITU-T Rec. T.87 | ISO/IEC 14495-1 
0xFF4F to 0xFF6F, 0xFF90 to 0xFF93 Defined in this Recommendation | International Standard 
0xFF30 to 0xFF3F Reserved for definition as markers only (no marker segments) 
 All other values reserved 

A.1.3 Marker and marker segment and codestream rules 
– Marker segments, and therefore the main and tile-part headers, are a multiple of 8 bits (one byte). 

Further, the bit stream data between the headers and before the EOC marker (see A.4.4) are padded to 
also be aligned to a multiple of 8 bits. 

– All marker segments in a tile-part header apply only to the tile to which they belong. 
– All marker segments in the main header apply to the whole image unless specifically overridden by 

markers or marker segments in a tile-part header. 
– Delimiting and fixed information marker and marker segments must appear at specific points in the 

codestream. 
– The marker segments shall correctly describe the image as represented by the codestream. If truncation, 

alteration, or editing of the codestream has been performed, the marker segments shall be updated, if 
necessary. 

– All parameter values in marker segments are big endian. 
– Marker segments can appear in any order in a given header. Exceptions are the delimiting markers and 

marker segments and the fixed information marker segments. 
– All markers with the marker code between 0xFF30 and 0xFF3F have no marker segment parameters. 

They shall be skipped by the decoder. 
– Some marker segments have values assigned to groups of bits within a parameter. In some cases there 

are bits, denoted by "x," that are not assigned a value for any field within a parameter. The codestream 
shall contain a value of zero for all such bits. The decoder shall ignore these bits. 

NOTE – The markers in the range 0xFF30 to 0xFF3F may be used by future extensions. They may or may not be skipped by a 
decoder without ramification. 

A.1.4 Key to graphical descriptions (informative) 

Each marker segment is described in terms of its function, usage, and length. The function describes the information 
contained in the marker segment. The usage describes the logical location and frequency of this marker segment in the 
codestream. The length describes which parameters determine the length of the marker segment. 

These descriptions are followed by a figure that shows the order and relationship of the parameters in the marker 
segment. Figure A.1 shows an example of this type of figure. The marker segments are designated by the three-letter 
code of the marker associated with the marker segment. The parameter symbols have capital letter designations 
followed by the marker's symbol in lower-case letters. A rectangle is used to indicate a parameter's location in the 
marker segment. The width of the rectangle is proportional to the number of bytes of the parameter. A shaded rectangle 
(diagonal stripes) indicates that the parameter is of varying size. Two parameters with superscripts and a grey area 
between indicate a run of several of these parameters.  

T.800_FA-1

16-bit marker
8-bit parameter

32-bit parameter Run of n parameters
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Dmar

Lmar
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Variable-size parameter  

Figure A.1 – Example of the marker segment description figures 
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The figure is followed by a list that describes the meaning of each parameter in the marker segment. If parameters are 
repeated, the length and nature of the run of parameters is defined. As an example, in Figure A.1, the first rectangle 
represents the marker with the symbol MAR. The second rectangle represents the length parameter. Parameters Amar, 
Bmar, Cmar, and Dmar are 8-, 16-, 32-bit and variable length respectively. The notation Emari implies that there are n 
different parameters, Emari, in a row. 

After the list is a table that either describes the allowed parameter values or provides references to other tables that 
describe these values. Tables for individual parameters are provided to describe any parameter without a simple 
numerical value. In some cases these parameters are described by a bit value in a bit field. In this case, an "x" is used to 
denote bits that are not included in the specification of the parameter or sub-parameter in the corresponding row of the 
table.  

Some marker segment parameters are described using the notation "Sxxx" and "SPxxx" (for a marker symbol, XXX). 
The Sxxx parameter selects between many possible states of the SPxxx parameter. According to this selection, the 
SPxxx parameter or parameter list is modified. 

A.2 Information in the marker segments 

Table A.2 lists the markers specified in this Recommendation | International Standard. Table A.3 shows a list of which 
information is provided by which marker and marker segments. 

Table A.2 – List of markers and marker segments 

 Symbol Code Main header Tile-part header 

Delimiting markers and marker segments     
Start of codestream SOC 0xFF4F requireda not allowed 
Start of tile-part SOT 0xFF90 not allowed required 
Start of data SOD 0xFF93 not allowed last marker 
End of codestream EOC 0xFFD9 not allowed not allowed 
Fixed information marker segments     
Image and tile size SIZ 0xFF51 required not allowed 
Functional marker segments     
Coding style default COD 0xFF52 required optional 
Coding style component COC 0xFF53 optional optional 
Region-of-interest RGN 0xFF5E optional optional 
Quantization default QCD 0xFF5C required optional 
Quantization component QCC 0xFF5D optional optional 
Progression order changeb) POC 0xFF5F optional optional 
Pointer marker segments TLM 0xFF55 optional not allowed 
Tile-part lengths PLM 0xFF57 optional not allowed 
Packet length, main header PLT 0xFF58 not allowed optional 
Packet length, tile-part header PPM 0xFF60 optional not allowed 
Packed packet headers, main headerc) PPT 0xFF61 not allowed optional 
Packed packet headers, tile-part headerc) TLM 0xFF55 optional not allowed 
In-bit-stream markers and marker segments     
Start of packet SOP 0xFF91 not allowed not allowed in tile-

part header, optional 
in-bit stream 

End of packet header EPH 0xFF92 optional inside 
PPM marker 

segment 

optional inside PPT 
marker segment or 

in-bit stream 
Informational marker segments     
Component registration CRG 0xFF63 optional not allowed 
Comment COM 0xFF64 optional optional 
a) "required" means the marker or marker segment shall be in this header; "optional" means it may be used. 
b) The POC marker segment is required if there are progression order changes. 
c) Either the PPM or PPT marker segment is required if the packet headers are not distributed in the bit stream. If the PPM 

marker segment is used then PPT marker segments shall not be used, and vice versa. 
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Table A.3 – Information in the marker segments 

Information Marker segment 

Capabilities 
Image area size or reference grid size (height and width) 
Tile size (height and width) 
Number of components 
Component precision 
Component mapping to the reference grid (sub-sampling) 

SIZ 

Tile index 
Tile-part data length 

SOT, TLM 

Progression order 
Number of layers 
Multiple component transformation used 

COD 

Coding style 
Number of decomposition levels 
Code-block size 
Code-block style 
Wavelet transformation 
Precinct size 

COD, COC 

Region-of-interest shift RGN 
No quantization 
Quantization derived 
Quantization expounded 

QCD, QCC 

Progression starting point 
Progression ending point 
Progression order default 

POC 

Error resilience SOP 
End of packet header EPH 
Packet headers PPM, PPT 
Packet lengths PLM, PLT 
Component registration 
Optional information 

CRG 
COM 

A.3 Construction of the codestream 

Figure A.2 shows the construction of the codestream. Figure A.3 shows the main header construction. All of the solid 
lines show required marker segments. The following markers and marker segments are required to be in a specific 
location: SOC, SIZ, SOT, SOD, and EOC. The dashed lines show optional or possibly not required marker segments. 
Figure A.4 shows the construction of the first tile-part header in a given tile. Figure A.5 shows the construction of a tile-
part header other than the first in a tile. 
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Figure A.2 – Construction of the codestream 
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Figure A.3 – Construction of the main header 
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Figure A.4 – Construction of the first tile-part header of a given tile 
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Figure A.5 – Construction of a non-first tile-part header 

The COD and COC marker segments and the QCD and QCC marker segments have hierarchy of usage. This is 
designed to allow tile-components to have dissimilar coding and quantization characteristics with a minimum of 
signalling.  

For example, the COD marker segment is required in the main header. If all components in all the tiles are coded the 
same way, this is all that is required. If there is one component that is coded differently than the others (for example the 
luminance component of an image composed of luminance and chrominance components), then the COC can denote 
that in the main header. If one or more components are coded differently in different tiles, then the COD and COC are 
used in a similar manner to denote this in the tile-part headers. 
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The POC marker segment appearing in the main header is used for all tiles unless a different POC appears in the tile-
part header. 

With the exceptions of the SOC, SOT, SOD, EOC, and SIZ markers and marker segments, the marker segments can 
appear in any order within the respective headers.  

A.4 Delimiting markers and marker segments 

The delimiting marker and marker segments shall be present in all codestreams conforming to this Recommendation | 
International Standard. Each codestream has only one SOC marker, one EOC marker, and at least one tile-part. Each 
tile-part has one SOT and one SOD marker. The SOC, SOD, and EOC are delimiting markers, not marker segments, 
and have no explicit length information or other parameters.  

A.4.1 Start of codestream (SOC) 

Function: Marks the beginning of a codestream specified in this Recommendation | International Standard. 

Usage: Main header. This is the first marker in the codestream. There shall be only one SOC per codestream. 

Length: Fixed.  
SOC: Marker code. 

Table A.4 – Start of codestream parameter values 

Parameter Size (bits) Values 

SOC 16 0xFF4F 

A.4.2 Start of tile-part (SOT) 

Function: Marks the beginning of a tile-part, the index of its tile, and the index of its tile-part. The tile-parts of a given 
tile shall appear in order (see TPsot) in the codestream. However, tile-parts from other tiles may be interleaved in the 
codestream. Therefore, the tile-parts from a given tile may not appear contiguously in the codestream. 

Usage: Every tile-part header. Shall be the first marker segment in a tile-part header. There shall be at least one SOT in 
a codestream. There shall be only one SOT per tile-part. 

Length: Fixed.  

T.800_FA-6
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Figure A.6 – Start of tile-part syntax 

SOT: Marker code. Table A.5 shows the sizes and values of the symbol and parameters for start of tile-
part marker segment. 

Lsot: Length of marker segment in bytes (not including the marker). 
Isot: Tile index. This number refers to the tiles in raster order starting at the number 0. 
Psot: Length, in bytes, from the beginning of the first byte of this SOT marker segment of the tile-part to 

the end of the data of that tile-part. Figure A.16 shows this alignment. Only the last tile-part in the 
codestream may contain a 0 for Psot. If the Psot is 0, this tile-part is assumed to contain all data 
until the EOC marker. 

TPsot: Tile-part index. There is a specific order required for decoding tile-parts; this index denotes the 
order from 0. If there is only one tile-part for a tile, then this value is zero. The tile-parts of this tile 
shall appear in the codestream in this order, although not necessarily consecutively. 

TNsot: Number of tile-parts of a tile in the codestream. Two values are allowed: the correct number of tile-
parts for that tile and zero. A zero value indicates that the number of tile-parts of this tile is not 
specified in this tile-part.  
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Table A.5 – Start of tile-part parameter values 

Parameter Size (bits) Values 

SOT 16 0xFF90 
Lsot 16 10 
Isot 16 0 to 65 534 
Psot 32 0, or 14 to (232 – 1) 

TPsot 8 0 to 254 
TNsot 8 Table A.6 

Table A.6 – Number of tile-parts, TNsot, parameter value 

Value Number of tile-parts 

0 Number of tile-parts of this tile in the codestream is not defined in this header 
1 to 255 Number of tile-parts of this tile in the codestream 

A.4.3 Start of data (SOD) 

Function: Indicates the beginning of bit stream data for the current tile-part. The SOD also indicates the end of a tile-
part header. 

Usage: Every tile-part header. Shall be the last marker in a tile-part header. Bit-stream data between an SOD and the 
next SOT or EOC (end of image) shall be a multiple of 8 bits – the codestream is padded with bits, as needed. There 
shall be at least one SOD in a codestream. There shall be one SOD per tile-part. 

Length: Fixed. 
SOD: Marker code  

Table A.7 – Start of data parameter values 

Parameter Size (bits) Values 

SOD 16 0xFF93 

A.4.4 End of codestream (EOC) 

Function: Indicates the end of the codestream. 
NOTE 1 – This marker shares the same code as the EOI marker in ITU-T Rec. T.81 | ISO/IEC 10918-1. 

Usage: Shall be the last marker in a codestream. There shall be one EOC per codestream. 
NOTE 2 – In the case a file has been corrupted, it is possible that a decoder could extract much useful compressed image data 
without encountering an EOC marker. 

Length: Fixed. 
EOC: Marker code 

Table A.8 – End of codestream parameter values 

Parameter Size (bits) Values 

EOC 16 0xFFD9 

A.5 Fixed information marker segment 

This marker segment describes required information about the image.The SIZ marker segment is required in the main 
header immediately after the SOC marker segment. 
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A.5.1 Image and tile size (SIZ) 

Function: Provides information about the uncompressed image such as the width and height of the reference grid, the 
width and height of the tiles, the number of components, component bit depth, and the separation of component samples 
with respect to the reference grid (see B.2). 

Usage: Main header. There shall be one and only one in the main header immediately after the SOC marker segment. 
There shall be only one SIZ per codestream. 

Length: Variable depending on the number of components. 
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Figure A.7 – Image and tile size syntax 

SIZ:  Marker code. Table A.9 shows the size and parameter values of the symbol and parameters for 
image and tile size marker segment. 

Lsiz: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 

   CsizLsiz ⋅+= 338  (A-1) 

Rsiz: Denotes capabilities that a decoder needs to properly decode the codestream. 
Xsiz: Width of the reference grid. 
Ysiz: Height of the reference grid. 
XOsiz: Horizontal offset from the origin of the reference grid to the left side of the image area. 
YOsiz: Vertical offset from the origin of the reference grid to the top side of the image area. 
XTsiz: Width of one reference tile with respect to the reference grid. 
YTsiz: Height of one reference tile with respect to the reference grid. 
XTOsiz: Horizontal offset from the origin of the reference grid to the left side of the first tile. 
YTOsiz: Vertical offset from the origin of the reference grid to the top side of the first tile. 
Csiz: Number of components in the image. 
Ssizi: Precision (depth) in bits and sign of the ith component samples. The precision is the precision of the 

component samples before DC level shifting is performed (i.e., the precision of the original 
component samples before any processing is performed). If the component sample values are 
signed, then the range of component sample values is –2(Ssiz+1 AND 0x7F)–1 ≤ component sample value 
≤ 2(Ssiz+1 AND 0x7F)–1 – 1. There is one occurrence of this parameter for each component. The order 
corresponds to the component's index, starting with zero. 

XRsizi: Horizontal separation of a sample of ith component with respect to the reference grid. There is one 
occurrence of this parameter for each component.  

YRsizi: Vertical separation of a sample of ith component with respect to the reference grid. There is one 
occurrence of this parameter for each component. 
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Table A.9 – Image and tile size parameter values 

Parameter Size (bits) Values 

SIZ 16 0xFF51 
Lsiz 16 41 to 49 190 
Rsiz 16 Table A.10 
Xsiz 32 1 to (232 – 1) 
Ysiz 32 1 to (232 – 1) 

XOsiz 32 0 to (232 – 2) 
YOsiz 32 0 to (232 – 2) 
XTsiz 32 1 to (232 – 1) 
YTsiz 32 1 to (232 – 1) 

XTOsiz 32 0 to (232 – 2) 
YTOsiz 32 0 to (232 – 2) 

Csiz 16 1 to 16 384 
Ssizi 8 Table A.11 

XRsizi 8 1 to 255 
YRsizi 8 1 to 255 

Table A.10 – Capability Rsiz parameter 

Value (bits) 

MSB LSB 
Capability 

0000 0000 0000 0000 Capabilities specified in this Recommendation | International Standard only 
0000 0000 0000 0001 Codestream restricted as described for Profile 0 from Table A.45 
0000 0000 0000 0010 Codestream restricted as described for Profile 1 from Table A.45 
 All other values reserved 

Table A.11 – Component Ssiz parameter 

Value (bits) 

MSB LSB 
Component sample precision 

x000 0000 
to  

x010 0101 

Component sample bit depth = value + 1. From 1 bit deep through 38 bits deep respectively 
(counting the sign bit, if appropriate)a), RI 

0xxx xxxx Component sample values are unsigned values 
1xxx xxxx Component sample values are signed values 

 All other values reserved 
a) The component sample precision is limited by the number of guard bits, quantization, growth of coefficients at 

each decomposition level and the number of coding passes that can be signalled. Not all combinations of 
coding styles will allow the coding of 38-bit samples. 

A.6 Functional marker segments 

These marker segments describe the functions used to code the entire tile, if found in the tile-part header, or image, if 
found in the main header. 

A.6.1 Coding style default (COD) 

Function: Describes the coding style, number of decomposition levels, and layering that is the default used for 
compressing all components of an image (if in the main header) or a tile (if in the tile-part header). The parameter 
values can be overridden for an individual component by a COC marker segment in either the main or tile-part header. 
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Usage: Main and first tile-part header of a given tile. Shall be one and only one in the main header. Additionally, there 
may be at most one for each tile. If there are multiple tile-parts in a tile, and this marker segment is present, it shall be 
found only in the first tile-part (TPsot = 0). 

When used in the main header, the COD marker segment parameter values are used for all tile-components that do not 
have a corresponding COC marker segment in either the main or tile-part header. When used in the tile-part header it 
overrides the main header COD and COCs and is used for all components in that tile without a corresponding COC 
marker segment in the tile-part. Thus, the order of precedence is the following: 

Tile-part COC > Tile-part COD > Main COC > Main COD 

where the "greater than" sign, >, means that the greater overrides the lessor marker segment. 

Length: Variable depending on the value of Scod.  

T.800_FA-8
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Figure A.8 – Coding style default syntax 

COD: Marker code. Table A.12 shows the size and values of the symbol and parameters for coding style, 
default marker segment. 

Lcod: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 

  






+
=

ecinctsdefined_pr-userlevels ompositionnumber_dec13
ecinctsmaximum_pr12Lcod  (A-2) 

  where maximum_precincts and user-defined_precincts are indicated in the Scod parameter and 
number_decomposition_levels are indicated in the SPcod parameter. 

Scod: Coding style for all components. Table A.13 shows the value for the Scod parameter. 
SGcod: Parameters for coding style designated in Scod. The parameters are independent of components and 

are designated, in order from top to bottom, in Table A.14. The coding style parameters within the 
SGcod field appear in the sequence shown in Figure A.9. 

SPcod: Parameters for coding style designated in Scod. The parameters relate to all components and are 
designated, in order from top to bottom, in Table A.15. The coding style parameters within the 
SPcod field appear in the sequence shown in Figure A.9.  

Table A.12 – Coding style default parameter values 

Parameter Size (bits) Values 

COD 16 0xFF52 
Lcod 16 12 to 45 
Scod 8 Table A.13 

SGcod 32 Table A.14 
SPcod variable Table A.15 
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Table A.13 – Coding style parameter values for the Scod parameter 

Value (bits) 

MSB LSB 
Coding style 

xxxx xxx0 Entropy coder, precincts with PPx = 15 and PPy = 15 
xxxx xxx1 Entropy coder with precincts defined below 
xxxx xx0x No SOP marker segments used 
xxxx xx1x SOP marker segments may be used 
xxxx x0xx No EPH marker used 
xxxx x1xx EPH marker shall be used 

 All other values reserved 

Table A.14 – Coding style parameter values of the SGcod parameter 

Parameters (in order) Size (bits) Values Meaning of SGcod values 

Progression order 8 Table A.16 Progression order 
Number of layers 16 1 to 65 535 Number of layers 
Multiple component 
transformation 8 Table A.17 Multiple component transformation usage 

T.800_FA-9
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Figure A.9 – Coding style parameter diagram of the SGcod and SPcod parameters 

Table A.15 – Coding style parameter values of the SPcod and SPcoc parameters 

Parameters (in order) Size (bits) Values Meaning of SPcod values 

Number of 
decomposition levels 

8 0 to 32 Number of decomposition levels, NL, Zero implies no transformation. 

Code-block width 8 Table A.18 Code-block width exponent offset value, xcb 
Code-block height 8 Table A.18 Code-block height exponent offset value, ycb 
Code-block style 8 Table A.19 Style of the code-block coding passes 
Transformation 8 Table A.20 Wavelet transformation used 
Precinct size variable Table A.21 If Scod or Scoc = xxxx xxx0, this parameter is not presen; otherwise 

this indicates precinct width and height. The first parameter (8 bits) 
corresponds to the NLLL sub-band. Each successive parameter 
corresponds to each successive resolution level in order. 
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Table A.16 – Progression order for the SGcod, SPcoc, and Ppoc parameters 

Value (bits) 

MSB LSB 
Progression order 

0000 0000 Layer-resolution level-component-position progression 
0000 0001 Resolution level-layer-component-position progression 
0000 0010 Resolution level-position-component-layer progression 
0000 0011 Position-component-resolution level-layer progression 
0000 0100 Component-position-resolution level-layer progression 

 All other values reserved 

Table A.17 – Multiple component transformation for the SGcod parameters 

Value (bits) 

MSB LSB 
Multiple component transformation type 

0000 0000 No multiple component transformation specified 
0000 0001 Component transformation used on components 0, 1, 2 for coding efficiency (see G.2). Irreversible 

component transformation used with the 9-7 irreversible filter. Reversible component transformation 
used with the 5-3 reversible filter 

 All other values reserved 

Table A.18 – Width or height exponent of the code-blocks for the SPcod and SPcoc parameters 

Value (bits) 

MSB LSB 
Code-block width and height 

xxxx 0000 
to 

xxxx 1000 

Code-block width and height exponent offset value xcb = value + 2 or ycb = value + 2. The code-
block width and height are limited to powers of two with the minimum size being 22 and the maximum 
being 210. Further, the code-block size is restricted so that xcb + ycb ≤ 12. 

 All other values reserved 

Table A.19 – Code-block style for the SPcod and SPcoc parameters 

Value (bits) 

MSB LSB 
Code-block style 

xxxx xxx0 
xxxx xxx1 

No selective arithmetic coding bypass 
Selective arithmetic coding bypass 

xxxx xx0x 
xxxx xx1x 

No reset of context probabilities on coding pass boundaries 
Reset context probabilities on coding pass boundaries 

xxxx x0xx 
xxxx x1xx 

No termination on each coding pass 
Termination on each coding pass 

xxxx 0xxx 
xxxx 1xxx 

No vertically causal context 
Vertically causal context 

xxx0 xxxx 
xxx1 xxxx 

No predictable termination 
Predictable termination 

xx0x xxxx 
xx1x xxxx 

No segmentation symbols are used 
Segmentation symbols are used 

 All other values reserved 
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Table A.20 – Transformation for the SPcod and SPcoc parameters 

Value (bits) 

MSB LSB 
Transformation type 

0000 0000 9-7 irreversible filter 
0000 0001 5-3 reversible filter 

 All other values reserved 

Table A.21 – Precinct width and height for the SPcod and SPcoc parameters 

Value (bits) 

MSB LSB 
Precinct size 

xxxx 0000 
to 

xxxx 1111 

4 LSBs are the precinct width exponent, PPx = value. This value may only equal zero at the 
resolution level corresponding to the NLLL band. 

0000 xxxx 
to 

1111 xxxx 

4 MSBs are the precinct height exponent PPy = value. This value may only equal zero at the 
resolution level corresponding to the NLLL band. 

A.6.2 Coding style component (COC) 

Function: Describes the coding style and number of decomposition levels used for compressing a particular 
component. 

Usage: Main and first tile-part header of a given tile. Optional in both the main and tile-part headers. No more than one 
per any given component may be present in either the main or tile-part headers. If there are multiple tile-parts in a tile, 
and this marker segment is present, it shall be found only in the first tile-part (TPsot = 0). 

When used in the main header, it overrides the main COD marker segment for the specific component. When used in 
the tile-part header, it overrides the main COD, main COC, and tile COD for the specific component. Thus, the order of 
precedence is the following: 

Tile-part COC > Tile-part COD > Main COC > Main COD 

where the "greater than" sign, >, means that the greater overrides the lessor marker segment. 

Length: Variable depending on the value of Scoc.  
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Figure A.10 – Coding style component syntax 

COC: Marker code. Table A.22 shows the size and values of the symbol and parameters for coding style 
component marker segment. 

Lcoc: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 
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257CsizANDecinctsdefined_pruser_levelsompositionnumber_dec11
257CsizANDprecincts_defineduser_levelsompositionnumber_dec10

257CsizANDecinctsmaximum_pr10
257CsizANDecinctsmaximum_pr9

Lcoc  (A-3) 

  where maximum_precincts and user-defined_precincts are indicated in the Scoc parameter and 
number_decomposition_levels is indicated in the SPcoc parameter. 

Ccoc: The index of the component to which this marker segment relates. The components are indexed 0, 1, 
2, etc. 
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Scoc: Coding style for this component. Table A.23 shows the value for each Scoc parameter. 
SPcoc: Parameters for coding style designated in Scoc. The parameters are designated, in order from top to 

bottom, in Table A.15. The coding style parameters within the SPcoc field appear in the sequence 
shown in Figure A.11.  

T.800_FA-11

A
B
C
D
E
Fi through Fn

A B C D E Fi Fn

Number of decomposition levels
Code-block width
Code-block height
Code-block style
Transformation
Precinct size  

Figure A.11 – Coding style parameter diagram of the SPcoc parameters 

Table A.22 – Coding style component parameter values 

Parameter Size (bits) Values 

COC 16 0xFF53 
Lcoc 16 9 to 43 
Ccoc 8 

16 
0 to 255; if Csiz < 257 
0 to 16 383; Csiz ≥ 257 

Scoc 8 Table A.23 
SPcoci variable Table A.15 

Table A.23 – Coding style parameter values for the Scoc parameter 

Value (bits) 

MSB LSB 
Coding style 

0000 0000 Entropy coder with maximum precinct values 
PPx = PPy = 15 

0000 0001 Entropy coder with precinct values defined below 
 All other values reserved 

A.6.3 Region of interest (RGN) 

Function: Signals the presence of an ROI in the codestream. 

Usage: Main and first tile-part header of a given tile. If used in the main header, it refers to the ROI scaling value for 
one component in the whole image, valid for all tiles except those with an RGN marker segment. 

When used in the tile-part header, the scaling value is valid only for one component in that tile. There may be at most 
one RGN marker segment for each component in either the main or tile-part headers. The RGN marker segment for a 
particular component which appears in a tile-part header overrides any marker for that component in the main header, 
for the tile in which it appears. If there are multiple tile-parts in a tile, then this marker segment shall be found only in 
the first tile-part header. 

Length: Variable.  
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Figure A.12 – Region-of-interest syntax 
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RGN: Marker code. Table A.24 shows the size and values of the symbol and parameters for 
region-of-interest marker segment. 

Lrgn: Length of marker segment in bytes (not including the marker). 
Crgn: The index of the component to which this marker segment relates. The components are indexed 0, 1, 

2, etc. 
Srgn: ROI style for the current ROI. Table A.25 shows the value for the Srgn parameter. 
SPrgn: Parameter for ROI style designated in Srgn.  

Table A.24 – Region-of-interest parameter values 

Parameter Size (bits) Values 

RGN 16 0xFF5E 
Lrgn 16 5 to 6 
Crgn 8 

16 
0 to 255; if Csiz < 257 
0 to 16 383; Csiz ≥ 257 

Srgn 8 Table A.25 
SPrgn 8 Table A.26 

Table A.25 – Region-of-interest parameter values for the Srgn parameter 

Values ROI style (Srgn) 

0 Implicit ROI (maximum shift) 
 All other values reserved 

Table A.26 – Region-of-interest values from SPrgn parameter (Srgn = 0) 

Parameters (in order) Size (bits) Values Meaning of SPrgn value 

Implicit ROI shift 8 0 to 255 Binary shifting of ROI coefficients above the background 

A.6.4 Quantization default (QCD) 

Function: Describes the quantization default used for compressing all components not defined by a QCC marker 
segment. The parameter values can be overridden for an individual component by a QCC marker segment in either the 
main or tile-part header.  

Usage: Main and first tile-part header of a given tile. Shall be one and only one in the main header. May be at most one 
for all tile-part headers of a tile. If there are multiple tile-parts for a tile, and this marker segment is present, it shall be 
found only in the first tile-part (TPsot = 0). 

When used in the tile-part header it overrides the main QCD and the main QCC for the specific component. Thus, the 
order of precedence is the following: 

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD 

where the "greater than" sign, >, means that the greater overrides the lessor marker segment. 

Length: Variable depending on the number of quantized elements.  
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Figure A.13 – Quantization default syntax 

QCD: Marker code. Table A.27 shows the size and values of the symbol and parameters for quantization 
default marker segment. 



ISO/IEC 15444-1:2002 (E) 

  ITU-T Rec. T.800 (08/2002 E) 29 

Lqcd: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 

  






⋅+

⋅+
=

expoundedntization_scalar_qua_levelsompositionnumber_dec65
derivedntization_scalar_qua5

ationno_quantiz_levelsompositionnumber_dec34
Lqcd  (A-4) 

 where number_decomposition_levels is defined in the COD and COC marker segments, and 
no_quantization, scalar_quantization_derived, or scalar_quantization_expounded is signalled in the 
Sqcd parameter. 

 NOTE – The Lqcd can be used to determine how many quantization step sizes are present in the marker segment. However, 
there is not necessarily a correspondence with the number of sub-bands present because the sub-bands can be truncated with 
no requirement to correct this marker segment. 

Sqcd: Quantization style for all components. 
SPqcdi: Quantization step size value for the ith sub-band in the defined order (see F.3.1). The number of 

parameters is the same as the number of sub-bands in the tile-component with the greatest number 
of decomposition levels.  

Table A.27 – Quantization default parameter values 

Parameter Size (bits) Values 

QCD 16 0xFF5C 
Lqcd 16 4 to 197 
Sqcd 8 Table A.28 

SPgcdi variable Table A.28 

Table A.28 – Quantization default values for the Sqcd and Sqcc parameters 

Value (bits) 

MSB LSB 
Quantization style 

SPqcd or 
SPqcc size 

(bits) 

SPqcd or 
SPqcc usage 

xxx0 0000 No quantization 8 Table A.29 
xxx0 0001 Scalar derived (values signalled for NLLL sub-band only). Use 

Equation (E-5) 
16 Table A.30 

xxx0 0010 Scalar expounded (values signalled for each sub-band). There are as 
many step sizes signalled as there are sub-bands 

16 Table A.30 

000x xxxx 
to 

111x xxxx 

Number of guard bits: 0 to 7   

 All other values reserved   

Table A.29 – Reversible step size values for the SPqcd and SPqcc parameters (reversible transform only) 

Value (bits) 

MSB LSB 
Reversible step size values 

0000 0xxx 
to 

1111 1xxx 

Exponent, εb, of the reversible dynamic range signalled for each 
sub-band (see Equation (E-5)) 

 All other values reserved 
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Table A.30 – Quantization values for the SPqcd and SPqcc parameters (irreversible transformation only) 

Value (bits) 

MSB LSB 
Quantization step size values 

xxxx x000 0000 0000 
to 

xxxx x111 1111 1111 

Mantissa, µb, of the quantization step size value (see Equation (E-3)) 

0000 0xxx xxxx xxxx 
to 

1111 1xxx xxxx xxxx 

Exponent, εb, of the quantization step size value (see Equation (E-3)) 

A.6.5 Quantization component (QCC) 

Function: Describes the quantization used for compressing a particular component. 

Usage: Main and first tile-part header of a given tile. Optional in both the main and tile-part headers. No more than one 
per any given component may be present in either the main or tile-part headers. If there are multiple tile-parts in a tile, 
and this marker segment is present, it shall be found only in the first tile-part (TPsot = 0). 

Optional in both the main and tile-part headers. When used in the main header, it overrides the main QCD marker 
segment for the specific component. When used in the tile-part header, it overrides the main QCD, main QCC, and tile 
QCD for the specific component. Thus, the order of precedence is the following: 

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD 

where the "greater than" sign, >, means that the greater overrides the lessor marker segment. 

Length: Variable depending on the number of quantized elements.  
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Figure A.14 – Quantization component syntax 

QCC: Marker code. Table A.31 shows the size and values of the symbol and parameters for quantization 
component marker segment. 

Lqcc: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 
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257CsizANDexpoundedntization_scalar_qua_levelsompositionnumber_dec67
257CsizANDderivedntization_scalar_qua7
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257CsizANDexpoundedntization_scalar_qua_levelsompositionnumber_dec66

257CsizANDderivedntization_scalar_qua6
257CsizANDationno_quantiz_levelsompositionnumber_dec35

Lqcc  (A-5) 

where number_decomposition_levels is defined in the COD and COC marker segments, and no_quantization, 
scalar_quantization_derived, or scalar_quantization_expounded is signalled in the Sqcc parameter. 

 NOTE – The Lqcc can be used to determine how many step sizes are present in the marker segment. However, there is not 
necessarily a correspondence with the number of sub-bands present because the sub-bands can be truncated with no 
requirement to correct this marker segment. 

Cqcc: The index of the component to which this marker segment relates. The components are indexed 0, 1, 
2, etc. (either 8 or 16 bits depending on Csiz value). 

Sqcc: Quantization style for this component. 
SPqcci: Quantization value for each sub-band in the defined order (see F.3.1). The number of parameters is 

the same as the number of sub-bands in the tile-component with the greatest number of 
decomposition levels.  
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Table A.31 – Quantization component parameter values 

Parameter Size (bits) Values 

QCC 16 0xFF5D 
Lqcc 16 5 to 199 
Cqcc 8 

16 
0 to 255; if Csiz < 257 
0 to 16 383; Csiz ≥ 257 

Sqcc 8 Table A.28 
SPqcci variable Table A.28 

A.6.6 Progression order change (POC) 

Function: Describes the bounds and progression order for any progression order other than specified in the COD 
marker segments in the codestream. 

Usage: Main and tile-part headers. At most one POC marker segment may appear in any header. However, several 
progressions can be described with one POC marker segment. If a POC marker segment is used in the main header, it 
overrides the progression order in the main and tile COD marker segments. If a POC is used to describe the progression 
of a particular tile, a POC marker segment must appear in the first tile-part header of that tile. Thus, the progression 
order of a given tile is determined by the presence of the POC or the values of the COD in the following order of 
precedence: 

Tile-part POC > Main POC > Tile-part COD > Main COD 

where the "greater than" sign, >, means that the greater overrides the lessor marker segment. 

In the case where a POC marker segment is used, the progression of every packet in the codestream (or for that tile of 
the codestream) shall be defined in one or more POC marker segments. Each progression order is described in only one 
POC marker segment and shall be described in any tile-part header before any packets of that progression are found. 

Length: Variable depending on the number of different progressions. 
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Figure A.15 – Progression order change tile syntax 

POC:  Marker value. Table A.32 shows the size and values of the symbol and parameters for 
progression order change marker segment. 

Lpoc:  Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 
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
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=
257Csizerder_changgression_onumber_pro92
257Csizerder_changgression_onumber_pro72

Lpoc  (A-6) 

  where the number_progression_order_changes is encoder defined. 
RSpoci:  Resolution level index (inclusive) for the start of a progression. One value for each progression 

change in this tile or tile-part. The number of progression changes can be derived from the 
length of the marker segment. 

CSpoci:  Component index (inclusive) for the start of a progression. The components are indexed 0, 1, 2, 
etc. (either 8 or 16 bits depending on Csiz value). One value for each progression change in 
this tile or tile-part. The number of progression changes can be derived from the length of the 
marker segment. 
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LYEpoci: Layer index (exclusive) for the end of a progression. The layer index always starts at zero for 
every progression. Packets that have already been included in the codestream are not included 
again. One value for each progression change in this tile or tile-part. The number of 
progression changes can be derived from the length of the marker segment. 

REpoci:  Resolution Level index (exclusive) for the end of a progression. One value for each 
progression change in this tile or tile-part. The number of progression changes can be derived 
from the length of the marker segment. 

CEpoci:  Component index (exclusive) for the end of a progression. The components are indexed 0, 1, 2, 
etc. (either 8 or 16 bits depending on Csiz value). One value for each progression change in 
this tile or tile-part. The number of progression changes can be derived from the length of the 
marker segment. 

Ppoci:  Progression order. One value for each progression change in this tile or tile-part. The number 
of progression changes can be derived from the length of the marker segment.  

Table A.32 – Progression order change, tile parameter values 

Parameter Size (bits) Values 

POC 16 0xFF5F 
Lpoc 16 9 to 65 535 

RSpoci 8 0 to 32 
CSpoci 8 

16 
0 to 255; if Csiz < 257 
0 to 16 383; Csiz ≥ 257 

LYEpoci 16 1 to 65 535 
REpoci 8 (RSpoci + 1) to 33 
CEpoci 8 

16 
(CSpoci + 1) to 255, 0; if Csiz < 257 
(CSpoci + 1) to 16 384, 0; Csiz ≥ 257 

(0 is interpreted as 256) 
Ppoci 8 Table A.16 

A.7 Pointer marker segments 

Pointer marker segments either provide a length or pointer into the codestream.The TLM marker segment describes the 
length of the tile-parts. It has the same length information as the SOT marker segment. The PLM or PLT marker 
segment describes the length of the packets. 

NOTE – Having the pointer marker segments all occur in the main header allows direct access into the bit-stream data. Having 
the pointer information in the tile-part headers removes the burden on the encoder of rewinding to store the information. 

The TLM (Ptlm) or the SOT (Psot) parameters point from the beginning of the current tile-part's SOT marker segment 
to the end of the bit-stream data in that tile-part. Because tile-parts are required to be a multiple of 8 bits, these values 
are always a byte length. Figure A.16 shows the length of a tile-part. 

The PLM or PLT marker segments are optional. The PLM marker segment is used in the main header and the PLT 
marker segments are used in tile-part headers. The PLM and PLT marker segments describe the lengths of each packet 
in the codestream.  
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Figure A.16 – Tile-part lengths 

A.7.1 Tile-part lengths (TLM) 

Function: Describes the length of every tile-part in the codestream. Each tile-part's length is measured from the first 
byte of the SOT marker segment to the end of the bit-stream data of that tile-part. The value of each individual tile-part 
length in the TLM marker segment is the same as the value in the corresponding Psot in the SOT marker segment. 
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Usage: Main header. Optional use in the main header only. There may be multiple TLM marker segments in the main 
header. 

Length: Variable depending on the number of tile-parts in the codestream. 
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Figure A.17 – Tile part length syntax 

TLM: Marker code. Table A.33 shows the size and values of the symbol and parameters for the tile-part 
length marker segment. 

Ltlm: Length of marker segment in bytes (not including the marker). The value of this parameter is 
determined by the following equation: 

  














==⋅+
==⋅+
==⋅+
==⋅+
==⋅+
==⋅+

=

1SPAND2ST_segment_in_markertile_partsnumber_of_64
1SPAND1ST_segment_in_markertile_partsnumber_of_54
1SPAND0ST_segment_in_markertile_partsnumber_of_44
0SPAND2ST_segment_in_markertile_partsnumber_of_44
0SPAND1ST_segment_in_markertile_partsnumber_of_34
0SPAND0ST_segment_in_markertile_partsnumber_of_24

Ltlm  (A-7) 

  where number_of_tile-parts_in_marker_segment is the number of tile-part lengths that are denoted 
in this marker segment; ST and SP are signalled by Stlm parameter. 

Ztlm: Index of this marker segment relative to all other TLM marker segments present in the current 
header. The sequence of (Ttlmi, Ptlmi) pairs from this marker segment is concatenated, in order of 
increasing Ztlm, with the sequences of pairs from other marker segments. The jth entry in the 
resulting list contains the tile index and tile-part length pair for the jth tile-part appearing in the 
codestream. 

Stlm: Size of the Ttlm and Ptlm parameters. 
Ttlmi: Tile index of the ith tile-part. Either none or one value for every tile-part. The number of tile-parts 

in each tile can be derived from this marker segment (or the concatenated list of all such markers) or 
from a non-zero TNsot parameter, if present. 

Ptlmi: Length, in bytes, from the beginning of the SOT marker of the ith tile-part to the end of the bit 
stream data for that tile-part. One value for every tile-part.  

Table A.33 – Tile-part length parameter values 

Parameter Size (bits) Values 

TLM 16 0xFF55 
Ltlm 16 6 to 65 535 
Ztlm 8 0 to 255 
Stlm 8 Table A.34 
Ttlmi 0 if ST = 0 

8 if ST = 1 
16 if ST = 2 

tiles in order 
0 to 254 

0 to 65 534 
Ptlmi 16 if SP = 0 

32 if SP = 1 
14 to 65 535 
14 to (232– 1) 
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Table A.34 – Size parameters for Stlm 

Value (bits) 

MSB LSB 
Parameter size 

xx00 xxxx ST = 0; Ttlm parameter is 0 bits, only one tile-part per tile and the tiles are in 
index order without omission or repetition 

xx01 xxxx ST = 1; Ttlm parameter 8 bits 
xx10 xxxx ST = 2; Ttlm parameter 16 bits 
x0xx xxxx SP = 0; Ptlm parameter 16 bits 
x1xx xxxx SP = 1; Ptlm parameter 32 bits 

 All other values reserved 

A.7.2 Packet length, main header (PLM) 

Function: A list of packet lengths in the tile-parts for every tile-part in order. 

Usage: Main header. There may be multiple PLM marker segments. Both the PLM and PLT marker segments are 
optional and can be used together or separately. 

Length: Variable depending on the number of tile-parts in the image and the number of packets in each tile-part.  
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Figure A.18 – Packets length, main header syntax 

PLM: Marker code. Table A.35 shows the size and values of the symbol and parameters for the packet 
length, main header marker segment. 

Lplm: Length of marker segment in bytes (not including the marker).  
Zplm: Index of this marker segment relative to all other PLM marker segments present in the current 

header. The sequence of (Nplmi, Iplmi) parameters from this marker segment is concatenated, in 
order of increasing Zplm, with the sequences of parameters from other marker segments. The kth 
entry in the resulting list contains the number of bytes and packet header pair for the kth tile-part 
appearing in the codestream. 

 Every marker segment in this series shall end with a completed packet header length. However, the 
series of Iplm parameters described by the Nplm does not have to be complete in a given marker 
segment. Therefore, it is possible that the next PLM marker segment will not have a Nplm 
parameter after Zplm, but the continuation of the Iplm series from the last PLM marker segment. 

Nplmi: Number of bytes of Iplm information for the ith tile-part in the order found in the codestream. One 
value for each tile-part. If a codestream contains one, or more, tile-parts exceeding the limitations of 
PLM markers, these markers shall not be used. 

 NOTE – This value is expressed with an 8-bit number limiting the number of Iplm bytes to 255 and the number of packets in 
a tile-part to 255, or less. This is not a restriction on the number of packets that can be in a tile-part. It is merely a limit on this 
marker segment's ability to describe the packets in a tile-part.  

Iplmij:  Length of the jth packet in the ith tile-part. If packet headers are stored with the packet, this length 
includes the packet header. If packet headers are stored in PPM or PPT, this length does not include 
the packet header length. One range of values for each tile-part. One value for each packet in the 
tile. 
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Table A.35 – Packets length, main header parameter values 

Parameter Size (bits) Values 

PLM 16 0xFF57 
Lplm 16 4 to 65 535 
Zplm 8 0 to 255 
Nplmi 8 0 to 255 
Iplmij variable Table A.36 

Table A.36 – Iplm, Iplt list of packet lengths 

Parameters 
(in order) Size (bits) Values Meaning of Iplm or Iplt values 

Packet length 8 bits repeated 
as necessary 

0xxx xxxx 
1xxx xxxx 
x000 0000 

to 
x111 1111 

Last 7 bits of packet length, terminate numbera) 
Continue readingb) 
7 bits of packet length 

a) These are the last 7 bits that make up the packet length.  
b) These are not the last 7 bits that make up the packet length. Instead, these 7 bits are a portion of those that make up the 

packet length. The packet length has been broken into 7-bit segments which are sent in order from the most significant 
segment to the least significant segment. Furthermore, the bits in the most significant segment are right justified to the byte 
boundary. For example, a packet length of 128 is signalled as 1000 0001 0000 0000, while a length of 512 is signalled as 
1000 0100 0000 0000. 

A.7.3 Packet length, tile-part header (PLT) 

Function: A list of packet lengths in the tile-part. 

Usage: Tile-part headers. There may be multiple PLT marker segments per tile. Both the PLM and PLT marker 
segments are optional and can be used together or separately. Shall appear in any tile-part header before the packets 
whose lengths are described herein. 

Length: Variable depending on the number of packets in each tile-part. 
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Figure A.19 – Packet length, tile-part header syntax 

PLT: Marker code. Table A.37 shows the size and values of the symbol and parameters for the packet 
length, tile-part header marker segment. 

Lplt: Length of marker segment in bytes (not including the marker). 
Zplt: Index of this marker segment relative to all other PLT marker segments present in the current 

header. The sequence of (Iplti) parameters from this marker segment is concatenated, in order of 
increasing Zplt, with the sequences of parameters from other marker segments. Every marker 
segment in this series shall end with a completed packet header length.  

Iplmi:  Length of the ith packet. If packet headers are stored with the packet, this length includes the packet 
header. If packet headers are stored in PPM or PPT, this length does not include the packet header 
lengths. 
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Table A.37 – Packet length, tile-part headers parameter values 

Parameter Size (bits) Values 

PLT 16 0xFF58 
Lplt 16 4 to 65 535 
Zplt 8 0 to 255 
Iplti variable Table A.36 

A.7.4 Packed packet headers, main header (PPM) 

Function: A collection of the packet headers from all tiles. 
NOTE – This is useful so multiple reads are not required to decode headers. 

Usage: Main header. May be used in the main header for all tile-parts unless a PPT marker segment is used in the tile-
part header.  

The packet headers shall be in only one of three places within the codestream. If the PPM marker segment is present, all 
the packet headers shall be found in the main header. In this case, the PPT marker segment and packets distributed in 
the bit stream of the tile-parts are disallowed. 

If there is no PPM marker segment then the packet headers can be distributed either in PPT marker segments or 
distributed in the codestream as defined in B.10. The packet headers shall not be in both a PPT marker segment and the 
codestream for the same tile. If the packet headers are in PPT marker segments, they shall appear in a tile-part header 
before the corresponding packet data appears (i.e., in the same tile-part header or one with a lower TPsot value). There 
may be multiple PPT marker segments in a tile-part header. 

Length: Variable depending on the number of packets in each tile-part and the size of the packet headers.  
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Figure A.20 – Packed packet headers, main header syntax 

PPM: Marker code. Table A.38 shows the size and values of the symbol and parameters for the packed 
packet headers, main header marker segment. 

Lppm: Length of marker segment in bytes, not including the marker. 
Zppm: Index of this marker segment relative to all other PPM marker segments present in the main header. 

The sequence of (Nppmi, Ippmi) parameters from this marker segment is concatenated, in order of 
increasing Zppm, with the sequences of parameters from other marker segments. The kth entry in 
the resulting list contains the number of bytes and packet headers for the kth tile-part appearing in 
the codestream. 

 Every marker segment in this series shall end with a completed packet header. However, the series 
of Ippm parameters described by the Nppm does not have to be complete in a given marker 
segment. Therefore, it is possible that the next PPM marker segment will not have a Nppm 
parameter after Zppm, but the continuation of the Ippm series from the last PPM marker segment. 

Nppmi: Number of bytes of Ippm information for the ith tile-part in the order found in the codestream. One 
value for each tile-part (not tile). 

Ippmij:  Packet header for every packet in order in the tile-part. The contents are exactly the packet header 
which would have been distributed in the bit stream as described in B.10. 
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Table A.38 – Packed packet headers, main header parameter values 

Parameter Size (bits) Values 

PPM 16 0xFF60 
Lppm 16 7 to 65 535 
Zppm 8 0 to 255 
Nppmi 32 0 to (232– 1) 
Ippmij variable packet headers 

A.7.5 Packed packet headers, tile-part header (PPT) 

Function: A collection of the packet headers from one tile or tile-part. 

Usage: Tile-part headers. Shall appear in any tile-part header before the packets whose headers are described herein. 

The packet headers shall be in only one of three places within the codestream. If the PPM marker segment is present, all 
the packet headers shall be found in the main header. In this case, the PPT marker segment and packets distributed in 
the bit stream of the tile-parts are disallowed. 

If there is no PPM marker segment, then the packet headers can be distributed either in PPT marker segments or 
distributed in the codestream as defined in B.10. The packet headers shall not be in both a PPT marker segment and the 
codestream for the same tile. If the packet headers are in PPT marker segments, they shall appear in a tile-part header 
before the corresponding packet data appears (i.e., in the same tile-part header or one with a lower TPsot value). There 
may be multiple PPT marker segments in a tile-part header. 

Length: Variable depending on the number of packets in each tile-part and the size of the packet headers.  
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Figure A.21 – Packed packed headers, tile-part header syntax 

PPT: Marker code. Table A.39 shows the size and values of the symbol and parameters for the packed 
packet headers, tile-part header marker segment. 

Lppt: Length of marker segment in bytes, not including the marker. 
Zppt: Index of this marker segment relative to all other PPT marker segments present in the current 

header. The sequence of (Ippti) parameters from this marker segment is concatenated, in order of 
increasing Zppt, with the sequences of parameters from other marker segments. Every marker 
segment in this series shall end with a completed packet header.  

Ippti: Packet header for every packet in order in the tile-part. The component index, layer, and resolution 
level are determined from the method of progression or POC marker segments. The contents are 
exactly the packet header which would have been distributed in the bit stream as described in B.10. 

Table A.39 – Packet header, tile-part headers parameter values 

Parameter Size (bits) Values 

PPT 16 0xFF61 
Lppt 16 4 to 65 535 
Zppt 8 0 to 255 
Ippti variable packet headers 
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A.8 In-bit-stream marker and marker segments 

These marker and marker segments are used for error resilience. They can be found in the bit stream. (The EPH marker 
can also be used in the PPM and PPT marker segments.) 

A.8.1 Start of packet (SOP) 

Function: Marks the beginning of a packet within a codestream.  

Usage: Optional. May be used in the bit stream in front of every packet. Shall not be used unless indicated that it is 
allowed in the proper COD marker segment (see A.6.1). If PPM or PPT marker segments are used, then the SOP marker 
segment may appear immediately before the packet data in the bit stream. 

If SOP marker segments are allowed (by signalling in the COD marker segment, see A.6.1), each packet in any given 
tile-part may or may not be appended with an SOP marker segment. However, whether or not the SOP marker segment 
is used, the count in the Nsop is incremented for each packet. If the packet headers are moved to a PPM or PPT marker 
segments (see A.7.4 and A.7.5), then the SOP marker segments may appear immediately before the packet body in the 
tile-part compressed image data portion. 

Length: Fixed.  
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Figure A.22 – Start of packet syntax 

SOP: Marker code. Table A.40 shows the size and values of the symbol and parameters for start of packet 
marker segment. 

Lsop: Length of marker segment in bytes, not including the marker. 
Nsop: Packet sequence number. The first packet in a coded tile is assigned the value zero. For every 

successive packet in this coded tile this number is incremented by one. When the maximum number 
is reached, the number rolls over to zero.  

Table A.40 – Start of packet parameter values 

Parameter Size (bits) Values 

SOP 16 0xFF91 
Lsop 16 4 
Nsop 16 0 to 65 535 

A.8.2 End of packet header (EPH) 

Function: Indicates the end of the packet header for a given packet. This delimits the packet header in the bit stream or 
in the PPM or PPT marker segments. This marker does not denote the beginning of packet data. If packet headers are 
not in-bit stream (i.e., PPM or PPT marker segments are used), this marker shall not be used in the bit stream. 

Usage: Shall be used if and only if indicated in the proper COD marker segment (see A.6.1). Appears immediately after 
a packet header. 

If EPH markers are required (by signalling in the COD marker segment, see A.6.1), each packet header in any given 
tile-part shall be postpended with an EPH marker segment. If the packet headers are moved to a PPM or PPT marker 
segments (see A.7.4 and A.7.5), then the EPH markers shall appear after the packet headers in the PPM or PPT marker 
segments. 
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Length: Fixed. 
EPH: Marker code  

Table A.41 – End of packet header parameter values 

Parameter Size (bits) Values 

EPH 16 0xFF92 

A.9 Informational marker segments 

These marker segments are strictly information and are not necessary for a decoder. However, these marker segments 
might assist a parser or decoder. More information about the source and characteristics of the image can be obtained by 
using a file format such as JP2 (see Annex I). 

A.9.1 Component registration (CRG) 

Function: Allows specific registration of components with respect to each other. For coding purposes the samples of 
components are considered to be located at reference grid points that are integer multiples of XRsiz and YRsiz 
(see A.5.1). However, this may be inappropriate for rendering the image. The CRG marker segment describes the 
"centre of mass" of each component's samples with respect to the separation. This marker segment has no effect on 
decoding the codestream. 

NOTE – This component registration offset is with respect to the image offset (XOsiz and YOsiz) and the component separation 
(XRsizi and YRsizi). For example, the horizontal reference grid point for the left-most samples of component c is 
XRsizc  XOsiz / XRsizc . (Likewise for the vertical direction.) The horizontal offset denoted in this marker segment is in addition 
to this offset. 

Usage: Main header only. Only one CRG may be used in the main header and is applicable for all tiles. 

Length: Variable depending on the number of components.  
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Figure A.23 – Component registration syntax 

CRG: Marker code. Table A.42 shows the size and values of the symbol and parameters for the 
component registration marker segment. 

Lcrg: Length of marker segment in bytes (not including the marker). 
Xcrgi: Value of the horizontal offset, in units of 1/65536 of the horizontal separation XRsizi, for the ith 

component. Thus, values range from 0/65536 (sample occupies its reference grid point) to 
XRsizc(65535/65536) (just before the next sample's reference grid point). This value is repeated for 
every component. 

Ycrgi: Value of the vertical offset, in units of 1/65536 of the vertical separation YRsizi, for the ith 
component. Thus, values range from 0/65536 (sample occupies its reference grid point) to 
YRsizc(65535/65536) (just before the next sample's reference grid point). This value is repeated for 
every component.  

Table A.42 – Component registration parameter values 

Parameter Size (bits) Values 

CRG 16 0xFF63 
Lcrg 16 6 to 65 534 
Xcrgi 16 0 to 65 535 
Ycrgi 16 0 to 65 535 
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A.9.2 Comment (COM) 

Function: Allows unstructured data in the main and tile-part header.  

Usage: Main and tile-part headers. Repeatable as many times as desired in either or both the main or tile-part headers. 
This marker segment has no effect on decoding the codestream. 

Length: Variable depending on the length of the message. 
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Figure A.24 – Comment syntax 

COM: Marker code. Table A.43 shows the size and values of the symbol and parameters for the comment 
marker segment. 

Lcom: Length of marker segment in bytes (not including the marker). 
Rcom: Registration value of the marker segment. 
Ccomi: Byte of unstructured data.  

Table A.43 – Comment parameter values 

Parameter Size (bits) Values 

COM 16 0xFF64 
Lcom 16 5 to 65 535 
Rcom 16 Table A.44 
Ccomi 8 0 to 255 

Table A.44 – Registration values for the Rcom parameter 

Values Registration values 

0 General use (binary values) 
1 General use (ISO/IEC 8859-15 (Latin) values) 
 All other values reserved 

A.10 Codestream restrictions conforming to this Recommendation | International Standard 

In order to promote the wide inter-operability of JPEG 2000 codestream, codestream restrictions are introduced. 
"Codestream Restrictions" have two profiles, Profile-0 and Profile-1. The case of "No Restrictions" meaning 
conforming to this Recommendation | International Standard can be called Profile-2. Profile-0 and Profile-1 are defined 
as follows. 

Maximum interchange will be achieved for codestreams corresponding to Profile-0, and medium interchange for 
codestreams corresponding to Profile-1. 
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Table A.45 – Codestream restrictions 

Restrictions Profile-0 Profile-1 

SIZ marker segment   
Profile indication Rsiz = 1 Rsiz = 2 
Image size Xsiz, Ysiz < 231 Xsiz, Ysiz < 231 
Tiles Tiles of a dimension 128 × 128: 

YTsiz = XTsiz = 128 
or one tile for the whole image: 
YTsiz + YTOsiz ≥ Ysiz 
XTsiz + XTOsiz ≥ Xsiz  

XTsiz / min(XRsizi, YRsizi) ≥ 1024 
XTsiz = YTsiz 
or one tile for the whole image: 
YTsiz + YTOsiz ≥ Ysiz 
XTsiz + XTOsiz ≥ Xsiz 

Image and tile origin XOsiz = YOsiz = XTOsiz = YTOsiz = 0 XOsiz, YOsiz, XTOsiz, YTOsiz < 231 
RGN marker segment SPrgn ≤ 37 SPrgn ≤ 37 
Sub-sampling XRsizi = 1, 2, or 4 

YRsizi = 1, 2, or 4 
No restriction 

Code-blocks   
Code-block size xcb = ycb = 5 or xcb = ycb = 6 xcb ≤ 6, ycb ≤ 6 
Code-block style SPcod, SPcoc = 00sp vtra 

where a = r = v = 0, and t, p, s = 0 or 1 
NOTE 1 –  
t = 1 for termination on each coding pass  
p = 1 for predictive termination 
s = 1 for segmentation symbols 

No restriction 

Marker locations   
Packed headers (PPM, PPT) Disallowed No restriction 
COD, COC, QCD, QCC Main header only No restriction 
Subset requirements   
LL resolution If one tile is used for whole image, 

(Xsiz – XOsiz) / D(I) ≤ 128 and 
(Ysiz – YOsiz) / D(I) ≤ 128 where  
D(I) = 2number_of_decomposition_levels in SPcod or 
SPcoc, for I = component 0 to 3 

For each tile in the image, 
x1 / D(i) – tx0/D(i) ≤ 128 and 
ty1/D(i) – ty0/D(i) ≤ 128 where  
D(I) = 2number_of_decomposition_levels in SPcod or 
SPcoc, for I = component 0 to 3. 
NOTE 2 – tx0, tx1, ty0 and ty1 are as defined 
by Equations (B-7) to (B-10). 

Parsability If the POC marker is present, the POC marker 
shall have RSPOC0 = 0 and CSPOC0 = 0. 
NOTE 3 – Some compliant decoders might 
decode only packets associated with the first 
progression. 

No restriction 

Tile-parts Tile-parts with TPsot = 0 of every tile before 
any tile-parts with TPsot > 0, Tile-parts Isot = 0 
to Isot = number_of_tiles – 1, in sequential 
order for all tile-parts with TPsot = 0 

No restriction 

Precinct size "Precinct size" defined by SPcod or SPcoc 
(Tables A.15 and A.21) must be large enough 
so there is only one precinct in all resolution 
levels with dimension less than or equal to 128 
by 128. 
NOTE 4 – Precinct size PPx ≥ 7 and PPy ≥ 7 is 
sufficient to guarantee only one precinct per 
sub-band when XOsiz = 0 and YOsiz = 0. 

No restriction 
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Annex B 
 

Image and compressed image data ordering 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining 
an output that alternative implementations shall duplicate. 

This annex describes the various structural entities, and their organization in the codestream: components, tiles, sub-
bands, and their divisions. 

B.1 Introduction to image data structure concepts 

The reference grid provides a mechanism for co-registering components and for defining subsets of the reference grid, 
e.g., the image area and tiles. 

The components consist of two-dimensional arrays of samples. Each component, c, has parameters XRsizc, YRsizc 
(see A.5.1) which define the mapping between component samples and the reference grid points. Every component 
sample is associated with a reference grid point (though not vice versa). This mapping induces a registration of 
components with each other used for coding only. 

Each component is divided into tiles corresponding to the tiling of the reference grid. These tile-components are coded 
independently. Each tile-component is wavelet transformed into several decomposition levels which are related to 
resolution levels (see Annex F). Each resolution level consists of either the HL, LH, and HH sub-bands from one 
decomposition level or the NLLL sub-band. Thus, there is one more resolution level than there are decomposition levels. 

Each sub-band has its own origin. The sub-band boundary conditions are unique for each HL, LH, and HH sub-band. 
NOTE – This convention differs from the usual wavelet diagrams which place all sub-bands for a component in a single space 

Precincts and code-blocks are defined at the resolution level and sub-band. Consequently they can vary over tile-
components. Precincts are defined so that code-blocks fit neatly, i.e., they "line up" with each other. 

In the accompanying figures, boundaries and coordinate axes are shown. In each case, the samples or coefficients 
coincident with the left and upper boundaries are included in a given region, while samples or coefficients along the 
right and/or lower boundaries are not included in that region. 

Also, in the accompanying formulae, many of the variables have values that can change as a function of component, 
tile, or resolution level. These values may change explicitly (through syntax described in Annex A) or implicitly 
(through propagation). For convenience of notation, some dependencies are suppressed in the discussion that follows. 

B.2 Component mapping to the reference grid 

All components (and many other structures in this annex) are defined with respect to the reference grid. The various 
parameters defining the reference grid appear in Figure B.1. The reference grid is a rectangular grid of points with the 
indices from (0, 0) to (Xsiz – 1, Ysiz – 1). An "image area" is defined on the reference grid by the dimensional 
parameters, (Xsiz, Ysiz) and (XOsiz, YOsiz). Specifically, the image area on the reference grid is defined by its upper 
left hand reference grid point at location (XOsiz, YOsiz), and its lower right hand reference grid point at location 
(Xsiz – 1, Ysiz – 1). 

The samples of component c are at integer multiples of (XRsizc, YRsizc) on the reference grid. Each component domain 
is a sub-sampled version of the reference grid with the (0, 0) coordinate as common point for each component. Row 
samples are located reference grid points that are at integer multiples of XRsizc and column samples are located 
reference grid points that are at integer multiples of YRsizc. Only those samples which fall within the image area 
actually belong to the image component. Thus, the samples of component c are mapped to rectangle having upper left 
hand sample with coordinates (x0, y0) and lower right hand sample with coordinates (x1 – 1, y1 – 1), where: 
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Figure B.1 – Reference grid diagram 
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Thus, the dimensions of component c are given by: 

   ( ) ( )0101 ,, yyxxheightwidth −−=  (B-2) 

The parameters, Xsiz, Ysiz, XOsiz, YOsiz, XRsizc and YRsizc are all defined in the SIZ marker segment (see A.5.1). 
NOTE 1 – The fact that all components share the image offset (XOsiz, YOsiz) and size (Xsiz, Ysiz) induces a registration of the 
components. 
NOTE 2 – Figure B.2 shows an example of three components mapped to the reference grid. Figure B.3 shows the image area 
from a particular image offset with different (XRsiz, YRsiz) values. The upper left sample coordinate, in the image component 
domain, that is included in the image area is also illustrated.  
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Figure B.2 – Component sample locations on the reference grid for different XRsiz and YRsiz values 
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Figure B.3 – Example of upper left component sample locations 

B.3 Image area division into tiles and tile-components 

The reference grid is partitioned into a regular sized rectangular array of tiles. The tile size and tiling offset are defined, 
on the reference grid, by dimensional pairs (XTsiz, YTsiz) and (XTOsiz, YTOsiz), respectively. These are all 
parameters from the SIZ marker segment (see A.5.1). 

Every tile is XTsiz reference grid points wide and YTsiz reference grid points high. The top left corner of the first tile 
(tile 0) is offset from the top left corner of the reference grid by (XTOsiz, YTOsiz). The tiles are numbered in raster 
order. This is the tile index in the Isot parameter from the SOT marker segment in A.4.2. Thus, the first tile's upper left 
coordinates relative to the reference grid are (XTOsiz, YTOsiz). Figure B.4 shows this relationship. 
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Figure B.4 – Tiling of the reference grid diagram 

The tile grid offsets (XTOsiz, YTOsiz) are constrained to be no greater than the image area offsets. This is expressed by 
the following ranges: 

   YOsizYTOsizXOsizXTOsiz ≤≤≤≤ 00  (B-3) 

Also, the tile size plus the tile offset shall be greater than the image area offset. This ensures that the first tile (tile 0) 
will contain at least one reference grid point from the image area. This is expressed by the following ranges: 

   YOsizYTOsizYTsizXOsizXTOsizXTsiz >+>+  (B-4) 
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The number of tiles in the X direction (numXtiles) and the Y direction (numYtiles) is the following: 
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For the purposes of this description, it is useful to have tiles indexed in terms of horizontal and vertical position. Let p 
be the horizontal index of a tile, ranging from 0 to numXtiles – 1, and q be the vertical index of a tile, ranging from 0 to 
numYtiles – 1, determined from the tile index as follows: 

   



==

numXtiles
tqnumXtilestmodp ),(  (B-6) 

where t is the index of the tile in Figure B.4. 

The coordinates of a particular tile on the reference grid are described by the following equations: 

   ( ) ( )XOsizXTsizpXTOsizmaxqptx ,,0 ⋅+=  (B-7) 

   ( ) ( )YOsizYTsizqYTOsizmaxqpty ,,0 ⋅+=  (B-8) 

   ( ) ( )( )XsizXTsizpXTOsizminqptx ,1,1 ⋅++=  (B-9) 

   ( ) ( )( )YsizYTsizqYTOsizminqpty ,1,1 ⋅++=  (B-10) 

where tx0(p, q) and ty0(p, q) are the coordinates of the upper left corner of the tile, tx1(p, q) – 1 and ty1(p, q) – 1 are the 
coordinates of the lower right corner of the tile. We will often drop the tile's coordinates in referring to a specific tile 
and refer to the coordinates (tx0, ty0) and (tx1, ty1).  

Thus the dimensions of a tile in the reference grid are: 

   ),( 0101 tytytxtx −−  (B-11) 

Within the domain of image component i, the coordinates of the upper left hand sample are given by (tcx0, tcy0) and the 
coordinates of the lower right hand sample are given by (tcx1 – 1, tcy1 – 1), where: 
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so that the dimensions of the tile-component are: 

   ),( 0101 tcytcytcxtcx −−  (B-13) 

B.4 Example of the mapping of components to the reference grid (informative) 

The following example is included to illustrate the mapping of image components to the reference grid and the area 
induced by tiling across components with different sub-sampling factors. The example assumes an application in which 
an original image with aspect ratio 16:9 is to be compressed with this Recommendation | International Standard. 
Choices of the image size, image offset, tile size, and tile offset are used such that an image with aspect ratio 4:3 can be 
cropped from the center of the original image. Figure B.5 shows the reference grid and image areas along with the tiling 
structure that will be imposed in this example. 
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Figure B.5 – Reference grid example 

Let the reference grid size (Xsiz, Ysiz) be (1432, 954). In this example, the image will contain two components 
(component indices will be represented by i = 0, 1). The sub-sampling factors XRsizi and YRsizi of the two components 
with respect to the reference grid will be XRsiz0 = YRsiz0 = 1 and XRsiz1 = YRsiz1 = 2. The image offset is set to be 
(XOsiz, YOsiz) = (152, 234). Given these parameters, the sizes of the two image components can be determined from 
Equation (B-1). The upper left corner of component 0 is found at (152/1, 234/1) = (152, 234). The lower right 
corner of component 0 is found at (1432/1 – 1, 954/1 – 1) = (1431, 953). The actual size of component 0 is therefore 
1280 samples in width by 720 samples in height. The upper left corner of component 1 is found at (152/2, 234/2) = 
(76, 117), while the lower right corner of that component is found at (1432/2 – 1, 954/2 – 1) = (715, 476). The 
actual size of component 1 is therefore 640 samples in width by 360 samples in height. 

The tiles are chosen to have an aspect ratio of 4:3. In this example, (XTsiz, YTsiz) will be set to (396, 297) and the tile 
offsets (XTOsiz, YTOsiz) will be set to (0, 0). The number of tiles in the x and y directions are then determined from 
Equation (B-5) numXtiles = 1432/396 = 4, numYtiles = 954/297 = 4. The tiled image components will therefore 
contain a total of t = 16 tiles, with tile grid indices p and q in the range 0 ≤ p, q < 4. It is now possible to compute the 
locations of the tiles in each image component. To do so, the values of tx0, tx1, ty0, and ty1 are determined from 
Equations (B-7), (B-8), (B-9), and (B-10). Since p and q share the same set of admissible values, the notation ‘0:3' will 
be used to refer to the sequence of values {0, 1, 2, 3}, and the notation '*' will be used to denote that the result is valid 
for all admissible values. The values of tx0 are found as tx0(0:3, *) = {152, 396, 792, 1188}, and the values of tx1 are 
given by tx1(0:3, *) = {396, 792, 1188, 1432}. The values of ty0 are ty0(*, 0:3) = {234, 297, 594, 891}, and the values of 
ty1 are ty1(*, 0:3) = {297, 594, 891, 954}. 
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Figure B.6 – Example tile sizes and locations for component 0 

With the values of tx0, tx1, ty0, and ty1 now known, the locations and sizes of all tiles can be determined for each of the 
components. To do so, Equation (B-12) is used. The relevant locations and sizes for component 0 are shown in 
Figure B.6, while the same information is provided for component 1 in Figure B.7. Of particular interest are the 
'interior' tiles in the figures (tiles (1, 1), (1, 2), (2, 1), and (2, 2)). These tiles are not limited in extent by the image area. 
In component 0, all of these tiles are the same size. This regularity is a result of the fact that the sub-sampling factors for 
this component are (XRsiz0, YRsiz0) = (1, 1). However, in component 1, these tiles are not all the same size because 
(XRsiz1, YRsiz1) = (2, 2). Notice that tiles (1, 1) and (2, 1) are both of size 198 by 148, while tiles (1, 2) and (2, 2) are 
both of size 198 by 149. This illustrates that the number of samples in the interior tiles of a component can vary 
depending upon the particular combination of tile size and component sub-sampling factors. 

With these choices of reference grid, image offset, tile size, and tile offset, the coded image can be cropped directly to 
the desired interior region. The four interior tiles from each component can be retained and will represent a cropped 
image of reference grid size (792, 594). When such a cropping is performed, it will not be necessary to recode the tiles, 
but the values of some of the reference grid parameters must change. The image offsets must be set to the coordinates of 
the cropping locations, so that (XOsiz´, YOsiz´) = (396, 297) where (XOsiz´, YOsiz´) are the image offsets of the 
cropped image. Similarly, the image size must be adjusted to reflect the cropped size (Xsiz´, Ysiz´) = (1188, 891) where 
(Xsiz´, Ysiz´) are the sizes of the cropped reference grid. Finally, the tile offsets are no longer zero and instead must be 
set to (XTOsiz´, YTOsiz´) = (396, 297) where (XTOsiz´, YTOsiz´) are the tile offsets of the cropped reference grid. 
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Figure B.7 – Example tile sizes and locations for component 1 

B.5 Transformed tile-component division into resolution levels and sub-bands 

Each tile-component is wavelet transformed with NL decomposition levels as explained in Annex F. Thus, there are 
NL + 1 distinct resolution levels, denoted r = 0,1,...,NL. The lowest resolution level, r = 0, is represented by the NLLL 
band. In general, a reduced resolution version of a tile-component with resolution level, r, is the sub-band nLL, where 
n = NL – r. This clause describes the dimensions of this reduced resolution. 

The given tile-component's coordinates with respect to the reference grid at a particular resolution level, r, yield upper 
left hand sample coordinates, (trx0, try0) and lower right hand sample coordinates, (trx1 – 1, try1 – 1), where: 
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In a similar manner, the tile coordinates may be mapped into any particular sub-band, b, yielding upper left hand sample 
coordinates (tbx0, tby0) and lower right hand sample coordinates (tbx1 – 1, tby1 – 1) where: 

   

( ) ( )

( ) ( )










 ⋅−=










 ⋅−=











 ⋅−=










 ⋅−=

−−

−−

b

b

b

b

b

b

b

b

n
b

n

n
b

n

n
b

n

n
b

n

yotcytbyxotcxtbx

yotcytbyxotcxtbx

2
2

2
2

2
2

2
2

1
1

1

1
1

1

1
0

0

1
0

0

 (B-15) 

where nb is the decomposition level associated with sub-band b, as discussed in Annex F, and the quantities (xob, yob) 
are given by the Table B.1. 
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Table B.1 – Quantities (xob, yob) for sub-band b 

Sub-band xob yob 

nbLL 0 0 
nbHL (horizontal high-pass) 1 0 

nbLH (vertical high-pass) 0 1 
nbHH 1 1 

 

NOTE – Each of the sub-band is different as mentioned in B.1. 

For each sub-band, these coordinates define tile boundaries in distinct sub-band domains. Furthermore, the width of 
each sub-band within its domain (at the current decomposition level) is given by tbx1 – tbx0, and the height is given by 
tby1 – tby0. 

B.6 Division of resolution levels into precincts 

Consider a particular tile-component and resolution level whose bounding sample coordinates in the reduced resolution 
image domain are (trx0, try0) and (trx1 – 1, try1 – 1), as already described. Figure B.8 shows the partitioning of this tile-
component resolution level into precincts.The precinct is anchored at location (0, 0), so that the upper left hand corner 
of any given precinct in the partition is located at integer multiples of (2PPx, 2PPy) where PPx and PPy are signalled in 
the COD or COC marker segments (see A.6.1 and A.6.2). PPx and PPy may be different for each tile-component and 
resolution level. PPx and PPy must be at least 1 for all resolution levels except r = 0 where they are allowed to be zero. 
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Figure B.8 – Precincts of one reduced resolution 

The number of precincts which span the tile-component at resolution level, r, is given by: 
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Even if Equation (B-16) indicates that both numprecinctswide and numprecinctshigh are nonzero, some, or all, precincts 
may still be empty as explained below. The precinct index runs from 0 to numprecincts – 1 where numprecincts = 
numprecinctswide * numprecinctshigh in raster order (see Figure B.8). This index is used in determining the order of 
appearance, in the codestream, of packets corresponding to each precinct, as explained in B.12. 

It can happen that numprecincts is 0 for a particular tile-component and resolution level. When this happens, there are 
no packets for this tile-component and resolution level. 

It can happen that a precinct is empty, meaning that no sub-band coefficients from the relevant resolution level actually 
contribute to the precinct. This can occur, for example, at the lower right of a tile-component due to sampling with 
respect to the reference grid. When this happens, every packet corresponding to that precinct must still appear in the 
codestream (see B.9). 

B.7 Division of the sub-bands into code-blocks 

The sub-bands are partitioned into rectangular code-blocks for the purpose of coefficient modeling and coding. The size 
of each code-block is determined from two parameters, xcb and ycb, which are signalled in the COD or COC marker 
segments (see A.6.1 and A.6.2). The code-block size is the same from all resolution levels. However, at each resolution 
level, the code-block size is bounded by the precinct size. The code-block size for each sub-band at a particular 
resolution level is determined as 2xcb´ by 2ycb´ where: 
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and: 
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These equations reflect the fact that the code-block size is constrained both by the precinct size and the code-block size, 
whose parameters, xcb and ycb, are identical for all sub-bands in the tile-component. Like the precinct, the code-block 
partition is anchored at (0, 0), as illustrated in Figure B.9. Thus, all first rows of code-blocks in the code-block partition 
are located at y = m2ycb´ and all first columns of code-blocks are located at x = n2xcb´, where m and n are integers. 

NOTE – Code-blocks in the partition may extend beyond the boundaries of the sub-band coefficients. When this happens, only 
the coefficients lying within the sub-band are coded using the method described in Annex D. The first stripe coded using this 
method corresponds to the first four rows of sub-band coefficients in the code-block or as many of such rows as are present. 
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Figure B.9 – Code-blocks and precincts in sub-band b from four different tiles 

B.8 Layers 

The compressed image data of each code-block is distributed across one or more layers in the codestream. Each layer 
consists of some number of consecutive bit-plane coding passes from each code-block in the tile, including all 
sub-bands of all components for that tile. The number of coding passes in the layer may vary from code-block to code-
block and may be as little as zero for any or all code-blocks. The number of layers for the tile is signalled in the COD 
marker segment (see A.6.1). 

For a given code-block, the first coding pass, if any, in layer n is the coding pass immediately following the last coding 
pass for the code-block in layer n – 1, if any. 

NOTE 1 – Each layer successively and monotonically improves the image quality. 

Layers are indexed from 0 to L – 1, where L is the number of layers in each tile-component. 
NOTE 2 – Figure B.10 shows an example of nine precincts of resolution level m. Table B.2 shows the layer formation. 
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Figure B.10 – Diagram of precincts of one resolution level of one component 

Table B.2 – Example of layer formation (only one component shown) 

Resolution level 0 ... m ... NL 

Precinct P00 P01 ... ... Pm0 Pm1 ... Pm8 ... PNl0 PNl1 ... 
Layer 0 Packet 0 Packet 0 ... ... Packet 0 Packet 0 ... Packet 0 ... Packet 0 Packet 0 ... 
Layer 1 Packet 1 Packet 1 ... ... Packet 1 Packet 1 ... Packet 1 ... Packet 1 Packet 1 ... 

... ...  ... ... ... ... ... ... ... ... ... ... 

The basic building blocks of layers are packets. Packets are created from the code-block compressed image data from 
the precincts of different resolution levels (for a given tile-component).  

B.9 Packets 

All compressed image data representing a specific tile, layer, component, resolution level and precinct appears in the 
codestream in a contiguous segment called a packet. Packet data is aligned at 8-bit (one byte) boundaries. 

As defined in F.3.1, resolution level r = 0 contains the sub-band coefficients from the NLLL band, where NL is the 
number of decomposition levels. Each subsequent resolution level, r > 0, contains the sub-band coefficients from the 
nHL, nLH, and nHH sub-bands, as defined in Annex F, where n = NL – r + 1. There are NL + 1 resolution levels for a 
tile-component with NL decomposition levels. 

The compressed image data in a packet is ordered such that the contribution from the LL, HL, LH and HH sub-bands 
appear in that order. This sub-band order is identical to the order defined in F.3.1. Within each sub-band, the code-block 
contributions appear in raster order, confined to the bounds established by the relevant precinct. Resolution level r = 0 
contains only the NLLL band and resolution levels r > 0 contain only the HL, LH and HH bands. Only those code-
blocks that contain samples from the relevant sub-band, confined to the precinct, have any representation in the packet. 

NOTE 1 – Figure B.11 shows the organization of code-blocks within a precinct that form a packet. Table B.3 shows an example 
of code-block coding passes that form packets. In Table B.3 the variables a, b, and c are code-block coding passes where a = 
significance propagation pass, b = magnitude refinement pass, and c = cleanup pass (see Annex D). 
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Figure B.11 – Diagram of code-blocks within precincts at one resolution level 

Table B.3 – Example of packet formation 

 code-block 0 code-block 1 code-block 2 ... code-block 10 code-block 11  
MSB c 0 0 ... c 0 packet 0 

 a 0 0 ... a 0  
 b 0 0 ... b 0  
 c c 0 ... c 0  
 a a 0 ... a 0 packet 1 
 b b 0 ... b 0  
 c c c ... c c  
 ... ... ... ... ... ... etc. 

LSB a a a ... a a  
 b b b ... b b  
 c c c ... c c  

Packet data is introduced by a packet header whose syntax is described in B.10 and is followed by a packet body 
containing the actual code-bytes contributed by each of the relevant code-blocks. The order defined above is followed 
in constructing both the packet header and the packet body. 

As described in B.6, it can happen that a precinct contains no code-blocks from any of the sub-bands at some resolution 
level. When this occurs, all packets corresponding to that precinct must appear in the codestream as empty packets, in 
accordance with the packet header described in B.10.  

NOTE 2 – Even when a precinct contains relevant code-blocks, an encoder might choose to include no coding passes whatsoever 
in the corresponding packet at a given layer. In this case, an empty packet must still appear in the codestream. 
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B.10 Packet header information coding 

The packets have headers with the following information: 
– Zero length packet; 
– Code-block inclusion; 
– Zero bit-plane information; 
– Number of coding passes; 
– Length of the code-block compressed image data from a given code-block. 

Two items in the header are coded with a scheme called tag trees described below. The bits of the packet header are 
packed into a whole number of bytes with the bit-stuffing routine described in B.10.1. 

The packet headers appear in the codestream immediately preceding the packet data, unless one of the PPM or PPT 
marker segments has been used. If the PPM marker segment is used, all of the packet headers are relocated to the main 
header (see A.7.4). If the PPM is not used, then a PPT marker segment may be used. In this case, all of the packet 
headers in that tile are relocated to tile-part headers (see A.7.5). 

B.10.1 Bit-stuffing routine 

Bits are packed into bytes from the MSB to the LSB. Once a complete byte is assembled, it is appended to the packet 
header. If the value of the byte is 0xFF, the next byte includes an extra zero bit stuffed into the MSB. Once all bits of 
the packet header have been assembled, the last byte is packed to the byte boundary and emitted. The last byte in the 
packet header shall not be an 0xFF value (thus the single zero bit stuffed after a byte with 0xFF must be included even 
if the 0xFF would otherwise have been the last byte). 

B.10.2 Tag trees 

A tag tree is a way of representing a two-dimensional array of non-negative integers in a hierarchical way. It 
successively creates reduced resolution levels of this two-dimensional array, forming a tree. At every node of this tree 
the minimum integer of the (up to four) nodes below it is recorded. Figure B.12 shows an example of this 
representation. The notation, qi(m, n), is the value at the node that is mth from the left and nth from the top, at the ith 
level. Level 0 is the lowest level of the tag tree; it contains the top node. 

T.800_FB-12
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Figure B.12 – Example of a tag tree representation 
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The elements of the array are traversed in raster order for coding. The coding is the answer to a series of questions. 
Each node has an associated current value, which is initialized to zero (the minimum). A 0 bit in the tag tree means that 
the minimum (or the value in the case of the highest level) is larger than the current value and a 1 bit means that the 
minimum (or the value in the case of the highest level) is equal to the current value. For each contiguous 0 bit in the tag 
tree the current value is incremented by one. Nodes at higher levels cannot be coded until lower level node values are 
fixed (i.e, a 1 bit is coded). The top node on level 0 (the lowest level) is queried first. The next corresponding node on 
level 1 is then queried, and so on. 

Only the information needed for the current code-block is stored at the current point in the packet header. The decoding 
of bits is halted when sufficient information has been obtained. Also, the hierarchical nature of the tag trees means that 
the answers to many questions will have been formed when adjacent code-blocks and/or layers were coded. This 
information is not coded again. Therefore, there is a causality to the information in packet headers. 

NOTE – For example, in Figure B.12, the coding for the number at q3(0, 0) would be 01111. The two bits, 01, imply that the top 
node at q0(0, 0) is greater than zero and is, in fact one. The third bit, 1, implies that the node at q1(0, 0) is also one. The fourth bit, 
1, implies that the node at q2(0, 0) is also one. And the final bit, 1, implies that the target node at q3(0, 0) is also one. To decode 
the next node q3(1, 0) the nodes at q0(0, 0), q1(0, 0), and q2(0, 0) are already known. Thus, the bits coded are 001, the zero says 
that the node at q3(1, 0) is greater than 1, the second zero says it is greater than 2, and the one bit implies that the value is 3. Now 
that q3(0, 0) and q3(1, 0) are known, the code bits for q3(2, 0) will be 101. The first 1 indicates q2(1, 0) is one. The following 01 
then indicates q3(2, 0) is 2. This process continues for the entire array in Figure B.12a. 

B.10.3 Zero length packet 

The first bit in the packet header denotes whether the packet has a length of zero (empty packet). The value 0 indicates a 
zero length; no code-blocks are included in this case. The value 1 indicates a non-zero length; this case is considered 
exclusively hereinafter. 

NOTE – If a packet is marked as empty, then no code-blocks may contribute to the corresponding layer. If the next packet is not 
marked as empty, the code-block inclusion information (defined in B.10.4) for the previous layer with the empty bit set has to be 
included. The code-block inclusion information for code-blocks which have not yet been included in any packet is encoded using 
a tag tree whose entries are initialized with the layer number of the first layer to which the code-block contributes. Thus the tag 
tree will have redundant information identifying whether or not the code-block contributes to both the current layer and the layer 
in which the packet was marked as empty. 

B.10.4 Code-block inclusion 

Information concerning whether or not any compressed image data from each code-block is included in the packet is 
signalled in one of two different ways depending upon whether or not the same code-block has already been included in 
a previous packet (i.e., within a previous layer). 

For code-blocks that have been included in a previous packet, a single bit is used to represent the information, where a 1 
means that the code-block is included in this layer and a 0 means that it is not. 

For code-blocks that have not been previously included in any packet, this information is signalled with a separate tag 
tree code for each precinct as confined to a sub-band. The values in this tag tree are the number of the layer in which the 
current code-block is first included. Although the exact sequence of bits that represent the inclusion tag tree appears in 
the bit stream, only the bits needed for determining whether the code-block is included are placed in the packet header. 
If some of the tag tree is already known from previous code-blocks or previous layers, it is not repeated. Likewise, only 
as much of the tag tree as is needed to determine inclusion in the current layer is included. If a code-block is not 
included until a later layer, then only a partial tag tree is included at that point in the bit stream. 

B.10.5 Zero bit-plane information 

If a code-block is included for the first time, the packet header contains information identifying the actual number of 
bit-planes used to represent coefficients from the code-block. The maximum number of bit-planes available for the 
representation of coefficients in any sub-band, b, is given by Mb as defined in Equation (E-2). In general, however, the 
number of actual bit-planes for which coding passes are generated is Mb – P, where the number of missing most 
significant bit-planes, P, may vary from code-block to code-block; these missing bit-planes are all taken to be zero. The 
value of P is coded in the packet header with a separate tag tree for every precinct, in the same manner as the code-
block inclusion information. 

B.10.6 Number of coding passes 

The number of coding passes included in this packet from each code-block is identified in the packet header using the 
codewords shown in Table B.4. This table provides for the possibility of signalling up to 164 coding passes.  
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Table B.4 – Codewords for the number of coding passes for each code-block 

Number of coding passes Codeword in packet header 

1 0 

2 10 

3 1100 

4 1101 

5 1110 

6 to 36 1111 0000 0 
to 

1111 1111 0 
37 to 164 1111 11111 0000 000 

to 
1111 11111 1111 111 

 

NOTE – Since the value of Mb is limited to a maximum value of 37 by the constraints imposed by the syntax of the QCD and 
QCC marker segments (see A.6.4, A.6.5, and Equation (E-4)), it is not possible for more than 109 coding passes to be employed 
by the code-block coding algorithm described in Annex D. 

B.10.7 Length of the compressed image data from a given code-block 

The packet header identifies the number of bytes contributed by each included code-block. The sequence of bytes 
actually included for any given code-block must not end in a 0xFF. Thus, in the event that an 0xFF would have 
appeared at the end of a code-block's contribution to some packet, the 0xFF may be safely moved to the subsequent 
packet which contains contributions from the code-block, or dropped if there is no such packet. The example coding 
pass length calculation algorithm described in Annex D ensures that no coding pass will ever be considered as ending 
with an 0xFF. 

NOTE – This is, in fact, not a burdensome requirement, since 0xFFs are always synthesized as necessary by the arithmetic coder 
described in Annex C.  

In signalling the number of bytes contributed by the code-block, there are two cases: the code-block contribution 
contains a single codeword segment; or the code-block contribution contains multiple codeword segments. Multiple 
codeword segments arise when a termination occurs between coding passes which are included in the packet, as shown 
in Tables D.8 and D.9. 

B.10.7.1 Single codeword segment 

A codeword segment is the number of bytes contributed to a packet by a code-block. The length of a codeword segment 
is represented by a binary number of length: 

   ( ) addedpassescodinglog2+= Lblockbits  (B-19) 

where Lblock is a code-block state variable. A separate Lblock is used for each code-block in the precinct. 

The value of Lblock is initially set to three. The number of bytes contributed by each code-block is preceded by 
signalling bits that increase the value of Lblock, as needed. A signalling bit of zero indicates the current value of Lblock 
is sufficient. If there are k ones followed by a zero, the value of Lblock is incremented by k. While Lblock can only 
increase, the number of bits used to signal the length of the code-block contribution can increase or decrease depending 
on the number of coding passes included. 

NOTE 1 – For example, say that in successive layers a code-block has 6 bytes, 31 bytes, 44 bytes, and 134 bytes respectively. 
Further assume that the number of coding passes is 1, 9, 2, and 5. The code for each would be 0 110 (0 delimits and 110 = 6), 
0011111 (0 delimits, log2 9 = 3 bits for the 9 coding passes, 011111 = 31), 11 0 101100 (110 adds two bits to Lblock, log2 2 = 1, 
101100 = 44), and 1 0 10000110 (10 adds one bit to Lblock, log2 5 = 2, 10000110 = 134). 
NOTE 2 – There is no requirement that the minimum number of bits be used to signal length (any number is valid). 

B.10.7.2 Multiple codeword segments 

Let T be the set of indices of terminated coding passes included for the code-block in the packet as indicated in 
Tables D.8 and D.9. If the index final coding pass included in the packet is not a member of T, then it is added to T. 
Let n1 < ... < nK be the indices in T. K lengths are signalled consecutively with each length using the mechanism 
described in B.10.7.1. The first length is the number of bytes from the start of the code-block's contribution in this 
packet to the end of coding pass n1. The number of added coding passes for the purposes of Equation (B-19) is the 
number of passes in the packet up through n1. The second length is the number of bytes from the end of coding pass, n1, 
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to the end of coding pass, n2. The number of added coding passes for the purposes of Equation (B-19) is n2 – n1. This 
procedure is repeated for all K lengths. 

NOTE – Consider the selective arithmetic coding bypass (see D.6). Say that the passes included in a packet for a given code-
block are the cleanup pass of bit-plane number 4 through the significance propagation pass of bit-plane number 6 (see 
Table D.9). These passes are indexed as {0, 1, 2, 3, 4} and the lengths are given as {6, 31, 44, 134, 192} respectively. Then T = 
{0, 2, 3, 4} and K = 4 lengths are signalled. The set of lengths to be signalled is {6, 75, 134, 192} and the corresponding number 
of coding passes that are added is {1, 2, 1, 1}. A valid code bit sequence is 11 1110 (Lblock increased to 8), 0000 0110 
(log21 = 0, 8 bits used to code length of 6), 0 0100 1011 (log22 = 1, 9 bits used to code the length of 75), 1000 0110 (log21 = 0, 8 
bits used to code the length of 134), and 1100 0000 (log21 = 0, 8 bits used to code the length of 192). Notice that the value of 
Lblock is incremented only at the start of the sequence. 

B.10.8 Order of information within packet header 

The following is the packet header information order for one packet of a specific layer, tile-component, resolution level 
and precinct. 

 bit for zero or non-zero length packet 

 for each sub-band (LL or HL, LH and HH) 

  for all code-blocks in this sub-band confined to the relevant precinct, in raster order 

   code-block inclusion bits (if not previously included then tag tree, else one bit) 

   if code-block included 

    if first instance of code-block 

     zero bit-planes information 

    number of coding passes included 

    increase of code-block length indicator (Lblock) 

    for each codeword segment 

    length of codeword segment 

The packet header may be immediately followed by the EPH marker as described in A.8.2. The EPH marker may 
appear regardless of whether the packet contains any code-block contributions. In the event that the packet header 
appears in a PPM or PPT marker segment, the EPH marker (if used) must appear together with the packet header. 

NOTE – Figure B.13 and Table B.5 show a brief example of packet header construction. Figure B.13 shows the information 
known to the encoder. In particular the "inclusion information" shows the layer where each code-block first appears in a packet. 
The decoder will receive this information via the inclusion tag tree in several packet headers. Table B.5 shows the resulting bit 
stream (in part) from this information. 
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Figure B.13 – Example of the information known to the encoder 
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Table B.5 – Example packet header bit stream 

Bit stream (in order) Derived meaning 

1 Packet non-zero in length 
111 Code-block 0, 0 included for the first time (partial inclusion tag tree) 

000111 Code-block 0, 0 insignificant for 3 bit-planes 
1100 Code-block 0, 0 has 3 coding passes included 

0 Code-block 0, 0 length indicator is unchanged 
0100 Code-block 0, 0 has 4 bytes, 4 bits are used, 3 + floor(log2 3) 

1 Code-block 1, 0 included for the first time (partial inclusion tag tree) 
01 Code-block 1, 0 insignificant for 4 bit-planes 
10 Code-block 1, 0 has 2 coding passes included 
10 Code-block 1, 0 length indicator is increased by 1 bit (3 to 4) 

00100 Code-block 1, 0 has 4 bytes, 5 bits are used 4 + floor(log2 2), 
(Note that while this is a legitimate entry, it is not minimal in code length.) 

0 Code-block 2, 0 not yet included (partial tag tree) 
0 Code-block 0, 1 not yet included 
0 Code-block 1, 1 not yet included 
 Code-block 2, 1 not yet included (no data needed, already conveyed by partial tag tree for code-block 2, 0) 

••• Packet header data for the other sub-bands, packet data 
 Packet for the next layer 

1 Packet non-zero in length 
1 Code-block 0, 0 included again 

1100 Code-block 0, 0 has 3 coding passes included 
0 Code-block 0, 0 length indicator is unchanged 

1010 Code-block 0, 0 has 10 bytes, 3 + log2 (3) bits used 
0 Code-block 1, 0 not included in this layer 
10 Code-block 2, 0 not yet included 
0 Code-block 0, 1 not yet included 
1 Code-block 1, 1 included for the first time 
1 Code-block 1, 1 insignificant for 3 bit-planes 
0 Code-block 1, 1 has 1 coding passes included 
0 Code-block 1, 1 length information is unchanged 

001 Code-block 1, 1 has 1 byte, 3 + log2 (1) bits used 
1 Code-block 2, 1 included for the first time 

00011 Code-block 2, 1 insignificant for 6 bit-planes 
0 Code-block 2, 1 has 1 coding passes included 
0 Code-block 2, 1 length indicator is unchanged 

010 Code-block 2, 1 has 2 bytes, 3 + log2 1 bits used 
••• Packet header data for the other sub-bands, packet data 
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B.11 Tile and tile-parts 

Each coded tile is represented by a sequence of packets. The rules governing the order that the packets of a tile appear 
within the codestream is specified in B.12. It is possible for a tile to contain no packets, in the event that no samples 
from any image component map to the region occupied by the tile on the reference grid. 

Any tile's representation may be truncated by discarding one or more trailing bytes. Also, any number of whole packets 
(in order) may be dropped and the final packet appearing in the tile may be partially truncated. The tile length marker 
segment parameters shall reflect this. 

The sequence of packets representing any particular tile may be divided into contiguous segments known as tile-parts. 
Any number of packets (including zero) may be contained in a tile-part. Each tile must contain at least one tile-part. The 
divisions between tile-parts must occur at packet boundaries. While tiles are coherent geometric areas, the tile-parts 
may be distributed throughout the codestream in any desired fashion, provided tile-parts from the same tile appear in the 
order that preserves the original packet sequence. Each tile-part commences with an SOT marker segment (see A.4.2), 
containing the index of the tile to which the tile-part belongs. 

NOTE – It is possible to interleave tile-parts from different tiles, as long as the order of the tile-parts from every tile is preserved. 
For example, a legitimate codestream might have the following order: 
 – Tile number 0, tile-part number 0; 
 – Tile number 1, tile-part number 0; 
 – Tile number 0, tile-part number 1; 
 – Tile number 1, tile-part number 1; 
 – etc. 

If SOP marker segments are allowed (by signalling in the COD marker segment, see A.6.1), each packet in any given 
tile-part may be appended with an SOP marker segment (see A.8.1). However, whether or not the SOP marker segment 
is used, the count in the Nsop is incremented for each packet. If the packet headers are moved to a PPM or PPT marker 
segments (see A.7.4 and A.7.5), then the SOP marker segments may appear immediately before the packet body in the 
tile-part compressed image data portion. 

If EPH markers are required (by signalling in the COD marker segment, see A.6.1), each packet header in any given 
tile-part shall postpended with an EPH marker segment (see A.8.2). If the packet headers are moved to a PPM or PPT 
marker segments (see A.7.4 and A.7.5), then the EPH markers shall appear after the packet headers in the PPM or PPT 
marker segments. 

B.12 Progression order 

For a given tile-part, the packets contain all compressed image data from a specific layer, a specific component, a 
specific resolution level, and a specific precinct. The order in which these packets are found in the codestream is called 
the progression order. The ordering of the packets can progress along four axes: layer, component, resolution level and 
precinct. 

It is possible that components have a different number of resolution levels. In this case, the resolution level that 
corresponds to the NLLL sub-band is the first resolution level (r = 0) for all components. The indices are synchronized 
from that point on. 

NOTE – For example, take the case of resolution level-position-component-layer progression and two components with 7 
resolution levels (6 decomposition levels) and 3 resolution levels (2 decomposition levels) respectively. The r = 0 will correspond 
to the NLLL sub-band of both components. From r = 0 to r = 2 the components will be interleaved as described below. From r = 3 
to r = 6 only component 0 will have packets. 

B.12.1 Progression order determination 

The COD marker segments signal which of the five progression orders are used (see A.6.1). The progression order can 
also be overridden with the POC marker segment (see A.6.6) in any tile-part header. For each of the possible 
progression orders the mechanism to determine the order in which packets are included is described below. 
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B.12.1.1 Layer-resolution level-component-position progression 

Layer-resolution level-component-position progression is defined as the interleaving of the packets in the following 
order: 

 for each l = 0,..., L – 1 

  for each r = 0,..., Nmax  

   for each i = 0,..., Csiz – 1 

    for each k = 0,..., numprecincts – 1 

     packet for component i, resolution level r, layer l, and precinct k. 

Here, L is the number of layers and Nmax is the maximum number of decomposition levels, NL, used in any component 
of the tile. A progression of this type might be useful when low sample accuracy is most desirable, but information is 
needed for all components. 

B.12.1.2 Resolution level-layer-component-position progression 

Resolution level-layer-component-position progression is defined as the interleaving of the packets in the following 
order: 

 for each r = 0,..., Nmax 

  for each l = 0,..., L – 1 

   for each i = 0,..., Csiz – 1 

    for each k = 0,..., numprecincts – 1 

     packet for component i, resolution level r, layer l, and precinct k. 

A progression of this type might be useful in providing low resolution level versions of all image components. 

B.12.1.3 Resolution level-position-component-layer progression 

Resolution level-position-component-layer progression is defined as the interleaving of the packets in the following 
order: 

 for each r = 0,..., Nmax 

  for each y = ty0,..., ty1 – 1, 

   for each x = tx0,..., tx1 – 1, 

    for each i = 0,..., Csiz – 1 

     if ((y divisible by YRsiz ( ) ( ) ( ) riNirPPy Li −+⋅ ,2 ) OR ((y = ty0) AND (try0 · ( ) riNL −2  NOT 

divisible by ( ) ( ) riNirPPy L −+,2 )) 

     if ((x divisible by XRsiz(i) · ( ) ( ) riNirPPx L −+,2 ) OR ((x = tx0) AND (trx0 · ( ) riNL −2 NOT 
divisible by ( ) ( ) riNirPPx L −+,2 )) 

   for the next precinct, k, if one exists, 

    for each l = 0,..., L – 1 

     packet for component i, resolution level r, layer l, and precinct k. 

In the above, k can be obtained from: 
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To use this progression, XRsiz and YRsiz values must be powers of two for each component. A progression of this type 
might be useful in providing low resolution level versions of all image components at a particular spatial location. 

NOTE – The iteration of variables x and y in the above formulation is given for simplicity only of expression, not 
implementation. Most of the (x, y) pairs generated by this loop will generally result in the inclusion of no packets. More efficient 
iterations can be found based upon the minimum of the dimensions of the various precincts, mapped into the reference grid. This 
note also applies to the loops given for the following two progressions. 

B.12.1.4 Position-component-resolution level-layer progression 

Position-component-resolution level-layer progression is defined as the interleaving of the packets in the following 
order: 

 for each y = ty0,..., ty1 – 1, 

  for each x = tx0,..., tx1 – 1, 

   for each i = 0,..., Csiz – 1 

    for each r = 0,..., NL where NL is the number of decomposition levels for component i, 

     if ((y divisible by YRsiz(i) · ( ) ( ) riNirPPy L −+,2 ) OR ((y = ty0) AND (try0 · 
( ) riNL −2  NOT 

divisible by ( ) ( ) riNirPPy L −+,2 )) 

    if ((x divisible by XRsiz(i) · ( ) ( ) riNirPPx L −+,2 ) OR ((x = tx0) AND (trx0 · ( ) riNL −2  
NOT divisible by ( ) ( ) riNirPPx L −+,2 )) 

 for the next precinct, k, if one exists, in the sequence shown in Figure B.8 

 for each l = 0,..., L – 1 

 packet for component i, resolution level r, layer l, and precinct k. 

In the above, k can be obtained from Equation (B-20). To use this progression, XRsiz and YRsiz values shall be powers 
of two for each component. A progression of this type might be useful in providing high sample accuracy for a 
particular spatial location in all components. 

B.12.1.5 Component-position-resolution level-layer progression 

Component-position-resolution level-layer progression is defined as the interleaving of the packets in the following 
order: 

 for each i = 0,..., Csiz – 1 

  for each y = ty0,..., ty1 – 1, 

   for each x = tx0,..., tx1 – 1, 

    for each r = 0,..., NL where NL is the number of decomposition levels for component i, 

     if ((y divisible by YRsiz(i) · ( ) ( ) riNirPPy L −+,2 ) OR ((y = ty0) AND (try0 · 
( ) riNL −2 NOT 

divisible by ( ) ( ) riNirPPy L −+,2 )) 

 if ((x divisible by XRsiz(i) · ( ) ( ) riNirPPx L −+,2 ) OR ((x = tx0) AND (trx0 · ( ) riNL −2  
NOT divisible by ( ) ( ) riNirPPx L −+,2 )) 

 for the next precinct, k, if one exists, in the sequence shown in Figure B.8 

  for each l = 0,..., L – 1 

    packet for component i, resolution level r, layer l, and precinct k. 

In the above, k can be obtained from Equation (B-20). A progression of this type might be useful in providing high 
accuracy for a particular spatial location in a particular image component. 
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B.12.2 Progression order volumes 

The progression order default is signalled in the COD marker segment in the main header or tile headers (see A.6.1). 
The progression loops of B.12.1 all go from zero to the maximum value. 

If this progression order is to be changed, the POC marker segment is used (see A.6.6). In this case, the "for loops" 
described in B.12.1 are limited by start points (CSpoc, RSpoc, Layer = 0, inclusive) and end points (CEpoc, REpoc and 
LEpoc, exclusive). This creates a progression order volumne of packets. All the packets included in the entire 
progression order volume are found in order in the codestream before the next progression order change takes effect. No 
packet is ever repeated in the codestream. Therefore, the layer always starts with the next one for a given tile-
component, resolution level, and precinct. The decoder is required to determine the next layer. 

Thus, the variables in the above loops are bounded by the progression order volumne as described in Equation (B-21). 

   
LEpodl
REpodrRSpod
CEpodiCSpod

<≤
<≤
<≤

0
 (B-21) 

NOTE – Figure B.14 shows an example of two progression volumes for a single component image. First packets are sent in 
resolution level-layer-component-position progression until the box labeled "First" in the figure is complete; then packets are sent 
in layer-resolution level-component-position progression for the layers of all resolution levels which were not previously sent. 

T.800_FB-14

First
(0, 0)

Resolution level

Second

La
ye

r

 

Figure B.14 – Example of progression order volume in two dimensions 

B.12.3 Progression order change signalling 

If there is a progression order change, then at least one POC marker segment shall be used in the codestream 
(see A.6.6). There can only be one POC marker segment in a given header (main or tile-part) but that marker segment 
can describe many progression order changes. 

If the POC marker segment is found in the main header, it overrides the progression found in the COD for all tiles. The 
main header POC marker segement is used for tiles that do not have POC marker segments in their tile-part headers. 

If a POC marker segment is used for an individual tile, there shall be a POC marker in the first tile-part header of that 
tile and all of the progression order changes shall be signalled in the tile-part headers of that tile. The COD progression 
order and the main header POC marker segment (if there is one) are overridden. 
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If there are progression order changes signalled by POC marker segments (whether in the main header or the tile-part 
headers), then all the order of all the packets in the codestream, or the affected tile-parts of the codestream shall be 
described by progression order volumes in the POC marker segments. There will never be the case where a progression 
order volume is filled and the next one is not defined. On the other hand, the POC marker segments may describe more 
progression order volumes than exist in the codestream. Also, the last progression order volume in each tile may be 
incomplete. 

The POC marker segments shall describe progression order volumes in order in any tile-part header before the first 
included packet appears. However, the POC marker may be, but is not required to be, in the tile-part header 
immediately before the progression order volume is used. It is possible to describe many progression order volumes in a 
tile-part header even though those progression order volumes do not appear until later tile-parts. 

NOTE – For example, all of the progression order volumes can be described one POC marker segement in the first tile-part 
header of a tile. Figure B.15a shows this scenario. Equally acceptable, in this case, is describing two progression order volumes 
in the first tile-part header and one in the third, as shown in Figure B.15b. 

T.800_FB-15
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POC

POV1 POV2

POV1 POV2

POV2 cont.

Tile-part 1

POV2 cont.

Tile-part 1Tile-part 0

Tile-part 0

POV3

Tile-part 2

POC POV3

Tile-part 2

a) All of the progression order volumes are described in the POC marker segments in the first tile-part header

b) Progression order volumes 1 and 2 are described in the POC marker segments in the first tile-part header,
    progression order volume 3 described in the third tile-part header  

Figure B.15 – Example of the placement of POC marker segments 
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Annex C 
 

Arithmetic entropy coding 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

C.1 Binary encoding (informative) 

Figure C.1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context (CX) 
pairs are processed together to produce compressed image data (CD) output. Both D and CX are provided by the model 
unit (not shown). CX selects the probability estimate to use during the coding of D. In this Recommendation 
International Standard, CX is a label for a context.  

T.800_FC-1

ENCODER
CD

D

CX

 

Figure C.1 – Arithmetic encoder inputs and outputs 

C.1.1 Recursive interval subdivision (informative) 

The recursive probability interval subdivision of Elias coding is the basis for the binary arithmetic coding process. With 
each binary decision the current probability interval is subdivided into two sub-intervals, and the code string is modified 
(if necessary) so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which 
occurred. 

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol (MPS) is 
ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded, the LPS sub-
interval is added to the code string. This coding convention requires that symbols be recognized as either MPS or LPS, 
rather than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for each decision must be known 
in order to code that decision. 

Since the code string always points to the base of the current interval, the decoding process is a matter of determining, 
for each decision, which sub-interval is pointed to by the compressed image data. This is also done recursively, using 
the same interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts any 
interval the encoder added to the code string. Therefore, the code string in the decoder is a pointer into the current 
interval relative to the base of the current interval. Since the coding process involves addition of binary fractions rather 
than concatenation of integer code words, the more probable binary decisions can often be coded at a cost of much less 
than one bit per decision. 

C.1.2 Coding conventions and approximations (informative) 

The coding operations are done using fixed precision integer arithmetic and using an integer representation of fractional 
values in which 0x8000 is equivalent to decimal 0,75. The interval A is kept in the range 0,75 ≤ A < 1,5 by doubling it 
whenever the integer value falls below 0x8000. 

The code register C is also doubled each time A is doubled. Periodically – to keep C from overflowing – a byte of 
compressed image data is removed from the high order bits of the C-register and placed in an external compressed 
image data buffer. Carry-over into the external buffer is prevented by a bit-stuffing procedure. 
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Keeping A in the range 0,75 ≤ A < 1,5 allows a simple arithmetic approximation to be used in the interval subdivision. 
The interval is A and the current estimate of the LPS probability is Qe, a precise calculation of the sub-intervals would 
require: 

   A – (Qe * A) = sub-interval for the MPS (C-1) 

   Qe * A = sub-interval for the LPS (C-2) 

Because the value of A is of order unity, these are approximated by: 

   A – Qe = sub-interval for the MPS (C-3) 

   Qe = sub-interval for the LPS (C-4) 

Whenever the MPS is coded, the value of Qe is added to the code register and the interval is reduced to A – Qe. 
Whenever the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision range 
required for A is then restored, if necessary, by renormalization of both A and C. 

With the process illustrated above, the approximations in the interval subdivision process can sometimes make the LPS 
sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0,5 and A is at the minimum allowed 
value of 0,75, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS. To avoid this size 
inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than the MPS interval. This 
MPS/LPS conditional exchange can only occur when a renormalization is needed. 

Whenever a renormalization occurs, a probability estimation process is invoked which determines a new probability 
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative 
probabilities of renormalization after coding an LPS or MPS provide an approximate symbol counting mechanism 
which is used to directly estimate the probabilities. 

C.2 Description of the arithmetic encoder (informative) 

The ENCODER (Figure C.2) initializes the encoder through the INITENC procedure. CX and D pairs are read and 
passed on to ENCODE until all pairs have been read. The probability estimation procedures which provide adaptive 
estimates of the probability for each context are imbedded in ENCODE. Bytes of compressed image data are output 
when necessary. When all of the CX and D pairs have been read, FLUSH sets the contents of the C-register to as many 
1 bits as possible and then outputs the final bytes. FLUSH also terminates the encoding and generates the required 
terminating marker. 

NOTE – While FLUSH is required in ITU-T Rec. T.88 | ISO/IEC 14492, it is informative in this Recommendation | International 
Standard. Other methods, such as that defined in D.4.2, are acceptable. 
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Figure C.2 – Encoder for the MQ-coder 

C.2.1 Encoder code register conventions (informative) 

The flow charts given in this annex assume the register structures for the encoder shown in Table C.1. 

Table C.1 – Encoder register structures 

 MSB   LSB 

C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx 

A-register 0000 0000 0000 0000 1aaa aaaa aaaa aaaa 

The "a" bits are the fractional bits in the A.register (the current interval value) and the "x" bits are the fractional bits in 
the code register. The "s" bits are spacer bits which provide useful constraints on carry-over, and the "b" bits indicate 
the bit positions from which the completed bytes of the compressed image data are removed from the C-register. The 
"c" bit is a carry bit. The detailed description of bit stuffing and the handling of carry-over will be given in a later part 
of this annex. 
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C.2.2 Encoding a decision (ENCODE) (informative) 

The ENCODE procedure determines whether the decision D is a 0 or not. Then a CODE0 or a CODE1 procedure is 
called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODE0 or CODE1 
procedures directly to code a 0-decision or a 1-decision. Figure C.3 shows this procedure. 

T.800_FC-3

ENCODE
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Done

CODE1 CODE0

D = 0?

 

Figure C.3 – ENCODE procedure 

C.2.3 Encoding a 1 or a 0 (CODE1 and CODE0) (informative) 

When a given binary decision is coded, one of two possibilities occurs – the symbol is either the more probable symbol 
or it is the less probable symbol. CODE1 and CODE0 are illustrated in Figures C.4 and C.5. In these figures, CX is the 
context. For each context, the index of the probability estimate which is to be used in the coding operations and the 
MPS value are stored. MPS(CX) is the sense (0 or 1) of the MPS for context CX. 
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Figure C.4 – CODE1 procedure 
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Figure C.5 – CODE0 procedure 

C.2.4 Encoding an MPS or LPS (CODEMPS and CODELPS) (informative) 

The CODELPS (Figure C.6) procedure usually consists of a scaling of the interval to Qe(I(CX)), the probability 
estimate of the LPS determined from the index I stored for context CX. The upper interval is first calculated so it can be 
compared to the lower interval to confirm that Qe has the smaller size. It is always followed by a renormalization 
(RENORME). In the event that the interval sizes are inverted, however, the conditional MPS/LPS exchange occurs and 
the upper interval is coded. In either case, the probability estimate is updated. If the SWITCH flag for the index I(CX) is 
set, then the MPS(CX) is inverted. A new index I is saved at CX as determined from the next LPS index (NLPS) 
column in Table C.2. 
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Figure C.6 – CODELPS procedure with conditional MPS/LPS exchange 

Table C.2 – Qe values and probability estimation 

Index Qe_Value NMPS NLPS SWITCH 

 (hexadecimal) (binary) (decimal)    

0 0x5601 0101 0110 0000 0001 0,503 937 1 1 1 
1 0x3401 0011 0100 0000 0001 0,304 715 2 6 0 
2 0x1801 0001 1000 0000 0001 0,140 650 3 9 0 
3 0x0AC1 0000 1010 1100 0001 0,063 012 4 12 0 
4 0x0521 0000 0101 0010 0001 0,030 053 5 29 0 
5 0x0221 0000 0010 0010 0001 0,012 474 38 33 0 
6 0x5601 0101 0110 0000 0001 0,503 937 7 6 1 
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Table C.2 – Qe values and probability estimation (concluded) 

Index Qe_Value NMPS NLPS SWITCH 

 (hexadecimal) (binary) (decimal)    

7 0x5401 0101 0100 0000 0001 0,492 218 8 14 0 
8 0x4801 0100 1000 0000 0001 0,421 904 9 14 0 
9 0x3801 0011 1000 0000 0001 0,328 153 10 14 0 

10 0x3001 0011 0000 0000 0001 0,281 277 11 17 0 
11 0x2401 0010 0100 0000 0001 0,210 964 12 18 0 
12 0x1C01 0001 1100 0000 0001 0,164 088 13 20 0 
13 0x1601 0001 0110 0000 0001 0,128 931 29 21 0 
14 0x5601 0101 0110 0000 0001 0,503 937 15 14 1 
15 0x5401 0101 0100 0000 0001 0,492 218 16 14 0 
16 0x5101 0101 0001 0000 0001 0,474 640 17 15 0 
17 0x4801 0100 1000 0000 0001 0,421 904 18 16 0 
18 0x3801 0011 1000 0000 0001 0,328 153 19 17 0 
19 0x3401 0011 0100 0000 0001 0,304 715 20 18 0 
20 0x3001 0011 0000 0000 0001 0,281 277 21 19 0 
21 0x2801 0010 1000 0000 0001 0,234 401 22 19 0 
22 0x2401 0010 0100 0000 0001 0,210 964 23 20 0 
23 0x2201 0010 0010 0000 0001 0,199 245 24 21 0 
24 0x1C01 0001 1100 0000 0001 0,164 088 25 22 0 
25 0x1801 0001 1000 0000 0001 0,140 650 26 23 0 
26 0x1601 0001 0110 0000 0001 0,128 931 27 24 0 
27 0x1401 0001 0100 0000 0001 0,117 212 28 25 0 
28 0x1201 0001 0010 0000 0001 0,105 493 29 26 0 
29 0x1101 0001 0001 0000 0001 0,099 634 30 27 0 
30 0x0AC1 0000 1010 1100 0001 0,063 012 31 28 0 
31 0x09C1 0000 1001 1100 0001 0,057 153 32 29 0 
32 0x08A1 0000 1000 1010 0001 0,050 561 33 30 0 
33 0x0521 0000 0101 0010 0001 0,030 053 34 31 0 
34 0x0441 0000 0100 0100 0001 0,024 926 35 32 0 
35 0x02Al 0000 0010 1010 0001 0,015 404 36 33 0 
36 0x0221 0000 0010 0010 0001 0,012 474 37 34 0 
37 0x0141 0000 0001 0100 0001 0,007 347 38 35 0 
38 0x0111 0000 0001 0001 0001 0,006 249 39 36 0 
39 0x0085 0000 0000 1000 0101 0,003 044 40 37 0 
40 0x0049 0000 0000 0100 1001 0,001 671 41 38 0 
41 0x0025 0000 0000 0010 0101 0,000 847 42 39 0 
42 0x0015 0000 0000 0001 0101 0,000 481 43 40 0 
43 0x0009 0000 0000 0000 1001 0,000 206 44 41 0 
44 0x0005 0000 0000 0000 0101 0,000 114 45 42 0 
45 0x0001 0000 0000 0000 0001 0,000 023 45 43 0 
46 0x5601 0101 0110 0000 0001 0,503 937 46 46 0 

C.2.5 Probability estimation 

Table C.2 shows the Qe value associated with each Qe index. The Qe values are expressed as hexadecimal integers, as 
binary integers, and as decimal fractions. To convert the 15-bit integer representation of Qe to the decimal probability, 
the Qe values are divided by (4/3) * (0x8000). 

The estimator can be defined as a finite-state machine – a table of Qe indexes and associated next states for each type of 
renormalization (i.e., new table positions) – as shown in Table C.2. The change in state occurs only when the arithmetic 
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coder interval register is renormalized. This is always done after coding the LPS, and whenever the interval register is 
less than 0x8000 (0,75 in decimal notation) after coding the MPS. 

After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. If the switch is 1, the MPS 
symbol sense is reversed.  
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YesNo

C = C + Qe(I(CX))
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C = C + Qe(I(CX)) A = Qe(I(CX))

I(CX) = NMPS(I(CX))

RENORME

Done

 

Figure C.7 – CODEMPS procedure with conditional MPS/LPS exchange 

The index to the current estimate is part of the information stored for context CX. This index is used as the index to the 
table of values in NMPS, which gives the next index for an MPS renormalization. This index is saved in the context 
storage at CX. MPS(CX) does not change. 

The procedure for estimating the probability on the LPS renormalization path is similar to that of an MPS 
renormalization, except that when SWITCH(I(CX)) is 1, the sense of MPS(CX) is inverted. 

The final index state 46 can be used to establish a fixed 0,5 probability estimate. 
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C.2.6 Renormalization in the encoder (RENORME) (informative) 

Renormalization is very similar in both encoder and decoder, except that in the encoder it generates compressed bits and 
in the decoder it consumes compressed bits. 

The RENORME procedure for the encoder renormalization is illustrated in Figure C.8. Both the interval register A and 
the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT, and when CT is 
counted down to zero, a byte of compressed image data is removed from C by the procedure BYTEOUT. 
Renormalization continues until A is no longer less than 0x8000.  
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Figure C.8 – Encoder renormalization procedure 

C.2.7 Compressed image data output (BYTEOUT) (informative) 

The BYTEOUT routine called from RENORME is illustrated in Figure C.9. This routine contains the bit-stuffing 
procedures which are needed to limit carry propagation into the completed bytes of compressed image data. The 
conventions used make it impossible for a carry to propagate through more than the byte most recently written to the 
compressed image data buffer.  
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Figure C.9 – BYTEOUT procedure for encoder 

The procedure in the block in the lower right section does bit stuffing after a 0xFF byte; the similar procedure on the 
left is for the case where bit stuffing is not needed. 

B is the byte pointed to by the compressed image data buffer pointer BP. If B is not a 0xFF byte, the carry bit is 
checked. If the carry bit is set, it is added to B and B is again checked to see if a bit needs to be stuffed in the next byte. 
After the need for bit stuffing has been determined, the appropriate path is chosen, BP is incremented and the new value 
of B is removed from the code register "b" bits. 

C.2.8 Initialization of the encoder (INITENC) (informative) 

The INITENC procedure is used to start the arithmetic coder. After MPS and I are initialized, the basic steps are shown 
in Figure C.10. 
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Figure C.10 – Initialization of the encoder 

The interval register and code register are set to their initial values, and the bit counter is set. Setting CT = 12 reflects 
the fact that there are three spacer bits in the register which need to be filled before the field from which the bytes are 
removed is reached. BP always points to the byte preceding the position BPST where the first byte is placed. Therefore, 
if the preceding byte is a 0xFF byte, a spurious bit stuff will occur, but can be compensated for by increasing CT. The 
initial settings for MPS and I are shown in Table D.7. 

C.2.9 Termination of coding (FLUSH) (informative) 

The FLUSH procedure shown in Figure C.11 is used to terminate the encoding operations and generate the required 
terminating marker. The procedure guarantees that the 0xFF prefix to the marker code overlaps the final bits of the 
compressed image data. This guarantees that any marker code at the end of the compressed image data will be 
recognized and interpreted before decoding is complete. 
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Figure C.11 – FLUSH procedure 

The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible as shown in Figure C.12. The 
exclusive upper bound for the C-register is the sum of the C-register and the interval register. The low order 16 bits of C 
are forced to 1, and the result is compared to the upper bound. If C is too big, the leading 1-bit is removed, reducing C 
to a value which is within the interval. 
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Figure C.12 – Setting the final bits in the C register 

The byte in the C-register is then completed by shifting C, and two bytes are then removed. If the byte in buffer, B, is an 
0xFF then it is discarded. Otherwise, buffer B is output to the bit stream. 

NOTE – This is the only normative option for termination in ITU-T Rec. T.88 | ISO/IEC 14492. However, further reduction of 
the bit stream is allowed in this Recommendation | International Standard provided correct decoding is assured (see D.4.2). 

C.3 Arithmetic decoding procedure 

Figure C.13 shows a simple block diagram of a binary adaptive arithmetic decoder. The compressed image data CD and 
a context CX from the decoder's model unit (not shown) are input to the arithmetic decoder. The decoder's output is the 
decision D. The encoder and decoder model units need to supply exactly the same context CX for each given decision.  
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Figure C.13 – Arithmetic decoder inputs and outputs 

The DECODER (Figure C.14) initializes the decoder through INITDEC. Contexts, CX, and bytes of compressed image 
data (as needed) are read and passed on to DECODE until all contexts have been read. The DECODE routine decodes 
the binary decision D and returns a value of either 0 or 1. The probability estimation procedures which provide adaptive 
estimates of the probability for each context are embedded in DECODE. When all contexts have been read, the 
compressed image data has been decompressed.  
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Figure C.14 – Decoder for the MQ-coder 

C.3.1 Decoder code register conventions 

The flow charts given in this annex assume the register structures for the decoder shown in Table C.3. 

Table C.3 – Decoder register structures 

 MSB LSB 

Chigh register xxxx xxxx xxxx xxxx 

Clow register bbbb bbbb 0000 0000 

A-register aaaa aaaa aaaa aaaa 

Chigh and Clow can be thought of as one 32-bit C-register in that renormalization of C shifts a bit of new data from the 
MSB of Clow to the LSB of Chigh. However, the decoding comparisons use Chigh alone. New data is inserted into the 
"b" bits of Clow one byte at a time. 

The detailed description of the handling of data with stuff-bits will be given later in this annex. 

Note that the comparisons shown in the various procedures in this clause assume precisions greater than 16 bits. Logical 
comparisons can be used with 16-bit precision. 

C.3.2 Decoding a decision (DECODE) 

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from 
the compressed image data that the encoder added. The amount left in the compressed image data is the offset from the 
base of the current interval to the sub-interval allocated to all binary decisions not yet decoded. In the first test in the 
DECODE procedure illustrated in Figure C.15 the Chigh register is compared to the size of the LPS sub-interval. 
Unless a conditional exchange is needed, this test determines whether a MPS or LPS is decoded. If Chigh is logically 
greater than or equal to the LPS probability estimate Qe for the current index I stored at CX, then Chigh is decremented 
by that amount. If A is not less than 0x8000, then the MPS sense stored at CX is used to set the decoded decision D.  
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Figure C.15 – Decoding an MPS or an LPS 

When a renormalization is needed, the MPS/LPS conditional exchange may have occurred. For the MPS path the 
conditional exchange procedure is shown in Figure C.16. As long as the MPS sub-interval size A calculated as the first 
step in Figure C.16 is not logically less than the LPS probability estimate Qe(I(CX)), an MPS did occur and the decision 
can be set from MPS(CX). Then the index I(CX) is updated from the next MPS index (NMPS) column in Table C.2. If, 
however, the LPS sub-interval is larger, the conditional exchange occurred and an LPS occurred. D is set by inverting 
MPS(CX). The probability update switches the MPS sense if the SWITCH column has a "1" and updates the index 
I(CX) from the next LPS index (NLPS) column in Table C.2. The probability estimation in the decoder needs to be 
identical to the probability estimation in the encoder. 
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Figure C.16 – Decoder MPS path conditional exchange procedure 

For the LPS path of the decoder, the conditional exchange procedure is given the LPS_EXCHANGE procedure shown 
in Figure C.17. The same logical comparison between the MPS sub-interval A and the LPS sub-interval Qe(I(CX)) 
determines if a conditional exchange occurred. On both paths the new sub-interval A is set to Qe(I(CX)). On the left 
path the conditional exchange occurred so the decision and update are for the MPS case. On the right path, the LPS 
decision and update are followed. 
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Figure C.17 – Decoder LPS path conditional exchange procedure 

C.3.3 Renormalization in the decoder (RENORMD) 

The RENORMD procedure for the decoder renormalization is illustrated in Figure C.18. A counter keeps track of the 
number of compressed bits in the Clow section of the C-register. When CT is zero, a new byte is inserted into Clow in 
the BYTEIN procedure. The C-register in this procedure is the concatenation of the Chigh and Clow registers. 

Both the interval register A and the code register C are shifted, one bit at a time, until A is no longer less than 0x8000. 
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Figure C.18 – Decoder renormalization procedure 

C.3.4 Compressed image data input (BYTEIN) 

The BYTEIN procedure called from RENORMD is illustrated in Figure C.19. This procedure reads in one byte of data, 
compensating for any stuff bits following the 0xFF byte in the process. It also detects the marker codes which must 
occur at the end of a coding pass. The C-register in this procedure is the concatenation of the Chigh and Clow registers. 
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Figure C.19 – BYTEIN procedure for decoder 

B is the byte pointed to by the compressed image data buffer pointer BP. If B is not a 0xFF byte, BP is incremented and 
the new value of B is inserted into the high order 8 bits of Clow. 

If B is a 0xFF byte, then B1 (the byte pointed to by BP+1) is tested. If B1 exceeds 0x8F, then B1 must be one of the 
marker codes. The marker code is interpreted as required, and the buffer pointer remains pointed to the 0xFF prefix of 
the marker code which terminates the arithmetically compressed image data. 1-bits are then fed to the decoder until the 
decoding is complete. This is shown by adding 0xFF00 to the C-register and setting the bit counter CT to 8. 

If B1 is not a marker code, then BP is incremented to point to the next byte which contains a stuffed bit. The B is added 
to the C-register with an alignment such that the stuff bit (which contains any carry) is added to the low order bit of 
Chigh. 

C.3.5 Initialization of the decoder (INITDEC) 

The INITDEC procedure is used to start the arithmetic decoder. After MPS and I are initialized, the basic steps are 
shown in Figure C.20.  
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Figure C.20 – Initialization of the decoder 

BP, the pointer to the compressed image data, is initialized to BPST (pointing to the first compressed byte). The first 
byte of the compressed image data is shifted into the low order byte of Chigh, and a new byte is then read in. The 
C-register is then shifted by 7 bits and CT is decremented by 7, bringing the C-register into alignment with the starting 
value of A. The interval register A is set to match the starting value in the encoder. The initial settings for MPS and I 
are shown in Table D.7. 

C.3.6 Resetting arithmetic coding statistics 

At certain points during the decoding some or all of the arithmetic coding statistics are reset. This process involves 
returning I(CX) and MPS(CX) to their initial values as defined in Table D.7 for some or all values of CX. 

C.3.7 Saving arithmetic coding statistics 

In some cases, the decoder needs to save or restore some values of I(CX) and MPS(CX). 
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Annex D 
 

Coefficient bit modeling 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

This annex defines the modeling and scanning of transform coefficient bits. 

Code-blocks (see Annex B) are decoded a bit-plane at a time starting from the most significant bit-plane with a non-
zero element to the least significant bit-plane. For each bit-plane in a code-block, a special code-block scan pattern is 
used for each of three coding passes. Each coefficient bit in the bit-plane appears in only one of the three coding passes 
called significance propagation, magnitude refinement, and cleanup. For each pass contexts are created which are 
provided to the arithmetic coder, CX, along with the bit stream, CD (see C.3). 

D.1 Code-block scan pattern within code-blocks 

Each bit-plane of a code-block is scanned in a particular order. Starting at the top left, the first four coefficients of the 
first column are scanned, followed by the first four coefficients of the second column and so on, until the right side of 
the code-block is reached. The scan then returns to the left of the code-block and the second set of four coefficients in 
each column is scanned. The process is continued to the bottom of the code-block. If the code-block height is not 
divisible by 4, the last set of coefficients scanned in each column will contain fewer than 4 members. Figure D.1 shows 
an example of the code-block scan pattern for a code-block.  

T.800_FD-1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

64 ...

...

Code-block 16 wide by N high

 

Figure D.1 – Example scan pattern of a code-block bit-plane 

D.2 Coefficient bits and significance 

D.2.1 General case notations 

The decoding procedures specified in this annex produce for each transform coefficient (u, v) of sub-band b the decoded 
bits which will be used to reconstruct the transform coefficient value qb(u, v). The bits produced are: a sign bit sb(u, v) 
and a number Nb(u, v) of decoded magnitude MSBs, ordered from most to least significant: MSBi(b, u, v) is the ith MSB 
of transform coefficient (u, v) of sub-band b (i = 1, ..., Nb(u, v)). As indicated in Equation (D-1), the sign bit sb(u, v) has 
a value of one for negative coefficients and of zero for positive coefficients. The number Nb(u, v) of decoded MSBs 
includes the number of all zero most significant bit-planes signalled in the packet header (see B.10.5). 
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D.2.2 Notation in the case with ROI 

In the case of the presence of the RGN marker segment (indicating the presence of an ROI), modifications need to be 
made to the decoded bits, as well as the number of decoded bits Nb(u, v). These modifications are specified in H.1. In 
the absence of the RGN marker segment, no modification is required. 

D.3 Decoding passes over the bit-planes 

Each coefficient in a code-block has an associated binary state variable called its significance state. Significance states 
are initialized to 0 (coefficient is insignificant) and may become 1 (coefficient is significant) during the course of the 
decoding of the code-block. The "significance state" changes from insignificant to significant (see the clause below) at 
the bit-plane where the most significant magnitude bit equal to 1 is found. The context vector for a given current 
coefficient is the binary vector consisting of the significance states of its 8 nearest-neighbor coefficients, as shown in 
Figure D.2. Any nearest neighbor lying outside the current coefficient's code-block is regarded as insignificant (i.e., it is 
treated as having a zero significance state) for the purpose creating a context vector for decoding the current coefficient. 

T.800_FD-2

D0 V0 D1

H0 X H1

D2 V1 D3

 

Figure D.2 – Neighbors states used to form the context 

In general, a current coefficient can have 256 possible context vectors. These are clustered into a smaller number of 
contexts according to the rules specified below for context formation. Four different context formation rules are 
defined, one for each of the four coding passes: significance coding, sign coding, magnitude refinement coding, and 
cleanup coding. These coding operations are performed in three coding passes over each bit-plane: significance and sign 
coding in a significance propagation pass, magnitude refinement coding in a magnitude refinement pass, and cleanup 
and sign coding in a cleanup pass. For a given coding operation, the context label (or context) provided to the arithmetic 
coding engine is a label assigned to the current coefficient's context. 

NOTE – Although (for the sake of concreteness) specific integers are used in the tables below for labeling contexts, the tokens 
used for context labels are implementation-dependent and their values are not mandated by this Recommendation | International 
Standard. 

The first bit-plane within the current block with a non-zero element has a cleanup pass only. The remaining bit-planes 
are decoded in three coding passes. Each coefficient bit is decoded in exactly one of the three coding passes. Which 
pass a coefficient bit is decoded in depends on the conditions for that pass. In general, the significance propagation pass 
includes the coefficients that are predicted, or "most likely", to become significant and their sign bits, as appropriate. 
The magnitude refinement pass includes bits from already significant coefficients. The cleanup pass includes all the 
remaining coefficients. 

D.3.1 Significance propagation decoding pass 

The eight surrounding neighbor coefficients of a current coefficient (shown in Figure D.2 where X denotes the current 
coefficient) are used to create a context vector that maps into one of the 9 contexts shown in Table D.1. If a coefficient 
is significant then it is given a 1 value for the creation of the context, otherwise it is given a 0 value. The mapping to the 
contexts also depends on the sub-band. 
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Table D.1 – Contexts for the significance propagation and cleanup coding passes 

LL and LH sub-bands 
(vertical high-pass) 

HL sub-band 
(horizontal high-pass) 

HH sub-band 
(diagonally high-pass) 

Context 
labela 

∑ iH  ∑ iV  ∑ iD  ∑ iH  ∑ iV  ∑ iD  ( )∑ + ii VH  ∑ iD   

2 xb x x 2 x x ≥3 8 
1 ≥1 x ≥1 1 x ≥1 2 7 
1 0 ≥1 0 1 ≥1 0 2 6 
1 0 0 0 1 0 ≥2 1 5 
0 2 x 2 0 x 1 1 4 
0 1 x 1 0 x 0 1 3 
0 0 ≥2 0 0 ≥2 ≥2 0 2 
0 0 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 

a) Note that the context labels are indexed only for identification convenience in this Recommendation | International Standard. 
The actual identifiers used is a matter of implementation. 

b) "x" indicates a "don't care" state. 

The significance propagation pass only includes bits of coefficients that were insignificant (the significance state has yet 
to be set) and have a non-zero context. All other coefficients are skipped. The context is delivered to the arithmetic 
decoder (along with the bit stream) and the decoded coefficient bit is returned. If the value of this bit is 1 then the 
significance state is set to 1 and the immediate next bit to be decoded is the sign bit for the coefficient. Otherwise, the 
significance state remains 0. When the contexts of successive coefficients and coding passes are considered, the most 
current significance state for this coefficient is used.  

D.3.2 Sign bit decoding 

The context label for sign bit decoding is determined using another context vector from the neighborhood. Computation 
of the context label can be viewed as a two-step process. The first step summarizes the contribution of the vertical and 
the horizontal neighbors. The second step reduces those contributions to one of 5 context labels. 

For the first step, the two vertical neighbors (see Figure D.2) are considered together. Each neighbor may have one of 
three states: significant positive, significant negative, or insignificant. If the two vertical neighbors are both significant 
with the same sign, or if only one is significant, then the vertical contribution is 1 if the sign is positive or –1 if the sign 
is negative. If both vertical neighbors are insignificant, or both are significant with different signs, then the vertical 
contribution is 0. The horizontal contribution is created the same way. Once again, if the neighbors fall outside the 
code-block they are considered to be insignificant. Table D.2 shows these contributions.  

Table D.2 – Contributions of the vertical (and the horizontal) neighbors to the sign context 

V0 (or H0) V1 (or H1) V (or H) contribution 

significant, positive significant, positive 1 
significant, negative significant, positive 0 

insignificant significant, positive 1 
significant, positive significant, negative 0 
significant, negative significant, negative –1 

insignificant significant, negative –1 
significant, positive insignificant 1 
significant, negative insignificant –1 

insignificant insignificant 0 

The second step reduces the nine permutations of the vertical and horizontal contributions into 5 context labels. 
Table D.3 shows these context labels. This context is provided to the arithmetic decoder with the bit stream. The bit 
returned, D (see Annex C), is then logically exclusive ORed with the XORbit in Table D.3 to produce the sign bit. The 
following equation is used: 

   signbit = D ⊗ XORbit (D-1) 
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where signbit is the sign bit of the current coefficient (a one bit indicates a negative coefficient, a zero bit a positive 
coefficient), D is the value returned from the arithmetic decoder given the context label and the bit stream, and the 
XORbit is found in Table D.3 for the current context label.  

Table D.3 – Sign contexts from the vertical and horizontal contributions 

Horizontal 
contribution 

Vertical 
contribution Context label XORbit 

1 1 13 0 
1 0 12 0 
1 –1 11 0 
0 1 10 0 
0 0 9 0 
0 –1 10 1 
–1 1 11 1 
–1 0 12 1 
–1 –1 13 1 

D.3.3 Magnitude refinement pass 

The magnitude refinement pass includes the bits from coefficients that are already significant (except those that have 
just become significant in the immediately preceding significance propagation pass). 

The context used is determined by the summation of the significance state of the horizontal, vertical, and diagonal 
neighbors. These are the states as currently known to the decoder, not the states used before the significance decoding 
pass. Further, it is dependent on whether this is the first refinement bit (the bit immediately after the significance and 
sign bits) or not. Table D.4 shows the three contexts for this pass.  

Table D.4 – Contexts for the magnitude refinement coding passes 

∑ ∑ ∑++ iii DVH  First refinement for this coefficient Context label 

xa false 16 
≥1 true 15 
0 true 14 

a) "x" indicates a "don't care" state. 

The context is passed to the arithmetic coder along with the bit stream. The bit returned is the value of the current 
coefficient in the current bit-plane. 

D.3.4 Cleanup pass 

The remaining coefficients were previously insignificant and not handled by the significance propagation pass. The 
cleanup pass not only uses the neighbor context, like that of the significance propagation pass, from Table D.1, but also 
a run-length context. 

During this pass the neighbor contexts for the coefficients in this pass are recreated using Table D.1. The context label 
can now have any value because the coefficients that were found to be significant in the significance propagation pass 
are considered to be significant in the cleanup pass. Run-lengths are decoded with a unique single context. If the four 
contiguous coefficients in the column being scanned are all decoded in the cleanup pass and the context label for all is 0 
(including context coefficients from previous magnitude, significance and cleanup passes), then the unique run-length 
context is given to the arithmetic decoder along with the bit stream. If the symbol 0 is returned, then all four contiguous 
coefficients in the column remain insignificant and are set to zero. 

Otherwise, if the symbol 1 is returned, then at least one of the four contiguous coefficients in the column is significant. 
The next two bits, returned with the UNIFORM context (index 46 in Table C.2), denote which coefficient from the top 
of the column down is the first to be found significant. The two bits decoded with the UNIFORM context are decoded 
MSB then LSB. That coefficient's sign bit is determined as described in D.3.2. The decoding of any remaining 
coefficients continues in the manner described in D.3.1. 
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If the four contiguous coefficients in a column are not all decoded in the cleanup pass or the context bin for any is non-
zero, then the coefficient bits are decoded with the context in Table D.1 as in the significance propagation pass. The 
same contexts as the significance propagation are used here (the state is used as well as the model). Table D.5 shows the 
logic for the cleanup pass.  

Table D.5 – Run-length decoder for cleanup passes 

Four contiguous 
coefficients in a 

column remaining 
to be decoded and 
each currently has 

the 0 context 

Symbols with run-
length context 

Four contiguous bits to be 
decoded are zero 

Symbols decoded 
with UNIFORMa) 

context 

Number of 
coefficients to 

decode 

true 0 true none none 
true 1 false 

 skip to first coefficient sign 
 skip to second coefficient sign 
 skip to third coefficient sign 
 skip to fourth coefficient sign 

MSB LSB 
00 
01 
10 
11 

 
3 
2 
1 
0 

false none x none rest of column 
a) See Annex C. 

If there are fewer than four rows remaining in a code-block, then no run-length coding is used. Once again, the 
significance state of any coefficient is changed immediately after decoding the first 1 magnitude bit. 

D.3.5 Example of coding passes and significance propagation (informative) 

Table D.6 shows an example of the decoding order for the quantized coefficients of one 4-coefficient column in the 
scan. This example assumes all neighbors not included in the table are identically zero, and indicates in which pass each 
bit is decoded. The sign bit is decoded after the initial 1 bit and is indicated in the table by the + or – sign. The very first 
pass in a new block is always a cleanup pass because there can be no predicted significant, or refinement bits. After the 
first pass, the decoded 1 bit of the first coefficient causes the second coefficient to be decoded in the significance pass 
for the next bit-plane. The 1 bit decoded for the last coefficient in the second cleanup pass causes the third coefficient to 
be decoded in the next significance pass. 

Table D.6 – Example of sub-bit-plane coding order and significance propagation 

Coding passes 10 1 3 –7 Coefficient value 
 + + + – Coefficient sign 

 1 
0 
1 
0 

0 
0 
0 
1 

0 
0 
1 
1 

0 
1 
1 
1 

Coefficient 
magnitude 
(MSB to LSB) 

Cleanup 1+ 0 0 0  
Significance  0    
Refinement 0     
Cleanup   0 1–  
Significance  0 1+   
Refinement 1   1  
Cleanup      
Significance  1+    
Refinement 0  1 1  
Cleanup      
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D.4 Initializing and terminating 

When the contexts are initialized, or re-initialized, they are set to the values in the Table D.7. 

Table D.7 – Initial states for all contexts 

Context Initial index from Table C.3 MPS 

UNIFORM 46 0 
Run-length 3 0 
All zero neighbors (context label 0 in Table D.1) 4 0 
All other contexts 0 0 

 

In normal operation (not selective arithmetic coding bypass), the arithmetic coder shall be terminated either at the end 
of every coding pass or only at the end of every code-block (see D.4.1). Table D.8 shows two examples of termination 
patterns for the coding passes in a code-block. The COD or COC marker signals which termination pattern is used 
(see A.6.1 and A.6.2). 

Table D.8 – Arithmetic coder termination patterns 

# Pass Coding Operation 
Termination only on last pass 

Coding Operation Termination 
on every pass 

1 cleanup Arithmetic Coder (AC) AC, terminate 
2 significance propagation AC AC, terminate 
2 magnitude refinement AC AC, terminate 
2 cleanup AC AC, terminate 
... ... ... ... 
final significance propagation AC AC, terminate 
final magnitude refinement AC AC, terminate 
final cleanup AC, terminate AC, terminate 

 

When multiple terminations of the arithmetic coder are present, the length of each terminated segment is signalled in the 
packet header as described in B.10.7. 

NOTE – Termination should never create a byte aligned value between 0xFF90 and 0xFFFF inclusive. These values are available 
as in-bit-stream marker values.  

D.4.1 Expected codestream termination 

The decoder anticipates that the given number of codestream bytes will decode a given number of coding passes before 
the arithmetic coder is terminated. During decoding, bytes are pulled successively from the codestream until all the 
bytes for those coding passes have been consumed. The number of bytes corresponding to the coding passes is specified 
in the packet header. Often at that point there are more symbols to be decoded. Therefore, the decoder shall extend the 
input bit stream to the arithmetic coder with 0xFF bytes, as necessary, until all symbols have been decoded. 

It is sufficient to append no more than two 0xFF bytes. This will cause the arithmetic coder to have at least one pair of 
consecutive 0xFF bytes at its input which is interpreted as an end-of-stream marker (see C.3.4). The bit stream does not 
actually contain a terminating marker. However, the byte length is explicitly signalled enabling the terminating marker 
to be synthesized for the arithmetic decoder. 

NOTE – Two 0xFF bytes appended in this way is the simplest method. However, other equivalent extensions exist. This might be 
important since some arithmetic coder implementations might attach special meaning to the specific termination marker. 
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D.4.2 Arithmetic coder termination 

The FLUSH procedure performs this task (see C.2.9). However, since the FLUSH procedure increases the length of the 
codestream, and frequent termination may be desirable, other techniques may be employed. Any technique that places 
all of the needed bytes in the codestream in such a way that the decoder need not backtrack to find the position at which 
the next segment of the codestream should begin is acceptable. 

When the predictable termination flag is set (see COD and COC in A.6.1 and A.6.2) the following termination 
procedure shall be used. Using the notation of C.2, the followings steps can be used: 

1) Identify the number of bits in code register, C, which must be pushed out through the byte buffer. This is 
given by k = (11 – CT) + 1. 

2) While (k > 0): 
– shift C left by CT and set CT = 0. 
– execute the BYTEOUT procedure. This sets CT equal to the number of bits cleared out of the C 

register. 
– subtract CT from k. 

3) Execute the BYTEOUT procedure to push the contents of the byte buffer register out to the codestream. 
This step shall be skipped if the byte in the byte buffer has an 0xFF byte value.  

The relevant truncation length in this case is simply the total number of bytes pushed out onto the codestream. 

If the predictable termination flag is not set, the last byte output by the above procedure can generally be modified, 
within certain bounds, without affecting the symbols to be decoded. It will sometimes be possible to augment the last 
byte to the special value, 0xFF, which shall not be sent. It can be shown that this happens approximately 1/8 of the time. 

D.4.3 Length computation (informative) 

To include coding pass compressed image data into packets, the number of bytes to be included must be determined. If 
the coding pass compressed image data is terminated, the algorithm in the previous clause may be used. Otherwise, the 
encoder should calculate a suitable length such that corresponding bytes are sufficient for the decoder to reconstruct the 
coding passes. 

D.5 Error resilience segmentation symbol 

A segmentation symbol is a special symbol. Whether it is used is signalled in the COD or COC marker segments 
(see A.6.1 and A.6.2). The symbol is coded with the UNIFORM context of the arithmetic coder at the end of each bit-
plane. The correct decoding of this symbol confirms the correctness of the decoding of this bit-plane, which allows 
error detection. At the decoder, a segmentation symbol 1010 or 0xA should be decoded at the end of each bit-plane (at 
the end of a cleanup pass). If the segmentation symbol is not decoded correctly, then bit errors occurred for this bit-
plane. 

NOTE – This can be used with or without the predictable termination. 

D.6 Selective arithmetic coding bypass 

This style of coding allows bypassing the arithmetic coder for the significance propagation pass and magnitude 
refinement coding passes starting in the fifth significant bit-plane of the code-block. The COD or COC marker signals 
whether or not this coding style is used (see A.6.1 and A.6.2). 

The first cleanup pass (which is the first bit-plane of a code-block with a non-zero element) and the next three sets of 
significance propagation, magnitude refinement, and cleanup coding passes are decoded with the arithmetic coder. The 
fourth cleanup pass shall include an arithmetic coder termination (see Table D.9). 
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Table D.9 – Selective arithmetic coding bypass 

Bit-plane number Pass type Coding operations 

1 cleanup Arithmetic Coding (AC) 
2 significance propagation AC 
2 magnitude refinement AC 
2 cleanup AC 
3 significance propagation AC 
3 magnitude refinement AC 
3 cleanup AC 
4 significance propagation AC 
4 magnitude refinement AC 
4 cleanup AC, terminate 
5 significance propagation raw 
5 magnitude refinement raw, terminate 
5 cleanup AC, terminate 
... ... ... 

final significance raw 
final magnitude refinement raw, terminate 
final cleanup AC, terminate 

Starting with the fourth significance propagation and magnitude refinement coding passes, the bits that would have been 
returned from the arithmetic coder are instead returned directly from the bit stream. (A routine that undoes the effects of 
bit stuffing precedes the return of bits. Specifically, this routine throws out the first bit after an 0xFF byte value.) After 
each magnitude refinement pass the bit stream has been "terminated" by padding to the byte boundary.  

When the predictable termination flag is set (see COD and COC in A.6.1 and A.6.2) and all the bits from a magnitude 
refinement pass have been assembled, any remaining bits in the last byte are filled with an alternating sequence of 0s 
and 1s. This sequence should start with a 0 regardless of the number of bits to be padded. 

When the termination on each coding pass flag is set (see COD and COC in A.6.1 and A.6.2), then the significance 
propagation passes are terminated in the same way as the magnitude refinement passes. 

The cleanup coding passes continue to receive compressed image data directly from the arithmetic coder and are always 
terminated. 

The sign bit is computed with Equation (D-2): 

   signbit = raw_value (D-2) 

where raw_value = 1 is a negative sign bit and raw_value = 0 is a positive sign bit. Table D.9 shows the coding 
sequence. 

The length of each terminated segment, plus the length of any remaining unterminated passes, is signalled in the packet 
header as described in B.10.7. If termination on each coding pass is selected (see A.6.1 and A.6.2), then every pass is 
terminated (including both raw passes). 

NOTE 1 – Using the selective bypass mode when encoding an image with an ROI may significantly decrease the compression 
efficiency. 

If a 0xFF value is encountered in the bit stream, then the first bit of the next byte is discarded. The sequence of bits used 
in the selective arithmetic coding bypass have been stuffed into bytes using a bit-stuffing routine. 
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At the encoder, bits are packed into bytes from the most significant bit to the least significant bit. Once a complete byte 
is assembled, it is emitted to the bit stream. If the value of the byte is an 0xFF, a single zero bit is stuffed into the most 
significant bit of the next byte. Once all bits of the coding pass have been assembled, the last byte is packed to the byte 
boundary and emitted. The last byte shall not be an 0xFF value. 

NOTE 2 – Since the decoder appends 0xFF values, as necessary, to the bit stream representing the coding pass (see D.4.1), 
truncation of the bit stream may be possible. When the predictable termination flag is set (see COD and COC in A.6.1 
and A.6.2), such truncation is not permitted. The last byte cannot be an 0xFF, since the bit-stuffing routine appends a new byte 
following the FF, having most significant bit value of 0 and unused bits filled with the alternating sequence of 0 and 1 value bits. 

D.7 Vertically causal context formation 

This style of coding constrains the context formation to the current and past code-block scans (four rows of vertically 
scanned coefficients). That is, any coefficient from the next code-block scan are considered to be insignificant. The 
COD or COC marker signals whether or not this style of coding is used (see A.6.1 and A.6.2). 

To illustrate, the bit labelled 14 in Figure D.1 is decoded as usual using the neighbor states as specified in Figure D.2, 
independent of whether or not contexts are vertically causal. However when vertically causal context formation is used, 
the bit labeled 15 is decoded assuming D2 = V1 = D3 = 0 in Figure D.2. 

D.8 Flow diagram of the code-block coding 

The steps for modeling each bit-plane of each code-block can be viewed graphically in Figure D.3. The decisions made 
are in Table D.10 and the bits and context sent to the coder are in Table D.11. These show the context without the 
selective arithmetic coding bypass or the vertically causal model. 
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Figure D.3 – Flow chart for all coding passes on a code-block bit-plane 
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Table D.10 – Decisions in the context model flow chart 

Decision Question Description 

D0 Is this the first significant bit-plane for the code-block? See D.3 
D1 Is the current coefficient significant? See D.3.1 
D2 Is the context bin zero? (see Table D.1) See D.3.1 
D3 Did the current coefficient just become significant? See D.3.1 
D4 Are there more coefficients in the significance propagation?  
D5 Is the coefficient insignificant? See D.3.3 
D6 Was the coefficient coded in the last significance propagation? See D.3.3 
D7 Are there more coefficients in the magnitude refinement pass?  
D8 Are four contiguous undecoded coefficients in a column each with a 0 context? See D.3.4 
D9 Is the coefficient significant or has the bit already been coded during the Significance 

Propagation coding pass? 
See D.3.4 

D10 Are there more coefficients remaining of the four column coefficients?  
D11 Are the four contiguous bits all zero? See D.3.4 
D12 Are there more coefficients in the cleanup pass?  

Table D.11 – Decoding in the context model flow chart 

Code Decoded symbol Context Brief explanation Description 

C0 – – Go to the next coefficient or column  
C1 Newly significant? Table D.1, 

9 context labels 
Decode significance bit of current coefficient 
(significance propagation or cleanup) 

See D.3.1 

C2 Sign bit Table D.3, 
5 context labels 

Decode sign bit of current coefficient See D.3.2 

C3 Current magnitude 
bit 

Table D.4, 
3 context labels 

Decode magnitude refinement pass bit of current 
coefficient 

See D.3.3 

C4 0 
1 

Run-length context 
label 

Decode run-length of four zeros 
Decode run-length not of four zeros 

See D.3.4 

C5 00 
01 
10 
11 

UNIFORM First coefficient is first with non-zero bit 
Second coefficient is first with non-zero bit 
Third coefficient is first with non-zero bit 
Fourth coefficient is first with non-zero bit 

See D.3.4 and 
Table C.2 
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Annex E 
 

Quantization 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

This annex specifies the forms of inverse quantization used for the reconstruction of tile-component transform 
coefficients. Information about quantization of transform coefficients for encoding is also provided. Quantization is the 
process by which the transform coefficients are reduced in precision. 

E.1 Inverse quantization procedure 

For each transform coefficient (u, v) of a given sub-band b, the transform coefficient value qb(u, v) is given by the 
following equation: 
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where sb(u, v), Nb(u, v) and MSBi(b, u, v)are given in D.2, and where Mb is retrieved using Equation (E-2), where the 
number of guard bits G and the exponent bε are specified in the QCD or QCC marker segments (see A.6.4 and A.6.5). 

   1−+= bb GM ε  (E-2) 

Each decoded transform coefficient qb(u, v) of sub-band b is used to generate a reconstructed transform coefficient 
Rqb(u, v), as will be described in E.1.1. 

NOTE – Decoding only Nb(u, v) (see D.2.1) bit-planes is equivalent to decoding data which has been encoded using a scalar 

quantizer with step size ( )
b

vuNM bb ∆⋅− ,2  for all the coefficients of this code-block. Due to the nature of the three coding 
passes (see D.3), Nb(u, v) may be different for different coefficients within the same code-block. 

E.1.1 Irreversible transformation 

E.1.1.1 Determination of the quantization step size 

For the irreversible transformation, the quantization step size ∆b for a given sub-band b is calculated from the dynamic 
range Rb of sub-band b, the exponent εb and mantissa µb as given in Equation (E-3). 

   
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NOTE – The denominator, 211, in Equation (E-3) is due to the allocation of 11 bits in the codestream for µb, as given in 
Table A.30. 

In Equation (E-3), the exponent εb and the mantissa µb are specified in the QCD or QCC marker segments (see A.6.4 
and A.6.5), and the nominal dynamic range Rb (as given by Equation (E-4)) is the sum of RI (the number of bits used to 
represent the original tile-component samples which can be extracted from the SIZ marker – see Table A.11 in A.5.1) 
and the base 2 exponent of the sub-band gain (gainb) of the current sub-band b, which varies with the type of sub-band b 
(levLL, levLH or levHL, levHH – see F.3.1) and can be found in Table E.1. 
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Table E.1 – Sub-band gains 

sub-band b gainb log2(gainb) 

levLL 1 0 
levLH 2 1 
levHL 2 1 
levHH 4 2 

   ( )bIb gainRR 2log+=  (E-4) 

The exponent/mantissa pairs (εb,µb) are either signalled in the codestream for every sub-band (expounded quantization) 
or else signalled only for the NLLL sub-band and derived for all other sub-bands (derived quantization) (see Table 
A.30). In the case of derived quantization, all exponent/mantissa pairs (εb,µb) are derived from the single 
exponent/mantissa pair (εo,µo) corresponding to the NLLL sub-band, according to Equation (E-5): 

   ( ) ( )obLobb nN µ+−ε=µε ,,  (E-5) 

where nb denotes the number of decomposition levels from the original tile-component to the sub-band b. 
NOTE – For a given sub-band b, a quantized transform coefficient may exceed the dynamic range Rb. 

E.1.1.2 Reconstruction of the transform coefficient 

For the irreversible transformation, the reconstructed transform coefficient is given by Equation (E-6): 
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where r is a reconstruction parameter, which can be arbitrarily chosen by the decoder. 
NOTE – The reconstruction parameter r may be chosen for example to produce the best visual or objective quality for 
reconstruction. Generally, values for r fall in the range of 0 ≤ r < 1, and a common value is r = 1/2. (This note also applies 
to E.1.2). 

E.1.2 Reversible transformation 

E.1.2.1 Determination of the quantization step size 

For the reversible transformation, the quantization step size ∆b is equal to one (no quantization is performed). 

E.1.2.2 Reconstruction of the transform coefficient 

For the reversible transformation, the reconstructed transform coefficient Rqb (u, v) is recovered differently depending 
on whether all the coefficient bits are decoded, i.e., whether Nb(u, v) = Mb or Nb(u, v) < Mb. 

If Nb(u, v) = Mb, then the reconstructed transform coefficient Rqb(u, v) is given by Equation (E-7). 

   ( ) ( )vuqvuRq bb ,, =  (E-7) 

If Nb(u, v) < Mb, then the reconstructed transform coefficient Rqb(u, v) is given by Equation (E-8). 
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E.2 Scalar coefficient quantization (informative)  

For irreversible compression, after the irreversible forward discrete wavelet transformation (see Annex F), each of the 
transform coefficients ab(u, v) of the sub-band is quantized to the value qb(u, v) according to Equation (E-9). 
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where ∆b is the quantization step size. The exponent εb and mantissa corresponding to ∆b can be derived from 
Equation (E-5), and must be recorded in the codestream in the QCD or QCC markers (see A.6.4 and A.6.5).  

For reversible compression, the quantization step size is required to be 1. In this case, a parameter εb has to be recorded 
in the codestream in the QCD or QCC markers (see A.6.4 and A.6.5), and is calculated as: 

   ( ) cbIb gainlogR ζε ++= 2  (E-10) 

where RI and gainb are as described in E.1.1, and where ζc is zero if the RCT is not used and ζc is the number of 
additional bits added by the RCT if the RCT is used, as described in G.2.1. 

For both reversible and irreversible compression, in order to prevent possible overflow or excursion beyond the nominal 
range of the integer representation of ( )vuqb ,  arising, for example during floating point calculations, the number Mb 
of bits for the integer representation of qb(u, v) used at the encoder side is defined by Equation (E-2). The number G of 
guard bits has to be specified in the QCD or QCC marker (see A.6.4 and A.6.5). Typical values for the number of guard 
bits are G = 1 or G = 2. 
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Annex F 
 

Discrete wavelet transformation of tile-components 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

This annex describes the forward discrete wavelet transformation applied to one tile-component and specifies the 
inverse discrete wavelet transformation used to reconstruct the tile-component. 

F.1 Tile-component parameters 

Consider the tile-component defined by the coordinates, tcx0, tcx1, tcy0 and tcy1 given in Equation (B-12), in Annex B.3. 
Then the coordinates (x, y) of the tile-component (with sample values I(x, y) lie in the range defined by: 

   1010 and tcyytcytcxxtcx <≤<≤  (F-1) 

F.2 Discrete wavelet transformations 

F.2.1 Low-pass and high-pass filtering (informative) 

To perform the forward discrete wavelet transformation (FDWT), this Recommendation | International Standard uses a 
one-dimensional sub-band decomposition of a one-dimensional array of samples into low-pass coefficients, 
representing a downsampled low-resolution version of the original array, and high-pass coefficients, representing a 
downsampled residual version of the original array, needed to perfectly reconstruct the original array from the low-pass 
array. 

To perform the inverse discrete wavelet transformation (IDWT), this Recommendation | International Standard uses a 
one-dimensional sub-band reconstruction of a one-dimensional array of samples from low-pass and high-pass 
coefficients. 

F.2.2 Decomposition levels 

Each tile-component is transformed into a set of two-dimensional sub-band signals (called sub-bands), each 
representing the activity of the signal in various frequency bands, at various spatial resolutions. NL denotes the number 
of decomposition levels. 

F.2.3 Discrete wavelet filters (informative) 

This Recommendation | International Standard specifies one reversible transformation and one irreversible 
transformation. Given that tile-component samples are integer-valued, a reversible transformation requires the 
specification of a rounding procedure for intermediate non-integer-valued transform coefficients. 

F.3 Inverse discrete wavelet transformation 

F.3.1 The IDWT procedure 

The inverse discrete wavelet transformation (IDWT) transforms a set of sub-bands, ab(ub, vb) into a DC-level shifted 
tile-component, I(x, y) (IDWT procedure). The IDWT procedure also takes as input a parameter NL, which represents 
the number of decomposition levels (see Figure F.1). The number of decomposition levels NL is signalled in the COD or 
COC markers (see A.6.1 and A.6.2).  

T.800_FF-1

ab(ub,vb)

NL

IDWT
I(x, y)

 

Figure F.1 – Inputs and outputs of the IDWT procedure 
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The sub-bands are labelled in the following way: an index lev corresponding to the decomposition level, followed by 
two letters which are either LL, HL, LH or HH.  

The sub-band b = levLL corresponds to a downsampled version of sub-band (lev – 1)LL which has been low-pass 
filtered vertically and low-pass filtered horizontally. The sub-band b = 0LL corresponds to the original tile-component. 
The sub-band b = levHL corresponds to a downsampled version of sub-band (lev – 1)LL which has been low-pass 
filtered vertically and high-pass filtered horizontally. The sub-band b = levLH corresponds to a downsampled version of 
sub-band (lev – 1)LL which has been high-pass filtered vertically and low-pass filtered horizontally. The sub-band 
b = levHH corresponds to a downsampled version of sub-band (lev – 1)LL which has been high-pass filtered vertically 
and high-pass filtered horizontally. 

For a given value of NL, only the following sub-bands are present in the codestream, and in the following order (these 
sub-bands are sufficient to fully reconstruct the original tile-component):  

NLLL, NLHL, NLLH, NLHH, (NL – 1)HL, (NL – 1)LH, (NL – 1)HH,..., 1HL, 1LH, 1HH. 

For a given sub-band b, the number nb represents the decomposition level at which it has been generated at the time of 
encoding, and is given in Table F.1:  

Table F.1 – Decomposition level nb for sub-band b 

b NLLL NLHL NLLH NLHH (NL – 1)HL (NL – 1)HL (NL – 1)HL ... 1HL 1LH 1HH 
nb NL NL NL NL NL – 1 NL – 1 NL – 1 ... 1 1 1 

The sub-bands for the case where NL = 2 are illustrated in Figure F.2.  

T.800_FF-2
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Figure F.2 – The IDWT (NL = 2) 

The IDWT procedure starts with the initialization of the variable lev (the current decomposition level) to NL. The 
2D_SR procedure (see F.3.2) is performed at every level lev, where the level lev decreases at each iteration, until NL 
iterations are performed. The 2D_SR procedure is iterated over the levLL sub-band produced at each iteration. Finally, 
the sub-band a0LL (u0LL, v0LL) is the output array I(x, y). 

As defined in Equation (B-15), the indices (ub, vb) of sub-band coefficients ab(ub, vb) for a given sub-band b lie in the 
range defined by: 

   1010 and tbyvtbytbxutbx bb <≤<≤  (F-2) 
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Figure F.3 describes the IDWT procedure. 
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No

Yes
lev = 0
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Figure F.3 – The IDWT procedure 

F.3.2 The 2D_SR procedure 

The 2D_SR procedure performs a reconstruction of sub-band a(lev – 1)LL (u, v) from the four sub-bands, alevLL(u, v), 
alevHL(u, v), alevLH(u, v) and alevHH(u, v) (see Figure F.4). The total number of coefficients of the reconstructed levLL 
sub-band is equal to the sum of the total number of coefficients of the four sub-bands input to the 2D_SR procedure 
(see Figure F.5). 
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Figure F.4 – Inputs and outputs of the 2D_SR procedure 
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Figure F.5 – One level of reconstruction from four sub-bands (2D_SR procedure) into sub-bands 
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First, the four sub-bands alevLL(u, v), alevHL(u, v), alevLH(u, v) and alevHH(u, v) are interleaved to form an array a(u, v) using 
the 2D_INTERLEAVE procedure. The 2D_SR procedure then applies the HOR_SR procedure to all rows of a(u, v), 
and finally applies the VER_SR procedure to all columns of a(u, v) to produce the reconstructed sub-band 
a(lev – 1)LL(u, v). Figure F.6 describes the 2D_SR procedure. 
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Figure F.6 – The 2D_SR procedure 

F.3.3 The 2D_INTERLEAVE procedure 

As illustrated in Figure F.7, the 2D_INTERLEAVE procedure interleaves the coefficients of four sub-bands alevLL, 
alevHL, alevLH, alevHH to form a(u, v). The values of u0, u1, v0, v1 used by the 2D_INTERLEAVE procedure are those of 
tbx0, tbx1, tby0, tby1 of corresponding to sub-band b = (lev – 1)LL (see definition in Equation (B-15)). 

The way these sub-bands are interleaved to form the output a(u, v) is described by the 2D_INTERLEAVE procedure 
given in Figure F.8. 
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Figure F.7 – Parameters of 2D_INTERLEAVE procedure 
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Figure F.8 – The 2D_INTERLEAVE procedure 
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F.3.4 The HOR_SR procedure 

The HOR_SR procedure performs a horizontal sub-band reconstruction of a two-dimensional array of coefficients. It 
takes as input a two-dimensional array a(u, v), the horizontal and vertical extent of its coefficients as indicated by 
u0 ≤ u <u1 and v0 ≤ v < v1 (see Figure F.9) and produces as output a horizontally filtered version of the input array, row 
by row. 

As illustrated in Figure F.10, the HOR_SR procedure applies the one-dimensional sub-band reconstruction (1D_SR 
procedure) to each row v of the input array a(u, v), and stores the result back in each row. 
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Figure F.9 – Inputs and outputs of the HOR_SR procedure 
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Figure F.10 – The HOR_SR procedure 

F.3.5 The VER_SR procedure  

The VER_SR procedure performs a vertical sub-band reconstruction of a two-dimensional array of coefficients. It takes 
as input a two-dimensional array a(u, v), the horizontal and vertical extent of its coefficients as indicated by u0 ≤ u <u1 

and v0 ≤ v < v1 (see Figure F.11) and produces as output a vertically filtered version of the input array, column by 
column. 

As illustrated in Figure F.12, the VER_SR procedure applies the one-dimensional sub-band reconstruction (1D_SR 
procedure) to each column u of the input array a(u, v) and stores the result back in each column. 
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T.800_FF-11

VER_SRu0, u1, v0, v1

a(u, v)
a(u, v)

 

Figure F.11 – Inputs and outputs of the VER_SR procedure 

T.800_FF-12

VER_SR

Done

Yes

Y(v) = a(u, v)

u = u + 1

X(v) = 1D_SR(Y(v), i0, i1)

a(u, v) = X(v)

No u ≥ u1

u = u0
i0 = v0
i1 = v1

 

Figure F.12 – The VER_SR procedure 
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F.3.6 The 1D_SR procedure  

As illustrated in Figure F.13, the 1D_SR procedure takes as input a one-dimensional array Y(i), the extent of its 
coefficients as indicated by i0 ≤ i < il. It produces as output an array X, with the same indices (i0, il). 

T.800_FF-13

1D_SR
i0, i1

XY

 

Figure F.13 – Parameters of the 1D_SR procedure 

For signals of length one (i.e., i0 = il – 1), the 1D_SR procedure sets the value of X(i0) to X(i0) if i0 is an even integer, 
and to X(i0) = Y(i0)/2 if i0 is an odd integer. 

For signals of length greater than or equal to two (i.e., i0 < il – 1), as illustrated in Figure F.14, the 1D_SR procedure 
first uses the 1D_EXTR procedure to extend the signal Y beyond its left and right boundaries resulting in the extended 
signal Yext, and then uses the 1D_FILTR procedure to inverse filter the extended signal Yext and produce the desired 
filtered signal X. The 1D_EXTR and 1D_FILTR procedures depend on whether the 9-7 irreversible wavelet transform 
(irreversible transformation) or 5-3 reversible wavelet transform (reversible transformation) is selected: this is signalled 
in the COD or COC markers (see A.6.1 and A.6.2). 

T.800_FF-14

1D_SR

Done

Yext = 1D_EXTR(Y, i0, i1)

X = 1D_FILTR(Yext, i0, i1)

 

Figure F.14 – The 1D_SR procedure 

F.3.7 The 1D_EXTR procedure  

As illustrated in Figure F.15, the 1D_EXTR procedure extends signal Y by ileft coefficients to the left and iright 
coefficients to the right. The extension of the signal is needed to enable filtering at both boundaries of the signal. 

T.800_FF-15

i0 i1 – 1

irightileft

E F G F E D C B F E D C B A B CA B C D E F G...

 

Figure F.15 – Periodic symmetric extension of signal 
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The first coefficient of Y is coefficient i0, and the last coefficient of signal Y is coefficient i1 – 1. This extension 
procedure is known as "periodic symmetric extension". Symmetric extension consists in extending the signal with the 
signal coefficients obtained by a reflection of the signal centered on the first coefficient (coefficient i0) for extension to 
the left, and in extending the signal with the signal coefficients obtained by a reflection of the signal centred on the last 
coefficient (coefficient i1 – 1) for extension to the right. Periodic symmetric extension is a generalization of symmetric 
extension for the more general case where the number of coefficients by which to extend the signal on any one side may 
exceed the signal length i1 – i0: this case may happen at higher decomposition levels. 

The 1D_EXTR procedure calculates the values of Yext(i) for values of i beyond the range i0 ≤ i < il, as given in 
Equation (F-3): 

   ( ) ( )( )l0 ,, iiiPSEYiY Oext =  (F-3) 

where PSEO(i, i0, il) is given by Equation (F-4): 

 ( ) ( )( ) ( ) ( )( )( )12,mod12,12,modmin,, 0l00l0l00l0 −−−−−−−−−+= iiiiiiiiiiiiiiPSEO  (F-4) 

Two extension procedures are defined, depending on whether the 5-3 wavelet transformation (1D_EXTR5-3 procedure) 
or 9-7 wavelet transformation (1D_EXTR9-7 procedure). The procedures only differ in the minimum values of the 
extension parameters (

3-5lefti  and 
3-5righti for the 5-3 wavelet transformation, and 

7-9lefti  and 
7-9righti  for the 9-7 wavelet 

transformation) which are given in Tables F.2 and F.3, and depend on the parity of the indices i0 and il. Values equal to 
or greater than those given in Tables F.2 and F.3 will produce the same array X at the output of the 1D_IFILTR 
procedure of Figure F.14. 

Table F.2 – Extension to the left 

i0 3-5lefti  
7-9lefti  

even 1 3 
odd 2 4 

Table F.3 – Extension to the right 

il 3-5righti  
7-9righti  

odd 1 3 
even 2 4 

F.3.8 The 1D_FILTR procedure 

One reversible filtering procedure 1D_FILTR5-3R and one irreversible filtering procedure 1D_FILTR9-7I are specified, 
depending on whether the 5-3 reversible or 9-7 irreversible wavelet transformation is used. 

As illustrated in Figure F.16, both procedures take as input an extended 1D signal Yext, the index of the first coefficient 
i0, and the index of the coefficient i1 immediately following the last coefficient (i1 – 1). They both produce as output 
signal X.  

T.800_FF-16

1D_FILTRi0, i1
X

Yext

 

Figure F.16 – Parameters of the ID_FILTR procedure 
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Both procedures use lifting-based filtering, which consists in applying to the signal a sequence of very simple filtering 
operations called lifting steps, which alternately modify odd-indexed coefficient values of the signal with a weighted 
sum of even-indexed coefficient values, and even-indexed coefficient values with a weighted sum of odd-indexed 
coefficient values. 

F.3.8.1 The 1D_FILTR5-3R procedure 

The 1D_FILT5-3R procedure uses lifting-based filtering in conjunction with rounding operations. Equation (F-5) is first 
performed for all values of n indicated, followed by Equation (F-6) which uses values calculated from Equation (F-5): 

  ( ) ( ) ( ) ( )
1

22
for

4
2121222 l0 +
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 +++−−= ininYnYnYnX extext
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22
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2
2221212 l0 ininXnXnYnX ext  (F-6) 

The values of X(k) are such that i0 ≤ k < il form the output of the 1D_FILTR5-3R procedure. 

F.3.8.2 The 1D_FILTR9-7I procedure 

The 1D-FILTR9-7I procedure uses lifting-based filtering (there is no rounding operation). The lifting parameters (α, β, γ, 
δ) and the scaling parameter K for all filtering steps are defined in F.3.8.2.1. 

Equation (F-7) describes the two scaling steps (1 and 2) and the four lifting steps (3 through 6) of the 1D filtering 
performed on the extended signal Yext(n) to produce the i1 – i0 coefficients of signal X. These steps are performed in the 
following order. 

Firstly, step 1 is performed for all values of n such that 2
2
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where the values of the lifting parameters (α, β, γ, δ) and K are defined in Table F.4. 

Table F.4 – Definition of lifting parameters for the 9-7 irreversible filter 

Parameter Exact expression Approximate value 

α –g4 / g3 –1.586 134 342 059 924 
β g3 / r1 –0.052 980 118 572 961 
γ r1 / s0 0.882 911 075 530 934 
δ s0 / t0 0.443 506 852 043 971 
K 1 / t0 1.230 174 104 914 001 

The values of X(k) are such that i0 ≤ k < i1 form the output of the 1D_FILTRI procedure. 

F.3.8.2.1 Filtering parameters for the 1D_FILTR9-7I procedure 

The filtering parameters (α, β, γ, δ, K) are defined in Table F.4, in terms of parameters gn from Table F.5, and 
parameters (r0, rl, s0, t0) from Table F.6. The parameters gn are defined in terms of parameters x1, ℜx2 and 2

2x given in 
Table F.7. All tables give a closed-form expression for all parameters, including approximations up to 15 decimal 
points. 

Table F.5 – Definition of coefficients gn 

n Coefficients gn Approximate value of gn 

0 32/316485 2
2

21 




 +ℜ− xxx  –0.602 949 018 236 360 

1 8/85 2
2

21 




 ℜ−− xxx  0.266 864 118 442 875 

2 16/1445 2
2

21 




 −ℜ+ xxx  0.078 223 266 528 990 

3 ( ) 8/5 21 xx ℜ−  –0.016 864 118 442 875 

4 64/5 1x  –0.026 748 757 410 810 

Table F.6 – Intermediate expressions (r0, r1, s0, t0) 

Parameter Exact expression Approximate value 

r0 – g0 + 2g1g4 / g3 1.449 513 704 087 943 
r1 – g2 + g4 + g1g4 / g3 0.318 310 318 985 991 
s0 g1 – g3 – g3r0 / r1 0.360 523 644 801 462 
t0 r0 – 2r1 0.812 893 066 115 961 
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Table F.7 – Intermediate expressions 

Parameter Exact expression Approximate value 

A 3
151080
151463 −  0.128 030 244 703 494 

B 3
151080
151463− +  –0.303 747 672 895 197 

x1 A + B – 1 / 6 –0.342 384 094 858 369 

ℜx2 
( )

6
1

2
−+− BA  –0.078 807 952 570 815 

2
2x  ( ) ( )

4
3

6
1

2

22 BABA −+




 ++  0.146 034 820 982 800 

F.4 Forward transformation (informative) 

F.4.1 The FDWT procedure (informative) 

The forward discrete wavelet transformation (FDWT) transforms DC-level shifted tile-component samples I(x, y) into a 
set of sub-bands with coefficients ab(ub, vb) (FDWT procedure). The FDWT procedure (see Figure F.17) also takes as 
input the number of decomposition levels NL signalled in the COD or COC markers (see A.6.1 and A.6.2). 

T.800_FF-17

I (x, y)

NL

ab(ub, vb)
FDWT

 

Figure F.17 – Inputs and outputs of the FDWT procedure 

As illustrated in Figure F.18, all the sub-bands in the case where NL = 2 can be represented in the following way:  

T.800_FF-18

FDWT
I(x, y)

a1HL(u1HL, v1HL)
a2HH(u2HH, v2HH)

a2LL(u2LL, v2LL)

a1HH(u1HH, v1HH)

a2LH(u2LH, v2LH)

a1LH(u1LH, v1LH)

a2HL(u2HL, v2HL)

 

Figure F.18 – The FDWT (NL = 2) 

The FDWT procedure starts with the initialization of the variable lev (the current decomposition level) to zero, and 
setting the sub-band a0LL(u0LL, v0LL) to the input array I(u, v). The 2D_SD procedure is performed at every level lev, 
where the level lev increases by one at each iteration, and until NL iterations are performed. The 2D_SD procedure is 
iterated over the levLL sub-band produced at each iteration. 
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As defined in Annex B (see Equation (B-15)), the coordinates of the sub-band alevLL(u, v) lie in the range defined by: 

   1010 tbyvtbyandtbxutbx <≤<≤  (F-8) 

Figure F.19 describes the FDWT procedure. 

T.800_FF-19

FDWT

Done

No

Yes

lev = lev + 1

lev > NL

(alevLL, alevHL, alevLH, alevHH) = 2D_SD(a(lev – 1)LL, u0, u1, v0, v1)

lev 1 =
a0LL(u, v) = I(u, v)

 

Figure F.19 – The FDWT procedure 

F.4.2 The 2D_SD procedure (informative) 

The 2D_SD procedure performs a decomposition of a two-dimensional array of coefficients or samples a(lev – 1)LL(u, v) 
into four groups of sub-band coefficients alevLL(u, v), alevHL(u, v), alevLH(u, v), and alevHH(u, v). 

The total number of coefficients of the levLL sub-band is equal to the sum of the total number of coefficients of the four 
sub-bands resulting from the 2D_SD procedure. 

Figure F.20 describes the input and output parameters of the 2D_SD procedure. 

T.800_FF-20

2D_SD

a(lev – 1)LL

alevHH

alevLL

alevHL

alevLHu0, u1, v0, v1

 

Figure F.20 – Inputs and outputs of the 2D_SD procedure 



ISO/IEC 15444-1:2002 (E) 

112 ITU-T Rec. T.800 (08/2002 E) 

Figure F.21 illustrates the sub-band decomposition performed by the 2D_SD procedure. 

T.800_FF-21

2D_SDa(lev – 1)LL

alevHH

alevLL alevHL

alevLH

 

Figure F.21 – One-level decomposition into four sub-bands (2D_SD procedure) 

The 2D_SD procedure first applies the VER_SD procedure to all columns of a(u, v). It then applies the HOR_SD 
procedure to all rows of a(u, v). The coefficients thus obtained from a(u, v) are deinterleaved into the four sub-bands 
using the 2D_DEINTERLEAVE procedure. 

Figure F.22 describes the 2D_SD procedure. 

T.800_FF-22

2D_SD

Done

a = HOR_SD(a, u0, u1, v0, v1)

(alevLL, alevHL, alevLH, alevHH) = 2D_DEINTERLEAVE(a, u0, u1, v0, v1)

a = VER_SD(a(lev – 1)LL, u0, u1, v0, v1)

 

Figure F.22 – The 2D_SD procedure 

F.4.3 The VER_SD procedure (informative)  

The VER_SD procedure performs a vertical sub-band decomposition of a two-dimensional array of coefficients. It takes 
as input the two-dimensional array a(lev – 1)LL(u, v), the horizontal and vertical extent of its coefficients as indicated by 
u0 ≤ u < u1 and v0 ≤ v < v1 (see Figure F.23) and produces as output a vertically filtered version a(u, v) of the input array, 
column by column. The values of u0, u1, v0, v1 used by the VER_SD procedure are those of tbx0, tbx1, tby0, tby1 
corresponding to sub-band b = (lev – 1)LL (see definition in Equation (B-15)). 

T.800_FF-23

a(u, v)
VER_SDu0, u1, v0, v1

a(u, v)

 

Figure F.23 – Inputs and outputs of the VER_SD procedure 
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As illustrated in Figure F.24, the VER_SD procedure applies the one-dimensional sub-band decomposition (1D_SD 
procedure) to each column of the input array a(u, v), and stores the result back into each column. 

T.800_FF-24

VER_SD

Done

X(v) = a(u, v)

u = u + 1

Y(v) = 1D_SD(X(v), i0, i1)

No

Yes

u = u0
i0 = v0
i1 = v1

u ≥ u1

a(u, v) = Y(v)

 

Figure F.24 – The VER_SD procedure 

F.4.4 The HOR_SD procedure (informative)  

The HOR_SD procedure performs a horizontal sub-band decomposition of a two-dimensional array of coefficients. It 
takes as input a two-dimensional array a(u, v), the horizontal and vertical extent of its coefficients as indicated by 
u0 ≤ u < u1 and v0 ≤ v < v1 (see Figure F.25) and produces as output a horizontally filtered version of the input array, row 
by row. 
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T.800_FF-25

a(u, v)

HOR_SDu0, u1, v0, v1

a(u, v)

 

Figure F.25 – Inputs and outputs of the HOR_SD procedure 

As illustrated in Figure F.26, the HOR_SD procedure applies the one-dimensional sub-band decomposition (1D_SD 
procedure) to each row of the input array a(u, v) and stores the result back in each row. 
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Figure F.26 – The HOR_SD procedure 
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F.4.5 The 2D_DEINTERLEAVE procedure (informative) 

As illustrated in Figure F.27, the 2D_DEINTERLEAVE procedure deinterleaves the coefficients of a(u, v) into four 
sub-bands. The arrangement is dependent on the coordinates (u0, v0) of the first coefficient of a(u, v). 

The way these sub-bands are formed from the output a(u, v) of the HOR_SD procedure is described by the 
2D_DEINTERLEAVE procedure illustrated in Figure F.28.  

T.800_FF-27

2D_DEINTERLEAVE

alevLL
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alevHL
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a(u, v)
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Figure F.27 – Parameters of 2D_DEINTERLEAVE procedure 
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T.800_FF-28

2D_DEINTERLEAVE

ab(ub, vb) = a(2ub, 2vb)

No

Done

b = levLL
ub = u0/2
vb = v0/2

b = levHL
ub = u0/2
vb = v0/2

b = levLH
ub = u0/2
vb = v0/2

b = levHH
ub = u0/2
vb = v0/2

No

No Yes No

YesYes

Yes

No No

YesYes

No Yes No Yes

ab(ub, vb) = a(2ub + 1, 2vb)

ab(ub, vb) = a(2ub, 2vb + 1)

ub = ub + 1

ub ≥ u1/2

ub = ub + 1 ub = ub + 1

ub ≥ u1/2 ub ≥ u1/2

vb = vb+ 1 vb = vb+ 1

vb ≥ v1/2 vb ≥ v1/2

vb ≥ v1/2vb ≥ v1/2

vb = vb+ 1 vb = vb + 1

ub = u0/2 ub = u0/2

ub = u0/2 ub = u0/2

ub = ub + 1

ub ≥ u1/2

ab(ub, vb) = a(2ub + 1, 2vb + 1)

 

Figure F.28 – The 2D_DEINTERLEAVE procedure 
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F.4.6 The 1D_SD procedure (informative) 

As illustrated in Figure F.29, the 1D_SD procedure takes as input a one-dimensional array X(i), the extent of its 
coefficients as indicated by i0 ≤ i < il. It produces as output an array Y(i), with the same indices (i0, i1). 

T.800_FF-29

1D_SDi0, i1

X
Y

 

Figure F.29 – Parameters of the 1D_SD procedure 

For signals of length one (i.e., i0 = il – 1), the 1D_SD procedure sets the value of Y(i0) to Y(i0) = X(i0) if i0 is an even 
integer, and to Y(i0) = 2X(i0) if i0 is an odd integer. 

For signals of length greater than or equal to two (i.e., i0 < il – 1), as illustrated in Figure F.30, the 1D_SD procedure 
first uses the 1D_EXTD procedure to extend the signal X beyond its left and right boundaries resulting in the extended 
signal Xext, and then uses the 1D_FILTD procedure to filter the extended signal Xext and produce the desired filtered 
signal Y. 

T.800_FF-30

1D_SD

Done

Xext = 1D_EXTD(X, i0, i1)

Yext = 1D_FILTD(Xext, i0, i1)

 

Figure F.30 – The 1D_SD procedure 

F.4.7 The 1D_EXTD procedure (informative)  

The 1D_EXTD procedure is identical to the 1D_EXTR procedure, except for the values of the 
7-9lefti , 

7-9righti , 
3-5lefti  

and 
3-5righti  parameters, which are given in Tables F.8 and F.9. 

Table F.8 – Extension to the left 

i0 3-5lefti  
7-9lefti  

even 2 4 
odd 1 3 
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Table F.9 – Extension to the right 

il 3-5righti  
7-9righti  

odd 2 4 
even 1 3 

F.4.8 The 1D_FILTD procedure (informative) 

This Recommendation | International Standard specifies one irreversible procedure (1D_FILTD9-7I) and one reversible 
filtering procedure (1D_FILTD5-3R), depending on whether the 9-7 irreversible or 5-3 reversible wavelet transformation 
is selected. 

As illustrated in Figure F.31, both procedures take as input an extended 1D signal Xext, the index of the first 
coefficient i0, and the index of the coefficient i1 immediately following the last coefficient (i1 – 1). They both produce 
an output signal, Y. The even-indexed coefficients of the Y signal are a low-pass downsampled version of the extended 
signal Xext, while the odd-indexed coefficients of the signal Y are a high-pass downsampled version of the extended 
signal Xext.  

T.800_FF-31

1D_FILTD
i0, i1

Xext
Y

 

Figure F.31 – Parameters of the 1D_FILTD procedure 

F.4.8.1 The 1D_FILTD5-3R procedure (informative) 

The reversible transformation described in this clause is the reversible lifting-based implementation of filtering by 
the 5-3 reversible wavelet filter. The reversible transformation is defined using lifting-based filtering. The odd-indexed 

coefficients of output signal Y are computed first for all values of n such that 


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Equation (F-9):  
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Then the even-indexed coefficients of output signal Y are computed from the even-indexed values of extended signal 

Xext and the odd-indexed coefficients of signal Y for all values of n such that 




<≤





22
l0 ini

 as given in 

Equation (F-10): 

   ( ) ( ) ( ) ( )




 +++−+=

4
2121222 nYnYnXnY ext  (F-10) 

The values of Y(k) such that i0 ≤ k il form the output of the 1D_FILTDR procedure. 

F.4.8.2 The 1D_FILTDI procedure (informative) 

The irreversible transformation described in this clause is the lifting-based DWT implementation of filtering by the 9-7 
irreversible filter. 

Equation (F-11) describes the four lifting steps (1 through 4) and the two scaling steps (5 and 6) of the 1D filtering 
performed on the extended signal Xext(n) to produce the i1 – i0 coefficients of signal Y. These steps are performed in the 
following order. 
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Firstly, step 1 is performed for all values of n such that 1
2

2
2

l0 +




<≤−




 ini
. 

Then, step 2 is performed for all values of n such that 1
2

1
2

l0 +




<≤−




 ini
, and uses values calculated at step 1. 

Then, step 3 is performed for all values of n such that 




<≤−





2

1
2

l0 ini
, and uses values calculated at steps 1 and 2. 

Then, step 4 is performed for all values of n such that 




<≤





22
l0 ini

, and uses values calculated at steps 2 and 3. 

Finally, step 5 is performed for all values of n such that 




<≤





22
l0 ini

 and uses values calculated at step 3, and step 6 

is performed for all values of n such that 


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 and uses values calculated at step 4. 

   

( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )( ) [ ]

( ) ( ) ( ) ( )( ) [ ]
( ) ( ) [ ]
( ) ( ) ( ) [ ]















=
+=+

++−+=
++++=+
++−+=

++++=+

62/12
51212
4121222
32221212
2121222
12221212

STEPnYKnY
STEPnKYnY
STEPnYnYnYnY
STEPnYnYnYnY
STEPnYnYnXnY
STEPnXnXnXnY

ext

extextext

δ
γ

β
α

 (F-11) 

where the values of the lifting parameters α, β, γ, δ, and K are defined in Table F.4. 

The values of such that i0 ≤ k < il form the output of the 1D_FILTDI procedure. 
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Annex G 
 

DC level shifting and multiple component transformations 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

This annex specifies DC level shifting that converts the signed values resulting from the decoding process to the proper 
reconstructed samples. 

This annex also describes two different multiple component transformations. These multiple component transformations 
are used to improve compression efficiency. They are not related to multiple component transformations used to map 
colour values for display purposes. One multiple component transformation is reversible and may be used for lossy or 
lossless coding. The other is irreversible and may only be used for lossy coding. 

G.1 DC level shifting of tile-components 

Figure G.1 shows the flow of DC level shifting in the system with a multiple component transformation.  
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Figure G.1 – Placement of the DC level shifting with component transformation 

Figure G.2 shows the flow of DC level shifting in the system without a multiple component transformation. 
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Figure G.2 – Placement of the DC level shifting without component transformation 

G.1.1 DC level shifting of tile-components (informative) 

DC level shifting is performed on samples of components that are unsigned only. It is performed prior to computation 
of a forward multiple component transformation (RCT or ICT), if one is used. Otherwise it is performed prior to the 
wavelet transformation described in Annex F. If the MSB of Ssizi from the SIZ marker segment (see A.5.1) is zero, all 
samples I(x, y) of the ith component are level shifted by subtracting the same quantity from each sample as follows: 

   ( ) ( ) iSsizyxIyxI 2,, −←  (G-1) 

G.1.2 Inverse DC level shifting of tile-components 

Inverse DC level shifting is performed on reconstructed samples of components that are unsigned only. It is performed 
after to computation of the inverse multiple component transformation (RCT or ICT), if one is used. Otherwise it is 
performed after the inverse wavelet transformation described in Annex F. If the MSB of Ssizi from the SIZ marker 
segment (see A.6.1) is zero, all samples I(x, y) of the ith component are level shifted by adding the same quantity from 
each sample as follows: 

   ( ) ( ) iSsizyxIyxI 2,, +←  (G-2) 
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NOTE – Due to quantization effects, the reconstructed samples I(x, y) may exceed the dynamic range of the original samples. 
There is no normative procedure for this overflow or underflow situation. However, clipping the value to the nearest value within 
the original dynamic range is a typical solution. 

G.2 Reversible multiple component transformation (RCT) 

The use of the reversible multiple component transformation is signaled in the COD marker segment (see A.6.1). The 
RCT shall be used only with the 5-3 reversible filter. The RCT is a decorrelating transformation applied to the first three 
components of an image (indexed as 0, 1 and 2). The three components input into the RCT shall have the same 
separation on the reference grid and the same bit-depth. 

NOTE – While the RCT is reversible, and thus capable of lossless compression, it may be used in truncated codestreams to 
provide lossy compression. 

G.2.1 Forward RCT (informative) 

Prior to applying the Forward RCT, the image component samples are DC level shifted, for unsigned components. 

The Forward RCT is applied to components I0(x, y), I1(x, y), I2(x, y) as follows: 

   ( ) ( ) ( ) ( )




 ++=

4
,,2,, 210

0
yxIyxIyxIyxY  (G-3) 

   ( ) ( ) ( )yxIyxIyxY ,–,, 121 =  (G-4) 

   ( ) ( ) ( )yxIyxIyxY ,–,, 102 =  (G-5) 

If I0, I1, and I2 are normalized to the same precision, then Equations (G-4) and (G-5) result in a numeric precision of Y1 
and Y2 that is one bit greater than the precision of the original components. This increase in precision is necessary to 
ensure reversibility. 

G.2.2 Inverse RCT 

After the inverse wavelet transformation is preformed as described in Annex F, the following Inverse RCT is applied: 

   ( ) ( ) ( ) ( )




 +−=

4
,,,, 12

01
yxYyxYyxYyxI  (G-6) 

   ( ) ( ) ( )yxIyxYyxI ,,, 120 +=  (G-7) 

   ( ) ( ) ( )yxIyxYyxI ,,, 112 +=  (G-8) 

After applying the Inverse RCT, the unsigned image components are inverse DC level shifted. 

G.3 Irreversible multiple component transformation (ICT) 

This clause specifies an irreversible multiple component transformation. The use of the irreversible component 
transformation is signaled in the COD marker segment (see A.6.1). The ICT shall be used only with the 9-7 irreversible 
filter. The ICT is a decorrelating transformation applied to the first three components of an image (indexed as 0, 1 and 
2). The three components input into the ICT shall have the same separation on the reference grid and the same bit-
depth. 

G.3.1 Forward ICT (informative) 

The Forward ICT is applied to image component samples I0(x, y), I1(x, y), I2(x, y), as follows:  

   ( ) ( ) ( ) ( )yxIyxIyxIyxY ,114,0,587,0,299,0, 2100 +−−=  (G-9) 
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   ( ) ( ) ( ) ( )yxIyxIyxIyxY ,5,0,331260,0,16875,0, 2101 +−−=  (G-10) 

   ( ) ( ) ( ) ( )yxIyxIyxIyxY ,08131,0,41869,0,5,0, 2102 −−=  (G-11) 

NOTE – If the first three components are Red, Green and Blue components, then the Forward ICT is of a YCbCr transformation. 

G.3.2 Inverse ICT 

After inverse wavelet transformation is performed as described in Annex F, the following Inverse ICT is applied: 

   ( ) ( ) ( )yxYyxYyxI ,402,1,, 200 +=  (G-12) 

   ( ) ( ) ( ) ( )yxYyxYyxYyxI ,71414,0,34413,0,, 2101 −−=  (G-13) 

   ( ) ( ) ( )yxYyxYyxI ,772,1,, 102 +=  (G-14) 

Equations (G-12), (G-13) and (G-14) do not imply a required precision for the coefficients. After applying the Inverse 
ICT, the unsigned image component samples are inverse DC level shifted. 

G.4 Chrominance component sub-sampling and the reference grid 

The relationship between the components and the reference grid is signalled in the SIZ marker (see A.5.1) and 
described in B.2. 
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Annex H 
 

Coding of images with regions of interest 
(This annex forms an integral part of this Recommendation | International Standard) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

This annex describes the region of interest (ROI) technology. An ROI is a part of an image that is coded earlier in the 
codestream than the rest of the image (the background). The coding is also done in such a way that the information 
associated with the ROI precedes the information associated with the background. The method used (and described in 
this annex) is the Maxshift method. 

H.1 Decoding of ROI 

The procedure specified in this clause is applied only in the case of the presence of an RGN marker segment (indicating 
the presence of an ROI). 

The procedure realigns the significant bits of ROI coefficients and background coefficients. It is defined using the 
following steps: 

1) Get the scaling value, s, from the SPrgn parameter of the RGN marker segment in the codestream 
(see A.6.3). The following steps (2, 3 and 4) are applied to each coefficient (u, v) of sub-band b. 

2) If Nb(u, v) < Mb (see definition of Nb(u, v) in D.2.1 and of Mb in Equation (E-2)), then no modification 
takes place. 

3) If Nb(u, v) ≥ Mb and if at least one of the first Mb (see definition in E.1) MSBs (i = 1, ..., Mb) is non-zero, 
then the value of Nb(u, v) is updated as Nb(u, v) = Mb. 

4) If Nb(u, v) ≥ Mb and if all first Mb MSBs are equal to zero, then the following modifications are made: 
a) discard the first s MSBs and shift the remaining MSBs s places, as described in Equation (H-1), for 

i = 1, ..., Mb: 

   ( ) ( ) ( )
( )




>+
≤+

= +
vuNsi
vuNsivubMSB

vubMSB
b

bsi
i ,if0

,if,,
,,  (H-1) 

b) update the value of Nb(u, v) as given in Equation (H-2): 

   ( ) ( )( )svuNvuN bb −= ,,0max,  (H-2) 

H.2 Description of the Maxshift method  

H.2.1 Encoding of ROI (informative) 

The encoding of the quantized transform coefficients is done in a similar way to encoding without any ROIs. At the 
encoder side an ROI mask is created describing which quantized transform coefficients must be encoded with better 
quality (even up to losslessly) in order to encode the ROI with better quality (up to lossless). The ROI mask is a bit map 
describing these coefficients. See H.3 for details on how the mask is generated. 

The quantized transform coefficients outside of the ROI mask, called background coefficients, are scaled down so that 
the bits associated with the ROI are placed in higher bit-planes than the background. This means that when the entropy 
coder encodes the quantized transform coefficients, the bit-planes associated with the ROI are coded before the 
information associated with the background. 

The method can be described using the following steps: 
1) Generate ROI mask, M(x, y) (see H.3). 
2) Find the scaling value s (see H.2.2). 

3) Add s LSBs to each coefficient ( )vuqb , . The number M´b of magnitude bit-planes will then be: 
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   sMM bb +=´  (H-3) 

where Mb is given by Equation (E-2) and the new value of each coefficient is given by: 

   ( ) ( ) s
bb vuqvuq 2,, ⋅=  (H-4) 

4) Scale down all background coefficients given by M(x, y) using the scaling value s (see H.3). Thus, if 
( )vuqb ,  is a background coefficient given by M(x, y), then: 

   ( ) ( )
s

b
b

vuq
vuq

2

,
, =  (H-5) 

5) Write the scaling value s into the codestream using the SPrgn parameter of the RGN marker segment. 

After these steps the quantized transform coefficients are entropy coded as usual. 

H.2.2 Selection of scaling value, s, at encoder side (informative) 

The scaling value, s, may be chosen so that Equation (H-6) holds, where max(Mb) is the largest number of magnitude 
bit-planes, see Equation (E-1), for any background coefficient, qBG(x, y) in any code-block in the current component. 

   ( )bMmaxs ≥  (H-6) 

This guarantees that the scaling value used will be sufficiently large to ensure all the significant bits associated with the 
ROI will be in higher bit-planes than all the significant bits associated with the background. 

H.3 Remarks on region of interest coding (informative) 

The ROI functionality described in H.2 depends only on the scaling value chosen on the encoder side and hence only on 
the amplitude of the coefficients on the decoder side. It is up to the encoder to generate a mask that corresponds to the 
coefficients that need to be encoded with better quality to yield an ROI with better quality than the background. 
Clause H.3.1 describes how to generate the ROI mask for a particular region in the image. Clause H.3.2 describes how 
to generate the mask in the case of multi-component images and H.3.3 describes how to generate the ROI mask for 
disjoint regions. Clause H.3.4 describes a possible way to deal with the increase of coefficient bit depth. Clause H.3.5 
describes how the ROI mask can be extended so as to not correspond exactly to a region in the image domain and how 
the Maxshift method may be used to encode the ROI and the background with different quality. 

H.3.1 Region of interest mask generation (informative) 

To achieve an ROI with better quality than the rest of the image while maintaining a fair amount of compression, bits 
need to be saved by sending less information for the background. To do this an ROI mask is calculated. The mask is a 
bit-plane indicating a set of quantized transform coefficients whose coding is sufficient in order for the receiver to 
reconstruct the desired region with better quality than the background (up to lossless).  

To illustrate the concept of ROI mask generation, let us restrict ourselves to a single ROI and a single image 
component, and identify the samples that belong to the ROI in the image domain by a binary mask, M(x, y), where: 

  ( ) ( )
( )




=
ROIaffectingwithoutsacrificedbecan,onaccuracy0

neededis,tcoefficienwavelet1
,

yx
yx

yxM  (H-7) 

The mask is a map of the ROI in the wavelet domain so that it has a non-zero value inside the ROI and 0 outside. In 
each step the LL sub-band of the mask is then updated row by row and then column by column. The mask will then 
indicate which coefficients are needed at this step so that the inverse wavelet transformation will reproduce the 
coefficients of the previous mask.  

For example, the last step of the inverse wavelet transformation is a composition of two sub-bands into one. Then to 
trace this step backwards, one finds the coefficients of both sub-bands that are needed. The step before that is a 
composition of four sub-bands into two. To trace this step backwards, the coefficients in the four sub-bands that are 
needed to give a perfect reconstruction of the coefficients included in the mask for two sub-bands are found.  
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All steps are then traced backwards to give the mask. If the coefficients corresponding to the mask are transmitted and 
received, and the inverse wavelet transformation calculated on them, the desired ROI will be reconstructed with better 
quality than the rest of the image (up to lossless if the ROI coefficients were coded losslessly).  

Given below is a description of how the expansion of the mask is acquired from the various filters. Similar methods can 
be used for other filters. 

H.3.1.1 Region of interest mask generation using the 5-3 reversible filter (informative) 

In order to get the optimal set of quantized coefficients to be scaled, the following equations described in this clause 
should be used.  

To see what coefficients need to be in the mask, the inverse wavelet transformation is studied. Equations (F-5) and (F-6) 
give the coefficients needed to reconstruct X(2n) and X(2n + 1) losslessly. It can immediately be seen that these are 
L(n), L(n + 1), H(n – 1), H(n), H(n + 1) (see Figure H.1). Hence if X(2n) and X(2n + 1) are in the ROI, the listed low 
and high sub-band coefficients are in the mask. Notice that X(2n) and X(2n + 1) are even and odd indexed points 
respectively, relative to the origin of the reference grid. 

T.800_FH-1

Low High

n – 1 n n + 1 n – 1 n n + 1

2n 2n + 1

X:s  

Figure H.1 – The inverse wavelet transformation with the 5-3 reversible filter 

H.3.1.2 Region of interest mask generation using the 9-7 irreversible filter (informative) 

Successful decoding does not depend upon the selection of samples to be scaled. In order to get the optimal set of 
quantized coefficients to be scaled the following equations described in this clause should be used. 

To see what coefficients need to be in the mask, the inverse wavelet transformation is studied as in H.3.1.1. Figure H.2 
shows this X(2n) and X(2n + 1) are even and odd indexed points respectively, related to the origin of the reference grid. 
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Figure H.2 – The inverse wavelet transformation with the 9-7 irreversible filter 
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The coefficients needed to reconstruct X(2n) and X(2n + 1) losslessly can immediately be seen to be L(n – 1) to L(n + 2) 
and H(n – 2) to H(n + 2). Hence if X(2n) and X(2n + 1) are in the ROI, those Low and High sub-band coefficients are in 
the mask. 

H.3.2 Multi-component remark (informative) 

For the case of colour images, the method applies separately in each colour component. If some of the colour 
components are down-sampled, the mask for the down-sampled components is created in the same way as the mask for 
the non-down-sampled components. 

H.3.3 Disjoint regions remark (informative) 

If the ROI consists of disjoint parts, then all parts have the same scaling value s. 

H.3.4 Implementation precision remark (informative) 

This ROI coding method might in some cases create situations where the dynamic range is exceeded. This is however 
easily solved by simply discarding the least significant bit-planes that exceed the limit due to the down-scaling 
operation. The effect will be that the ROI will have better quality than the background, even though the entire bit stream 
is decoded. It might however create problems when the image is coded with ROIs in a lossless mode. Discarding least 
significant bit-planes for the background might result in the background not being coded losslessly and in the worst case 
not being reconstructed at all. This depends on the dynamic range available. 

H.3.5 An example of the usage of the Maxshift method (informative) 

The Maxshift method, as described above, allows the user/application to specify multiple regions of arbitrary shape, 
which will be assigned higher priority compared to the rest of the image. The method does not require encoding or 
decoding of the ROI shape. 

The Maxshift method allows the implementers of an encoder to exploit a number of functionalities that are supported by 
a compliant decoder. For example, it is possible to use the Maxshift method to encode an image with different quality 
for the ROI and the background. The image is quantized so that the ROI gets the desired quality (lossy or lossless) and 
then the Maxshift method is applied. If the image is encoded progressively by layer, not all of the layers of the wavelet 
coefficients belonging to the background need be encoded. This corresponds to using different quantization steps for the 
ROI and the background. 

If the ROI is to be encoded losslessly, the most optimal set of wavelet coefficients giving a lossless result for the ROI is 
described by the mask generated using the algorithms described in H.3.1 However, the Maxshift method supports the 
use of any mask since the decoder does not need to generate the mask. Thus, it is possible for the encoder to include an 
entire sub-band, e.g. the low-low sub-band, in the ROI mask and thus send a low-resolution version of the background 
at an early stage of the progressive transmission. This is done by scaling all the quantized transform coefficients of the 
entire sub-band. In other words, the user can decide in which sub-band he will start coding ROI and thus, it is not 
necessary to wait for the entire ROI before receiving any information for the background. 
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Annex I 
 

JP2 file format syntax 
(This annex forms an integral part of this Recommendation | International Standard. 

This annex is optional for the minimum decoder.) 

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative 
implementations shall duplicate. 

I.1 File format scope 

This annex defines an optional file format that applications may choose to use to wrap JPEG 2000 compressed image 
data. While not all applications will use this format, many applications will find that this format meets their needs. 
However, those applications that do implement this file format shall implement it as described in this entire annex. 

This annex: 
–  specifies a binary container for both image and metadata; 
–  specifies a mechanism to indicate image properties, such as the tonescale or colourspace of the image; 
–  specifies a mechanism by which readers may recognize the existence of intellectual property rights 

information in the file; 
–  specifies a mechanism by which metadata (including vendor-specific information) can be included in 

files specified by this Recommendation | International Standard. 

I.2 Introduction to the JP2 file format 

The JPEG 2000 file format (JP2 file format) provides a foundation for storing application specific data (metadata) in 
association with a JPEG 2000 codestream, such as information which is required to display the image. As many 
applications require a similar set of information to be associated with the compressed image data, it is useful to define 
the format of that set of data along with the definition of the compression technology and codestream syntax. 

Conceptually, the JP2 file format encapsulates the JPEG 2000 codestream along with other core pieces of information 
about that codestream. The building-block of the JP2 file format is called a box. All information contained within the 
JP2 file is encapsulated in boxes. This Recommendation | International Standard defines several types of boxes; the 
definition of each specific box type defines the kinds of information that may be found within a box of that type. Some 
boxes will be defined to contain other boxes. 

I.2.1 File identification 

JP2 files can be identified using several mechanisms. When stored in traditional computer file systems, JP2 files should 
be given the file extension ".jp2" (readers should allow mixed case for the alphabetic characters). On Macintosh file 
systems, JP2 files should be given the type code 'jp2\040'. 

I.2.2 File organization 

A JP2 file represents a collection of boxes. Some of those boxes are independent, and some of those boxes contain other 
boxes. The binary structure of a file is a contiguous sequence of boxes. The start of the first box shall be the first byte of 
the file, and the last byte of the last box shall be the last byte of the file. 

The binary structure of a box is defined in I.4. 

Logically, the structure of a JP2 file is as shown in Figure I.1. Boxes with dashed borders are optional in conforming 
JP2 files. However, an optional box may define mandatory boxes within that optional box. In that case, if the optional 
box exists, those mandatory boxes within the optional box shall exist. If the optional box does not exist, then the 
mandatory boxes within those boxes shall also not exist. 
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T.800_FI.1

JP2 file

JP2 Header box (superbox) (I.5.3)

Contiguous Codestream box (I.5.4) 0

Image Header box (I.5.3.1)

Colour Specification box 0 (I.5.3.3)

Bits Per Component box (I.5.3.2)

IPR box (I.6)

JPEG 2000 Signature box (I.5.1)

Channel Definition box (I.5.3.6)

XML boxes (I.7.1)

Colour Specification box n – 1 ( I.5.3.3)

UUID Info boxes (superbox) (I.7.3)

UUID List box (I.7.3.1)

Data Entry URL box (I.7.3.2)

UUID boxes (I.7.2)

Resolution box (superbox) (I.5.3.7)

Capture Resolution box (I.5.3.7.1)

Default Display Resolution box (I.5.3.7.2)

Palette box (I.5.3.4)

Contiguous Codestream box (I.5.4) m – 1

File Type box (I.5.2)

Component Mapping box (I.5.3.5)

 

Figure I.1 – Conceptual structure of a JP2 file 

Figure I.1 specifies only the containment relationship between the boxes in the file. A particular order of those boxes in 
the file is not generally implied. However, the JPEG 2000 Signature box shall be the first box in a JP2 file, the File 
Type box shall immediately follow the JPEG 2000 Signature box and the JP2 Header box shall fall before the 
Contiguous Codestream box. 

The file shown in Figure I.1 is a strict sequence of boxes. Other boxes may be found between the boxes defined in this 
Recommendation | International Standard. However, all information contained within a JP2 file shall be in the box 
format; byte-streams not in the box format shall not be found in the file. 

As shown in Figure I.1, a JP2 file contains a JPEG 2000 Signature box, JP2 Header box, and one or more Contiguous 
Codestream boxes. A JP2 file may also contain other boxes as determined by the file writer. For example, a JP2 file 
may contain several XML boxes (containing metadata) between the JP2 Header box and the first Contiguous 
Codestream box. 
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I.2.3 Greyscale, colour, palette, multi-component specification 

The JP2 file format provides two methods to specify the colourspace of the image. The enumerated method specifies the 
colourspace of an image by specifying a numeric value that specifies the colourspace. In this Recommendation | 
International Standard, images in the sRGB colourspace and greyscale images can be defined using the enumerated 
method. 

The JP2 file format also provides for the specification of the colourspace of an image by embedding a restricted form of 
an ICC profile in the file. That profile shall be of either the Monochrome or Three-Component Matrix-Based class of 
input profiles as defined by the ICC Profile Format Specification, ICC.1:1998-09. This allows for the specification of a 
wide range of greyscale and RGB class colourspaces, as well as a few other spaces that can be represented by those two 
profile classes. See J.9 for a more detailed description of the legal colourspace transforms, how those transforms are 
stored in the file, and how to process an image using that transform without using an ICC colour management engine. 
While restricted, these ICC profiles are fully compliant ICC profiles and the image can thus be processed through any 
ICC compliant engine that supports profiles as defined in ICC.1:1998-09. 

In addition to specifying the colourspace of the image, this Recommendation | International Standard provides a means 
by which a single component palettized image can be decoded and converted back to multiple-component form by the 
translation from index space to multiple-component space. Any such depalettization is applied before the colourspace is 
interpreted. In the case of palettized images, the specification of the colourspace of the image is applied to the multiple-
component values stored in the palette. 

I.2.4 Inclusion of opacity channels 

The JP2 file format provides a means to indicate the presence of auxiliary channels (such as opacity), to define the type 
of those channels, and to specify the ordering and source of those channels (whether they are directly extracted from the 
codestream or generated by applying a palette to a codestream component). When a reader opens the JP2 file, it will 
determine the ordering and type of each component. The application must then match the component definition and 
ordering from the JP2 file with the component ordering as defined by the colourspace specification. Once the file 
components have been mapped to the colour channels, the decompressed image can be processed through any needed 
colourspace transformations. 

In many applications, components other than the colour channels are required. For example, many images used on web 
pages contain opacity information; the browser uses this information to blend the image into the background. It is thus 
desirable to include both the colour and auxiliary channels within a single codestream. 

How applications deal with opacity or other auxiliary channels is outside the scope of this Recommendation | 
International Standard. 

I.2.5 Metadata 

One important aspect of the JP2 file format is the ability to add metadata to a JP2 file. Because all information is 
encapsulated in boxes, and all boxes have types, the format provides a simple mechanism for a reader to extract relevant 
information, while ignoring any box that contains information that is not understood by that particular reader. In this 
way, new boxes can be created, either through this or other Recommendations | International Standards or private 
implementation. Also, any new box added to a JP2 file shall not change the visual appearance of the image. 

I.2.6 Conformance with the file format 

All conforming files shall contain all boxes required by this Recommendation | International Standard, and those boxes 
shall be as defined in this Recommendation | International Standard. Also, all conforming readers shall correctly 
interpret all required boxes defined in this Recommendation | International Standard and thus shall correctly interpret all 
conforming files. 

I.3 Greyscale/Colour/Palettized/multi-component specification architecture 

One of the most important aspects of a file format is that it specifies the colourspace of the contained image data. In 
order to properly display or interpret the image data, it is essential that the colourspace of that image is properly 
characterized. The JP2 file format provides a multi-level mechanism for characterizing the colourspace of an image.  



ISO/IEC 15444-1:2002 (E) 

130 ITU-T Rec. T.800 (08/2002 E) 

I.3.1 Enumerated method 

The simplest method for characterizing the colourspace of an image is to specify an integer code representing the 
colourspace in which the image is encoded. This method handles the specification of sRGB, greyscale, and sYCC 
images. Extensions to this method can be used to specify other colourspaces, including the definition of multi-
component images. 

For example, the image file may indicate that a particular image is encoded in the sRGB colourspace. To properly 
interpret and display the image, an application must natively understand the definition of the sRGB colourspace. 
Because an application must natively understand each specified colourspace, the complexity of this method is 
dependent on the exact colourspaces specified. Also, complexity of this mechanism is proportional to the number of 
colourspaces that are specified and required for conformance. While this method provides a high level of 
interoperability for images encoded using colourspaces for which correct interpretation is required for conformance, this 
method is very inflexible. This Recommendation | International Standard defines a specific set of colourspaces for 
which interpretation is required for conformance. 

I.3.2 Restricted ICC profile method 

An application may also specify the colourspace of an image using two restricted types of ICC profiles. This method 
handles the specification of the most commonly used RGB and greyscale class colourspaces through a low-complexity 
method. 

An ICC profile is a standard representation of the transformation required to convert one colourspace into another 
colourspace. With respect to the JP2 file format, an ICC profile defines how decompressed samples from the 
codestream are converted into a standard colorspace (the Profile Connection Space (PCS)). Depending on the original 
colourspace of the samples, this transformation may be either very simple or very complex. 

The ICC Profile Format Specification defines two specific classes of ICC profiles that are simple to implement, referred 
to within the profile specification as Monochrome Input and Three-Component Matrix-Based Input Profiles. These 
profiles limit the transformation from the source colourspace to the PCSXYZ to the application of a non-linearity curve 
and a 3 × 3 matrix. It is practical to expect all applications, including simple devices, to be able to process the image 
through this transformation. Thus all conforming applications are required to correctly interpret the colourspace of any 
image that specifies the colourspace using this subset of possible ICC profile types. 

For the JP2 file format, profiles shall conform to the ICC profile definition as defined by the ICC Profile Format 
Specification, ICC.1:1998-09, as well as the restrictions specified above. See J.9 for a more detailed description of the 
legal colourspace transforms, how those transforms are stored in the file, and how to process an image using that 
transform without using an ICC colour management engine. 

I.3.3 Using multiple methods 

Architecturally, the format allows for multiple methods to be embedded in a file and allows other standards to define 
additional enumerated methods and to define extended methods. This provides readers conforming to those extensions a 
choice as to what image processing path should be used to interpret the colourspace of the image. However, the first 
method found in the file (in the first Colourspace Specification box in the JP2 Header box) shall be one of the methods 
as defined and restricted in this Recommendation | International Standard. A conforming reader shall use that first 
method and ignore all other methods (in additional Colourspace Specification boxes) found in the file. 

I.3.4 Palettized images 

In addition to specifying the interpretation of the image in terms of colourspace, this Recommendation | International 
Standard allows for the decoding of a single component where the value of that single component represents an index 
into a palette of colours. Input of a decompressed sample to the palette converts the single value to a multiple-
component tuple. The value of that tuple represents the colour of that sample; that tuple shall then be interpreted 
according to the other colour specification methods (Enumerated or Restricted ICC) as if that multiple-component 
sample had been directly extracted from multiple components in the codestream. 

I.3.5 Interactions with the decorrelating multiple component transform 

The specification of colour within the JP2 file format is independent of the use of a multiple component transformation 
within the codestream (the CSsiz parameter of the SIZ marker segment as specified in A.5.1 and in Annex G). The 
colourspace transformations specified through the sequence of Colour Specification boxes shall be applied to the image 
samples after the reverse multiple component transformation has been applied to the decompressed samples. While the 
application of these decorrelating component transformations is separate, the application of an encoder-based multiple 
component transformation will often improve the compression of colour image data. 
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I.3.6 Key to graphical descriptions (informative) 

Each box is described in terms of its function, usage, and length. The function describes the information contained in 
the box. The usage describes the logical location and frequency of this box in the file. The length describes which 
parameters determine the length of the box. 

These descriptions are followed by a figure that shows the order and relationship of the parameters in the box. 
Figure I.2 shows an example of this type of figure. A rectangle is used to indicate the parameters in the box. The width 
of the rectangle is proportional to the number of bytes in the parameter. A shaded rectangle (diagonal stripes) indicates 
that the parameter is of varying size. Two parameters with superscripts and a grey area between indicate a run of several 
of these parameters. A sequence of two groups of multiple parameters with superscripts separated by a grey area 
indicates a run of that group of parameters (one set of each parameter in the group, followed by the next set of each 
parameter in the group). Optional parameters or boxes will be shown with a dashed rectangle. 
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Figure I.2 – Example of the box description figures 

The figure is followed by a list that describes the meaning of each parameter in the box. If parameters are repeate, the d 
length and nature of the run of parameters is defined. As an example, in Figure I.2, parameters C, D, E and F are 8-, 16-, 
32-bit and variable length respectively. The notation G0 and GN–1 implies that there are N different parameters, Gi, in a 
row. The group of parameters H0 and HM–1, and J0 and JM–1 specify that the box will contain H0, followed by J0, 
followed by H1 and J1, continuing to HM–1 and JM–1 (M instances of each parameter in total). Also, the field E is optional 
and may not be found in this box. 

After the list is a table that either describes the allowed parameter values or provides references to other tables that 
describe these values.  

In addition, in a figure describing the contents of a superbox, an ellipsis (…) will be used to indicate that contents of the 
file between two boxes is not specifically defined. Any box (or sequence of boxes), unless otherwise specified by the 
definition of that box, may be found in place of the ellipsis.  

For example, the superbox shown in Figure I.3 must contain an AA box and a BB box, and the BB box must follow the 
AA box. However, there may be other boxes found between boxes AA and BB. Dealing with unknown boxes is 
discussed in I.8. 

T.800_FI-3
AA BB

 

Figure I.3 – Example of the superbox description figures 

I.4 Box definition 

Physically, each object in the file is encapsulated within a binary structure called a box. That binary structure is as 
in Figure I.4: 

T.800_FI-4LBox TBox XLBox D
B

ox

 

Figure I.4 – Organization of a box 
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LBox: Box Length. This field specifies the length of the box, stored as a 4-byte big endian unsigned 
integer. This value includes all of the fields of the box, including the length and type. If the value of 
this field is 1, then the XLBox field shall exist and the value of that field shall be the actual length 
of the box. If the value of this field is 0, then the length of the box was not known when the LBox 
field was written. In this case, this box contains all bytes up to the end of the file. If a box of length 
0 is contained within another box (its superbox), then the length of that superbox shall also be 0. 
This means that this box is the last box in the file. The values 2-7 are reserved for ISO use. 

TBox: Box Type. This field specifies the type of information found in the DBox field. The value of this 
field is encoded as a 4-byte big endian unsigned integer. However, boxes are generally referred to 
by an ISO/IEC 646 character string translation of the integer value. For all box types defined within 
this Recommendation | International Standard, box types will be indicated as both character string 
(normative) and as 4-byte hexadecimal integers (informative). Also, a space character is shown in 
the character string translation of the box type as "\040". All values of TBox not defined within this 
Recommendation | International Standard are reserved for ISO use. 

XLBox: Box Extended Length. This field specifies the actual length of the box if the value of the LBox field 
is 1. This field is stored as an 8-byte big endian unsigned integer. The value includes all of the fields 
of the box, including the LBox, TBox and XLBox fields. 

DBox: Box Contents. This field contains the actual information contained within this box. The format of 
the box contents depends on the box type and will be defined individually for each type. 

 

Table I.1 – Binary structure of a box 

Field name Size (bits) Value 

LBox 32 0, 1, or  
8 to (232– 1) 

TBox 32 Variable 

XLBox 64 
0 

16 to (264– 1); if LBox = 1 
Not applicable; if LBox ≠ 1 

DBox Variable Variable 

For example, consider the illustration in Figure I.5 of a sequence of boxes, including one box that contains other boxes: 

T.800_FI-5

Box 0 Box 1 Box 4

Box 2 Box 3

LBox0

LBox1

LBox2 LBox3 LBox4

 

Figure I.5 – Illustration of box lengths 

As shown in Figure I.5, the length of each box includes any boxes contained within that box. For example, the length of 
Box 1 includes the length of Boxes 2 and 3, in addition to the LBox and TBox fields for Box 1 itself. In this case, if the 
type of Box 1 was not understood by a reader, it would not recognize the existence of Boxes 2 and 3 because they 
would be completely skipped by jumping the length of Box 1 from the beginning of Box 1. 

Table I.2 lists all boxes defined by this Recommendation | International Standard. Indentation within the table indicates 
the hierarchical containment structure of the boxes within a JP2 file. 
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Table I.2 – Defined boxes 

Box name Type Superbox Required? Comments 

JPEG 2000 Signature box 'jP\040\040' 
(0x6A50 2020) No Required This box uniquely identifies the file as 

being part of the JPEG 2000 family of files. 

File Type box 'ftyp' 
(0x6674 7970) No Required 

This box specifies file type, version and 
compatibility information, including 
specifying if this file is a conforming JP2 
file or if it can be read by a conforming JP2 
reader. 

JP2 Header box 'jp2h' 
(0x6A70 3268) Yes Required 

This box contains a series of boxes that 
contain header-type information about the 
file. 

 Image Header box 'ihdr' 
(0x6968 6472) No Required This box specifies the size of the image and 

other related fields. 

 Bits Per Component box 'bpcc' 
(0x6270 6363) No Optional 

This box specifies the bit depth of the 
components in the file in cases where the bit 
depth is not constant across all components. 

 Colour Specification box 'colr'  
(0x636F 6C72) No Required This box specifies the colourspace of the 

image. 

 Palette box 'pclr'  
(0x7063 6C72) No Optional 

This box specifies the palette which maps a 
single component in index space to a 
multiple-component image. 

 Component Mapping 
box 

'cmap'  
(0x636D 6170) No Optional This box specifies the mapping between a 

palette and codestream components. 

 Channel Definition box 'cdef'  
(0x6364 6566) No Optional 

This box specifies the type and ordering of 
the components within the codestream, as 
well as those created by the application of a 
palette. 

 Resolution box 'res\040'  
(0x7265 7320) Yes Optional This box contains the grid resolution. 

  Capture Resolution 
box 

'resc'  
(0x7265 7363) No Optional This box specifies the grid resolution at 

which the image was captured. 

  Default Display 
Resolution box 

'resd'  
(0x7265 7364) No Optional This box specifies the default grid resolution 

at which the image should be dis played. 

Contiguous Codestream box 'jp2c'  
(0x6A70 3263) No Required This box contains the codestream as defined 

by Annex A. 

Intellectual Property box 'jp2i'  
(0x6A70 3269) No Optional This box contains intellectual property 

information about the image. 

XML box 'xml\040'  
(0x786D 6C20) No Optional 

This box provides a tool by which vendors 
can add XML formatted information to a 
JP2 file. 

UUID box 'uuid'  
(0x7575 6964) No Optional 

This box provides a tool by which vendors 
can add additional information to a file 
without risking conflict with other vendors. 

UUID Info box 'uinf'  
(0x7569 6E66) Yes Optional 

This box provides a tool by which a vendor 
may provide access to additional 
information associated with a UUID. 

 UUID List box 'ulst'  
(0x7563 7374) No Optional This box specifies a list of UUIDs. 

 URL box 'url\040'  
(0x7572 6C20) No Optional This box specifies a URL. 

I.5 Defined boxes 

The following boxes shall properly be interpreted by all conforming readers. Each of these boxes conforms to the 
standard box structure as defined in I.4. The following clauses define the value of the DBox field from Table I.1 (the 
contents of the box). It is assumed that the LBox, TBox and XLBox fields exist for each box in the file as defined in 
Annex I.4. 
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I.5.1 JPEG 2000 Signature box 

The JPEG 2000 Signature box identifies that the format of this file was defined by the JPEG 2000 Recommendation | 
International Standard, as well as provides a small amount of information which can help determine the validity of the 
rest of the file. The JPEG 2000 Signature box shall be the first box in the file, and all files shall contain one and only 
one JPEG 2000 Signature box. 

The type of the JPEG 2000 Signature box shall be 'jP\040\040' (0x6A50 2020). The length of this box shall be 12 bytes. 
The contents of this box shall be the 4-byte character string '<CR><LF><0x87><LF>' (0x0D0A 870A). For file 
verification purposes, this box can be considered a fixed-length 12-byte string which shall have the value: 
0x0000 000C 6A50 2020 0D0A 870A. 

The combination of the particular type and contents for this box enable an application to detect a common set of file 
transmission errors. The CR-LF sequence in the contents catches bad file transfers that alter newline sequences. The 
final linefeed checks for the inverse of the CR-LF translation problem. The third character of the box contents has its 
high-bit set to catch bad file transfers that clear bit 7. 

I.5.2 File Type box 

The File Type box specifies the Recommendation | International Standard which completely defines all of the contents 
of this file, as well as a separate list of readers, defined by other Recommendations | International Standards, with which 
this file is compatible, and thus the file can be properly interpreted within the scope of that other standard. This box 
shall immediately follow the JPEG 2000 Signature box. This differentiates between the standard which completely 
describes the file, from other standards that interpret a subset of the file. 

All files shall contain one and only one File Type box. 

The type of the File Type Box shall be 'ftyp' (0x6674 7970). The contents of this box shall be as in Figure I.6: 
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Figure I.6 – Organization of the contents of a File Type box 

BR:  Brand. This field specifies the Recommendation | International Standard which completely defines 
this file. This field is specified by a four-byte string of ISO/IEC 646 characters. The value of this 
field is defined in Table I.3: 

Table I.3 – Legal Brand values 

Value Meaning 

'jp2\040' IS 15444-1, Annex I (This Recommendation | International Standard) 
other values Reserved for other ISO uses 

 In addition, the Brand field shall be considered functionally equivalent to a major version number. 
A major version change (if there ever is one), representing an incompatible change in the JP2 file 
format, shall define a different value for the Brand field. 

 If the value of the Brand field is not 'jp2\040', then a value of 'jp2\040' in the Compatibility list 
indicates that a JP2 reader can interpret the file in some manner as intended by the creator of the 
file. 

MinV: Minor version. This parameter defines the minor version number of this JP2 specification for which 
the file complies. The parameter is defined as a 4-byte big endian unsigned integer. The value of 
this field shall be zero. However, readers shall continue to parse and interpret this file even if the 
value of this field is not zero. 

CLi:  Compatibility list. This field specifies a code representing this Recommendation | International 
Standard, another standard, or a profile of another standard, to which the file conforms. This field is 
encoded as a four-byte string of ISO/IEC 646 characters. A file that conforms to this 
Recommendation | International Standard shall have at least one CLi field in the File Type box, and 
shall contain the value 'jp2\040' in one of the CLi fields in the File Type box, and all conforming 
readers shall properly interpret all files with 'jp2\040' in one of the CLi fields 
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 If one of the CLi fields contains the value "J2P0" then the first codestream contained within this JP2 
file is restricted as described for Profile-0 from Table A.45. 

 If one of the CLi fields contains the value "J2P1" then the first codestream contained within this JP2 
file is restricted as described for Profile-1 from Table A.45. 

 Other values of the Compatibility list field are reserved for ISO use. 
 The number of CLi fields is determined by the length of this box. 

Table I.4 – Format of the contents of the File Type box 

Field name Size (bits) Value 

BR 32 0 to (232– 1) 
MinV 32 0 
CLi 32 0 to (232– 1) 

I.5.3 JP2 Header box (superbox) 

The JP2 Header box contains generic information about the file, such as number of components, colourspace, and grid 
resolution. This box is a superbox. Within a JP2 file, there shall be one and only one JP2 Header box. The JP2 Header 
box may be located anywhere within the file after the File Type box but before the Contiguous Codestream box. It also 
must be at the same level as the JPEG 2000 Signature and File Type boxes (it shall not be inside any other superbox 
within the file). 

The type of the JP2 Header box shall be 'jp2h' (0x6A70 3268). 

This box contains several boxes. Other boxes may be defined in other standards and may be ignored by conforming 
readers. Those boxes contained within the JP2 Header box that are defined within this Recommendation | International 
Standard are as in Figure I.7: 
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Figure I.7 – Organization of the contents of a JP2 Header box 

ihdr: Image Header box. This box specifies information about the image, such as its height and width. Its 
structure is specified in I.5.3.1. This box shall be the first box in the JP2 Header box. 

bpcc: Bits Per Component box. This box specifies the bit depth of each component in the codestream after 
decompression. Its structure is specified in I.5.3.2. This box may be found anywhere in the JP2 
Header box provided that it comes after the Image Header box. 

colri: Colour Specification boxes. These boxes specify the colourspace of the decompressed image. Their 
structures are specified in I.5.3.3. There shall be at least one Colour Specification box within the 
JP2 Header box. The use of multiple Colour Specification boxes provides the ability for a decoder 
to be given multiple optimization or compatibility options for colour processing. These boxes may 
be found anywhere in the JP2 Header box provided that they come after the Image Header box. All 
Colour Specification boxes shall be contiguous within the JP2 Header box. 

pclr: Palette box. This box defines the palette to use to create multiple components from a single 
component. Its structure is specified in I.5.3.4. This box may be found anywhere in the JP2 Header 
box provided that it comes after the Image Header box. 

cmap: Component Mapping box. This box defines how image channels are identified from the actual 
components in the codestream. Its structure is specified in I.5.3.5. This box may be found anywhere 
in the JP2 Header box provided that it comes after the Image Header box. 

cdef: Channel Definition box. This box defines the channels in the image. Its structure is specified 
in I.5.3.6. This box may be found anywhere in the JP2 Header box provided that it comes after the 
Image Header box. 

res:  Resolution box. This box specifies the capture and default display grid resolutions of the image. Its 
structure is specified in I.5.3.7. This box may be found anywhere in the JP2 Header box provided 
that it comes after the Image Header box. 
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I.5.3.1 Image Header box 

This box contains fixed length generic information about the image, such as the image size and number of components. 
The contents of the JP2 Header box shall start with an Image Header box. Instances of this box in other places in the file 
shall be ignored. The length of the Image Header box shall be 22 bytes, including the box length and type fields. Much 
of the information within the Image Header box is redundant with information stored in the codestream itself. 

All references to "the codestream" in the descriptions of fields in this Image Header box apply to the codestream found 
in the first Contiguous Codestream box in the file. Files that contain contradictory information between the Image 
Header box and the first codestream are not conforming files. However, readers may choose to attempt to read these 
files by using the values found within the codestream. 

The type of the Image Header box shall be 'ihdr' (0x6968 6472) and contents of the box shall have the format as in 
Figure I.8: 
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Figure I.8 – Organization of the contents of an Image Header box 

HEIGHT: Image area height. The value of this parameter indicates the height of the image area. This field 
is stored as a 4-byte big endian unsigned integer. The value of this field shall be Ysiz – YOsiz, 
where Ysiz and YOsiz are the values of the respective fields in the SIZ marker in the 
codestream. See Figure B.1 for an illustration of the image area. However, reference grid 
points are not necessarily square; the aspect ratio of a reference grid point is specified by the 
Resolution box. If the Resolution box is not present, then a reader shall assume that reference 
grid points are square. 

WIDTH:  Image area width. The value of this parameter indicates the width of the image area. This field 
is stored as a 4-byte big endian unsigned integer. The value of this field shall be Xsiz – XOsiz, 
where Xsiz and XOsiz are the values of the respective fields in the SIZ marker in the 
codestream. See Figure B.1 for an illustration of the image area. However, reference grid 
points are not necessarily square; the aspect ratio of a reference grid point is specified by the 
Resolution box. If the Resolution box is not present, then a reader shall assume that reference 
grid points are square. 

NC:   Number of components. This parameter specifies the number of components in the codestream 
and is stored as a 2-byte big endian unsigned integer. The value of this field shall be equal to 
the value of the Csiz field in the SIZ marker in the codestream. 

BPC:  Bits per component. This parameter specifies the bit depth of the components in the 
codestream, minus 1, and is stored as a 1-byte field. 

 If the bit depth and the sign are the same for all components, then this parameter specifies that 
bit depth and shall be equivalent to the values of the Ssizi fields in the SIZ marker in the 
codestream (which shall all be equal). If the components vary in bit depth and/or sign, then the 
value of this field shall be 255 and the JP2 Header box shall also contain a Bits Per Component 
box defining the bit depth of each component (as defined in I.5.3.2). 

 The low 7-bits of the value indicate the bit depth of the components. The high-bit indicates 
whether the components are signed or unsigned. If the high-bit is 1, then the components 
contain signed values. If the high-bit is 0, then the components contain unsigned values. 

C:   Compression type. This parameter specifies the compression algorithm used to compress the 
image data. The value of this field shall be 7. It is encoded as a 1-byte unsigned integer. Other 
values are reserved for ISO use. 

UnkC:  Colourspace Unknown. This field specifies if the actual colourspace of the image data in the 
codestream is known. This field is encoded as a 1-byte unsigned integer. Legal values for this 
field are 0, if the colourspace of the image is known and correctly specified in the Colourspace 
Specification boxes within the file, or 1, if the colourspace of the image is not known. A value 
of 1 will be used in cases such as the transcoding of legacy images where the actual 
colourspace of the image data is not known. In those cases, while the colourspace interpretation 
methods specified in the file may not accurately reproduce the image with respect to some 
original, the image should be treated as if the methods do accurately reproduce the image. 
Values other than 0 and 1 are reserved for ISO use. 
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IPR:  Intellectual Property. This parameter indicates whether this JP2 file contains intellectual 
property rights information. If the value of this field is 0, this file does not contain rights 
information, and thus the file does not contain an IPR box. If the value is 1, then the file does 
contain rights information and thus does contain an IPR box as defined in I.6. Other values are 
reserved for ISO use. 

Table I.5 – Format of the contents of the Image Header box 

Field name Size (bits) Value 

HEIGHT 32 1 to (232– 1) 
WIDTH 32 1 to (232– 1) 

NC 16 1 to 16 384 
BPC 8 See Table I.6 

C 8 7 
Unk 8 0 to 1 
IPR 8 0 to 1 

Table I.6 – BPC values 

Values (bits) 
MSB LSB Component sample precision 

x000 0000 
to 

x010 0101 

Component bit depth = value + 1. From 1 bit deep through 38 bits 
deep respectively (counting the sign bit, if appropriate) 

0xxx xxxx Components are unsigned values 
1xxx xxxx Components are signed values 
1111 1111 Components vary in bit depth 

 All other values reserved for ISO use 

I.5.3.2 Bits Per Component box 

The Bits Per Component box specifies the bit depth of each component. If the bit depth of all components in the 
codestream is the same (in both sign and precision), then this box shall not be found. Otherwise, this box specifies the 
bit depth of each individual component. The order of bit depth values in this box is the actual order in which those 
components are enumerated within the codestream. The exact location of this box within the JP2 Header box may vary 
provided that it follows the Image Header box. 

There shall be one and only one Bits Per Component box inside a JP2 Header box. 

The type of the Bits Per Component Box shall be 'bpcc' (0x6270 6363). The contents of this box shall be as in 
Figure I.9: 
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Figure I.9 – Organization of the contents of a Bits Per Component box 

BPCi: Bits per component. This parameter specifies the bit depth of component i, minus 1, encoded as a 
1-byte value. The ordering of the components within the Bits Per Component Box shall be the same 
as the ordering of the components within the codestream. The number of BPCi fields shall be the 
same as the value of the NC field from the Image Header box. The value of this field shall be 
equivalent to the respective Ssizi field in the SIZ marker in the codestream. 

 The low 7-bits of the value indicate the bit depth of this component. The high-bit indicates whether 
the component is signed or unsigned. If the high-bit is 1, then the component contains signed values. 
If the high-bit is 0, then the component contains unsigned values. 
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Table I.7 – Format of the contents of the Bits Per Component box 

Field name Size (bits) Value 

BPCi 8 See Table I.8 

Table I.8 – BPCi values 

Values (bits) 
MSB LSB Component sample precision 

x000 0000 
to 

x010 0101 

Component bit depth = value + 1. From 1 bit deep through 38 bits 
deep respectively (counting the sign bit, if appropriate) 

0xxx xxxx Components are unsigned values 
1xxx xxxx Components are signed values 

 All other values reserved for ISO use 

I.5.3.3 Colour Specification box 

Each Colour Specification box defines one method by which an application can interpret the colourspace of the 
decompressed image data. This colour specification is to be applied to the image data after it has been decompressed 
and after any reverse decorrelating component transform has been applied to the image data.  

A JP2 file may contain multiple Colour Specification boxes, but must contain at least one, specifying different methods 
for achieving "equivalent" results. A conforming JP2 reader shall ignore all Colour Specification boxes after the first. 
However, readers conforming to other standards may use those boxes as defined in those other standards. 

The type of a Colour Specification box shall be 'colr' (0x636F 6C72). The contents of a Colour Specification box is as 
in Figure I.10: 
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Figure I.10 – Organization of the contents of a Colour Specification box 

METH: Specification method. This field specifies the method used by this Colour Specification box to 
define the colourspace of the decompressed image. This field is encoded as a 1-byte unsigned 
integer. The value of this field shall be 1 or 2, as defined in Table I.9. 
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Table I.9 – Legal METH values 

Value Meaning 

1 Enumerated Colourspace. This colourspace specification box contains the enumerated value of the colourspace 
of this image. The enumerated value is found in the EnumCS field in this box. If the value of the METH field is 1, 
then the EnumCS shall exist in this box immediately following the APPROX field, and the EnumCS field shall be 
the last field in this box 

2 Restricted ICC profile.This Colour Specification box contains an ICC profile in the PROFILE field. This profile 
shall specify the transformation needed to convert the decompressed image data into the PCSXYZ, and shall 
conform to either the Monochrome Input or Three-Component Matrix-Based Input profile class, and contain all 
the required tags specified therein, as defined in ICC.1:1998-09. As such, the value of the Profile Connection 
Space field in the profile header in the embedded profile shall be ‘XYZ\040’ (0x5859 5A20) indicating that the 
output colourspace of the profile is in the XYZ colourspace. 
Any private tags in the ICC profile shall not change the visual appearance of an image processed using this ICC 
profile. 
The components from the codestream may have a range greater than the input range of the tone reproduction curve 
(TRC) of the ICC profile. Any decoded values should be clipped to the limits of the TRC before processing the 
image through the ICC profile. For example, negative sample values of signed components may be clipped to zero 
before processing the image data through the profile. 
See J.9 for a more detailed description of the legal colourspace transforms, how those transforms are stored in the 
file, and how to process an image using that transform without using an ICC colour management engine. 
If the value of METH is 2, then the PROFILE field shall immediately follow the APPROX field and the PROFILE 
field shall be the last field in the box. 

other values Reserved for other ISO use. If the value of METH is not 1 or 2, there may be fields in this box following the 
APPROX field, and a conforming JP2 reader shall ignore the entire Colour Specification box. 

PREC:  Precedence. This field is reserved for ISO use and the value shall be set to zero; however, 
conforming readers shall ignore the value of this field. This field is specified as a signed 1-byte 
integer. 

APPROX: Colourspace approximation. This field specifies the extent to which this colour specification 
method approximates the "correct" definition of the colourspace. The value of this field shall 
be set to zero; however, conforming readers shall ignore the value of this field. Other values 
are reserved for other ISO use. This field is specified as 1-byte unsigned integer. 

EnumCS: Enumerated colourspace. This field specifies the colourspace of the image using integer codes. 
To correctly interpret the colour of an image using an enumerated colourspace, the application 
must know the definition of that colourspace internally. This field contains a 4-byte big endian 
unsigned integer value indicating the colourspace of the image. If the value of the METH field 
is 2, then the EnumCS field shall not exist. Valid EnumCS values for the first colourspace 
specification box in conforming files are limited to 16, 17, and 18 as defined in Table I.10: 

Table I.10 – Legal EnumCS values 

Value Meaning 

16 sRGB as defined by IEC 61966-2-1 
17 greyscale: A greyscale space where image luminance is related to code values using the sRGB non-linearity given 

in Equations (2) through (4) of IEC 61966-2-1 (sRGB) specification: 

 255/´ 8 bitYY =  (I-1) 

 ( ) 92,12/´,04045,0´for YYY lin =≤  (I-2) 
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
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where Ylin is the linear image luminance value in the range 0.0 to 1.0. The image luminance values should be inter-
preted relative to the reference conditions in Section 2 of IEC 61966-2-1. 

18 sYCC as defined by IEC 61966-2-1 Amd. 1 
NOTE – It is not recommend to use ICT or RCT specified in Annex G with sYCC image data. See J.15 for 
guidelines on handling YCC codestreams. 

other values Reserved for other ISO uses 
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PROFILE: ICC profile. This field contains a valid ICC profile, as specified by the ICC Profile Format 
Specification, which specifies the transformation of the decompressed image data into the PCS. 
This field shall not exist if the value of the METH field is 1. If the value of the METH field is 
2, then the ICC profile shall conform to the Monochrome Input Profile class or the Three-
Component Matrix-Based Input Profile class as defined in ICC.1:1998-09. 

Table I.11 – Format of the contents of the Colour Specification box 

Field name Size (bits) Value 

METH 8 1 to 2 
PREC 8 0 

APPROX 8 0 
EnumCS 32 if METH = 1

0 if METH = 2 
0 to (232– 1) 

no value 
PROFILE Variable Variable; see the ICC Profile Format 

Specification, version ICC.1:1998-09. 

I.5.3.4 Palette box 

This box specifies a palette that can be used to create channels from components. However, the Palette box does not 
specify the creation of any particular channel; the creation of channels based on the application of the palette to a 
component is specified by the Component Mapping box. The colourspace or meaning of the generated channel is 
specified by the Channel Definition box (or specified through the defaults defined in the specification of the Channel 
Definition box if the Channel Definition box does not exist). If the JP2 Header box contains a Palette box, then it shall 
also contain a Component Mapping box. If the JP2 Header box does not contain a Palette box, then it shall not contain a 
Component Mapping box. 

There shall be at most one Palette box inside a JP2 Header box. 

The type of the Palette box shall be 'pclr' (0x7063 6C72). The contents of this box shall be as in Figure I.11: 
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Figure I.11 – Organization of the contents of the Palette box 

NE:  Number of entries in the table. This value shall be in the range 1 to 1024 and is encoded as a 2-byte 
big endian unsigned integer. 

NPC: Number of palette columns specified in the Palette box. For example, if the palette is to be used to 
map a single index component into a three-component RGB image, then the value of this field shall 
be 3. This field is encoded as a 1-byte unsigned integer. 

Bi:   This parameter specifies the bit depth of values created by palette column i, encoded as a 1-byte big 
endian integer. The low 7-bits of the value indicate the bit depth of this palette column. The high-bit 
indicates whether the palette column is signed or unsigned. If the high-bit is 1, then the palette 
column contains signed values. If the high-bit is 0, then the palette column contains unsigned 
values. The number of Bi values shall be the same as the value of the NPC field. 
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Cji:  The value for entry j for palette column i. Cji values are organized in component major order; all of 
the values for entry j are grouped together, followed by all of the values for entry j + 1. In the 
example given above, this table would therefore read R1, G1 ,B1 ,R2 ,G2 ,B2, etc. The size of Cji is the 
value specified by field Bi. The number of palette columns shall be the same as the NPC field. The 
number of Cji values shall be the number of palette columns (the NPC field) times the number of 
entries in the palette (NE). If the value of Bi is not a multiple of 8, then each Cji value is padded with 
zeros to a multiple of 8 bits and the actual value shall be stored in the low-order bits of the padded 
value. For example, if the value of Bi is 10 bits, then the individual Cji values shall be stored in the 
low 10 bits of a 16-bit field. 

Table I.12 – Format of the contents of the Palette box 

Field name Size (bits) Value 

NE 16 1 to 1024 
NPC 8 1 to 255 

Bi 8 See Table I.13 
Cji Variable Variable 

Table I.13 – Bi values 

Values (bits) 
MSB LSB Palette column sample precision 

x000 0000  
to 

x010 0101 

Palette column bit depth = value + 1. From 1 bit deep through 
38 bits deep respectively (counting the sign bit, if appropriate) 

0xxx xxxx Palette column values are unsigned values 
1xxx xxxx Palette column values are signed values 

 All other values reserved for ISO use. 

I.5.3.5 Component Mapping box 

The Component Mapping box defines how image channels are identified from the actual components decoded from the 
codestream. This abstraction allows a single structure (the Channel Definition box) to specify the colour or type of both 
palettized images and non-palettized images. This box contains an array of CMPi, MTYPi and PCOLi fields. Each group 
of these fields represents the definition of one channel in the image. The channels are numbered in order starting with 
zero, and the number of channels specified in the Component Mapping box is determined by the length of the box. 

There shall be at most one Component Mapping box inside a JP2 Header box. 

If the JP2 Header box contains a Palette box, then the JP2 Header box shall also contain a Component Mapping box. If 
the JP2 Header box does not contain a Component Mapping box, the components shall be mapped directly to channels, 
such that component i is mapped to channel i. 

The type of the Component Mapping box shall be ‘cmap’ (0x636D 6170). The contents of this box shall be as in 
Figure I.12: 
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Figure I.12 – Organization of the contents of a Component Mapping box 
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CMPi: This field specifies the index of component from the codestream that is mapped to this channel 
(either directly or through a palette). This field is encoded as a 2-byte big endian unsigned integer. 

MTYPi: This field specifies how this channel is generated from the actual components in the file. This field 
is encoded as a 1-byte unsigned integer. Legal values of the MTYPi field are as in Table I.14: 

Table I.14 – MTYPi field values 

Value Meaning 

0 Direct use. This channel is created directly from an actual component in the codestream. The index of the 
component mapped to this channel is specified in the CMPi field for this channel. 

1 Palette mapping. This channel is created by applying the palette to an actual component in the codestream. The 
index of the component mapped into the palette is specified in the CMPi field for this channel. The column from 
the palette to use is specified in the PCOLi field for this channel. 

2 to 255 Reserved for ISO use 

PCOLi: This field specifies the index component from the palette that is used to map the actual component 
from the codestream. This field is encoded as a 1-byte unsigned integer. If the value of the MTYPi 
field for this channel is 0, then the value of this field shall be 0. 

Table I.15 – Format of the contents of the Component Mapping box 

Field name Size (bits) Value 

CMPi 16 0 to 16 384 
MTYPi 8 0 to 1 
PCOLi 8 0 to 255 

I.5.3.6 Channel Definition box 

The Channel Definition box specifies the meaning of the samples in each channel in the image. The exact location of 
this box within the JP2 Header box may vary provided that it follows the Image Header box.The mapping between 
actual components from the codestream to channels is specified in the Component Mapping box. If the JP2 Header box 
does not contain a Component Mapping box, then a reader shall map component i to channel i, for all components in the 
codestream. 

There shall be at most one Channel Definition box inside a JP2 Header box. 

This box contains an array of channel descriptions. For each description, three values are specified: the index of the 
channel described by that association, the type of that channel, and the association of that channel with particular 
colours. This box may specify multiple descriptions for a single channel. 

If a multiple component transform is specified within the codestream, the image must be in an RGB colourspace and the 
red, green and blue colours as channels 0, 1 and 2 in the codestream, respectively. 

The type of the Channel Definition box shall be 'cdef' (0x6364 6566). The contents of this box shall be as in Figure I.13: 

T.800_FI-13
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Figure I.13 – Organization of the contents of a Channel Definition box 
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N:  Number of channel descriptions. This field specifies the number of channel descriptions in this box. 
This field is encoded as a 2-byte big endian unsigned integer. 

Cni:  Channel index. This field specifies the index of the channel for this description. The value of this 
field represents the index of the channel as defined within the Component Mapping box (or the 
actual component from the codestream if the file does not contain a Component Mapping box). This 
field is encoded as a 2-byte big endian unsigned integer. 

Typi: Channel type. This field specifies the type of the channel for this description. The value of this field 
specifies the meaning of the decompressed samples in this channel. This field is encoded as a 2-byte 
big endian unsigned integer. Legal values of this field are shown in Table I.16: 

Table I.16 – Typi field values 

Value Meaning 

0 This channel is the colour image data for the associated colour. 
1 Opacity. A sample value of 0 indicates that the sample is 100% transparent, and the maximum value of the 

channel (related to the bit depth of the codestream component or the related palette component mapped to this 
channel) indicates a 100% opaque sample. All opacity channels shall be mapped from unsigned components. 

2 Premultiplied opacity. An opacity channel as specified above, except that the value of the opacity channel has 
been multiplied into the colour channels for which this channel is associated. Premultiplication is defined as 
follows: 

 
max

p SS
α

α×=  (I-3) 

where S is the original sample, Sp is the pre multiplied sample (the sample stored in the image, α is the value of the 
opacity channel, and αmax is the maximum value of the opacity channel as defined by the bit depth of the opacity 
channel. 

3 to (216– 2) Reserved for ISO use 
216– 1 The type of this channel is not specified. 

Asoci: Channel association. This field specifies the index of the colour for which this channel is directly 
associated (or a special value to indicate the whole image or the lack of an association). For 
example, if this channel is an opacity channel for the red channel in an RGB colourspace, this field 
would specify the index of the colour red. Table I.17 specifies legal association values. Table I.18 
specifies legal colour indices. This field is encoded as a 2-byte big endian unsigned integer. 

Table I.17 – Asoci field values 

Value Meaning 

0 This channel is associated as the image as a whole (for example, an independent opacity channel that should be 
applied to all color channels). 

1 to (216– 2) This channel is associated with a particular colour as indicated by this value. This value is used to associate a 
particular channel with a particular aspect of the specification of the colourspace of this image. For example, 
indicating that a channel is associated with the red channel of an RGB image allows the reader to associate that 
decoded channel with the Red input to an ICC profile contained within a Colour Specification box. Colour 
indicators are specified in Table I.18. 

216– 1 This channel is not associated with any particular colour. 
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Table I.18 – Colours indicated by the Asoci field 

Colour indicated by the following value of the Asoci field Class of 
colourspace 

1 2 3 4 

RGB R G B  
Greyscale Y    

YCbCr Y Cb Cr  
The following colourspace classes are listed for future reference, as well as to aid in under 
standing of the use of the Asoci field: 

XYZ X Y Z  
Lab L a b  
Luv L u v  

YCbCr Y Cb Cr  
Yxy Y x y  
HSV H S V  
HLS H L S  

CMYK C M Y K 
CMY C M Y  
Jab J a b  

n colour 
colourspaces 1 2 3 4 

The values in Table I.18 specify indices that have been assigned to represent specific "colours” and do not refer to 
specific channels (or components within the codestream or palette). Readers must use the information contained within 
the Channel Definition box to determine which channels contain which colours. 

In this box, channel indices are mapped from particular components within the codestream or palette. Colour indices 
specify how a particular channel shall be interpreted based on the specification of the colourspace of the image. There 
shall be one channel definition in this box for every colour required by the colourspace specification of this file as 
specified by the Colourspace Specification box. 

For example, the green colour in an RGB image is specified by a {Cn, Typ, Asoc} value of {i, 0, 2}, where i is the 
index of that channel (either directly or as generated by applying the reverse multiple component transform to the actual 
components in the codestream). Applications that are only concerned with extracting the colour channels can treat the 
Typ/Asoc field pair as a four-byte value where the combined value maps directly to the colour indices (as the Typ field 
for a colour channel shall be 0). 

In another example, the codestream may contain a channel i that specifies opacity blending samples for the red and 
green channels, and a channel j that specifies opacity blending samples for the blue channel. In that file, the following 
{Cn, Typ, Asoc} tuples would be found in the Channel Definition box for the two opacity channels: {i, 1, 1}, {i, 1, 2} 
and {j, 1, 3}. 

There shall not be more than one channel in a JP2 file with a the same Typi and Asoci value pair, with the exception of 
Typi and Asoci values of 216– 1 (not specified). For example a JP2 file in an RGB colourspace shall only contain one 
green channel, and a greyscale image shall contain only one grey channel. There shall be either exactly one opacity 
channel, exactly one pre-multiplied opacity channel, or neither associated with a single colour channel in an image. 

If the codestream contains only colour channels and those channels are ordered in the same order as the associated 
colours (for example, an RGB image with three channels in the order R, G, then B), then this box shall not exist. If there 
are any auxiliary channels or the channels are not in the same order as the colour indices, then the Channel Definition 
box (see Table I.19) shall be found within the JP2 Header box with a complete list of channel definitions. 
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Table I.19 – Format of the Channel Definition box 

Parameter Size (bits) Value 

N 16 1 to (216– 1) 
Cni 16 0 to (216– 1) 
Typi 16 0 to (216– 1) 
Asoci 16 0 to (216– 1) 

I.5.3.7 Resolution box (superbox) 

This box specifies the capture and default display grid resolutions of this image. If this box exists, it shall contain either 
a Capture Resolution box, or a Default Display Resolution box, or both. 

There shall be at most one Resolution box inside a JP2 Header box. 

The type of a Resolution box shall be 'res\040' (0x7265 7320). The contents of the Resolution box are as in Figure I.14: 
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Figure I.14 – Organization of the contents of the Resolution box 

resc: Capture Resolution box. This box specifies the grid resolution at which this image was captured. 
The format of this box is specified in I.5.3.7.1. 

resd: Default Display Resolution box. This box specifies the default grid resolution at which this image 
should be displayed. The format of this box is specified in I.5.3.7.2 

I.5.3.7.1 Capture Resolution box 

This box specifies the grid resolution at which the source was digitized to create the image samples specified by the 
codestream. For example, this may specify the resolution of the flatbed scanner that captured a page from a book. The 
capture grid resolution could also specify the resolution of an aerial digital camera or satellite camera. 

The vertical and horizontal capture grid resolutions are calculated using the six parameters (Table I.20) stored in this 
box in the following two equations, respectively: 

   VRcE
VRcD
VRcNVRc 10×=  (I-4) 

   HRcE
HRcD
HRcNHRc 10×=  (I-5) 

The values VRc and HRc are always in reference grid points per meter. If an application requires the grid resolution in 
another unit, then that application must apply the appropriate conversion. 

The type of a Capture Resolution box shall be 'resc' (0x7265 7363). The contents of the Capture Resolution box are as 
in Figure I.15: 
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Figure I.15 – Organization of the contents of the Capture Resolution box 
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VRcN: Vertical Capture grid resolution numerator. This parameter specifies the VRcN value in 
Equation (I-4), which is used to calculate the vertical capture grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

VRcD: Vertical Capture grid resolution denominator. This parameter specifies the VRcD value in 
Equation (I-4), which is used to calculate the vertical capture grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

HRcN: Horizontal Capture grid resolution numerator. This parameter specifies the HRcN value in 
Equation (I-5), which is used to calculate the horizontal capture grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

HRcD: Horizontal Capture grid resolution denominator. This parameter specifies the HRcD value in 
Equation (I-5), which is used to calculate the horizontal capture grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

VRcE: Vertical Capture grid resolution exponent. This parameter specifies the VRcE value in 
Equation (I-4), which is used to calculate the vertical capture grid resolution. This parameter is 
encoded as a twos-complement 1-byte signed integer. 

HRcE: Horizontal Capture grid resolution exponent. This parameter specifies the HRcE value in 
Equation (I-5), which is used to calculate the horizontal capture grid resolution. This parameter is 
encoded as a twos-complement 1-byte signed integer. 

Table I.20 – Format of the contents of the Capture Resolution box 

Field name Size (bits) Value 

VRcN 16 1 to (216– 1) 
VRcD 16 1 to (216– 1) 
HRcN 16 1 to (216– 1) 
HRcD 16 1 to (216– 1) 
VRcE 8 –128 to 127 
HRcE 8 –128 to 127 

I.5.3.7.2 Default Display Resolution box 

This box specifies a desired display grid resolution. For example, this may be used to determine the size of the image on 
a page when the image is placed in a page-layout program. However, this value is only a default. Each application must 
determine an appropriate display size for that application. 

The vertical and horizontal display grid resolutions are calculated using the six parameters (Table I.21) stored in this 
box in the following two equations, respectively: 

   VRdE
VRdD
VRdNVRd 10×=  (I-6) 

   HRdE
HRdD
HRdNHRd 10×=  (I-7) 

The values VRd and HRd are always in reference grid points per meter. If an application requires the grid resolution in 
another unit, then that application must apply the appropriate conversion. 

The type of a Default Display Resolution box shall be 'resd' (0x7265 7364). The contents of the Default Display 
Resolution box are as in Figure I.16: 
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Figure I.16 – Organization of the contents of the Default Display Resolution box 
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VRdN: Vertical Display grid resolution numerator. This parameter specifies the VRdN value in 
Equation (I-6), which is used to calculate the vertical display grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

VRdD: Vertical Display grid resolution denominator. This parameter specifies the VRdD value in 
Equation (I-6), which is used to calculate the vertical display grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

HRdN: Horizontal Display grid resolution numerator. This parameter specifies the HRdN value in 
Equation (I-7), which is used to calculate the horizontal display grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

HRdD: Horizontal Display grid resolution denominator. This parameter specifies the HRdD value in 
Equation (I-7), which is used to calculate the horizontal display grid resolution. This parameter is 
encoded as a 2-byte big endian unsigned integer. 

VRdE: Vertical Display grid resolution exponent. This parameter specifies the VRdE value in 
Equation (I-6), which is used to calculate the vertical display grid resolution. This parameter is 
encoded as a twos-complement 1-byte signed integer. 

HRdE: Horizontal Display grid resolution exponent. This parameter specifies the HRdE value in 
Equation (I-7), which is used to calculate the horizontal display grid resolution. This parameter is 
encoded as a twos-complement 1-byte signed integer. 

Table I.21 – Format of the contents of the Default Display Resolution box 

Field name Size (bits) Value 

VRdN 16 1 to (216– 1) 
VRdD 16 1 to (216– 1) 
HRdN 16 1 to (216– 1) 
HRdD 16 1 to (216– 1) 
VRdE 8 –128 to 127 
HRdE 8 –128 to 127 

I.5.4 Contiguous Codestream box 

The Contiguous Codestream box contains a valid and complete JPEG 2000 codestream, as defined in Annex A. When 
displaying the image, a conforming reader shall ignore all codestreams after the first codestream found in the file. 
Contiguous Codestream boxes may be found anywhere in the file except before the JP2 Header box. 

The type of a Contiguous Codestream box shall be 'jp2c' (0x6A70 3263). The contents of the box shall be as in 
Figure I.17: 

T.800_FI-17

Code

 

Figure I.17 – Organization of the contents of the Contiguous Codestream box 

Code: This field contains a valid and complete JPEG 2000 codestream as specified by Annex A. 

Table I.22 – Format of the contents of the Contiguous Codestream box 

Field name Size (bits) Value 

Code Variable Variable 
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I.6 Adding intellectual property rights information in JP2 

This Recommendation | International Standard specifies a box type for a box which is devoted to carrying intellectual 
property rights information within a JP2 file. Inclusion of this information in a JP2 file is optional for conforming files. 
The definition of the format of the contents of this box is reserved for ISO. However, the type of this box is defined in 
this Recommendation | International Standard as a means to allow applications to recognize the existence of IPR 
information. Use and interpretation of this information is beyond the scope of this Recommendation | International 
Standard. 

In general, an IPR box found at the top level of the file specifies IPR for the file as a whole. IPR boxes may be found at 
other locations, including inside superboxes defined by other Recommendations | International Standards. For those IPR 
boxes, the rights specified refer to the entity defined by the containing superbox. 

The type of the Intellectual Property Box shall be 'jp2i' (0x6A70 3269). 

I.7 Adding vendor-specific information to the JP2 file format 

The following boxes provide a set of tools by which applications can add vendor-specific information to the JP2 file 
format. All of the following boxes are optional in conforming files and may be ignored by conforming readers. 

I.7.1 XML boxes 

An XML box contains vendor-specific information (in XML format) other than the information contained within boxes 
defined by this Recommendation | International Standard. There may be multiple XML boxes within the file, and those 
boxes may be found anywhere in the file except before the File Type box.  

The type of an XML box is 'xml\040' (0x786D 6C20). The contents of the box shall be as in Figure I.18: 

T.800_FI-18

DATA

 

Figure I.18 – Organization of the contents of the XML box 

DATA: This field shall contain a well-formed XML document as defined by REC-xml-19980210. 

The existence of any XML boxes is optional for conforming files. Also, any XML box shall not contain any information 
necessary for decoding the image to the extent that is defined within this Recommendation | International Standard, and 
the correct interpretation of the contents of any XML box shall not change the visual appearance of the image. All 
readers may ignore any XML box in the file. 

I.7.2 UUID boxes 

A UUID box contains vendor-specific information other than the information contained within boxes defined within 
this Recommendation | International Standard. There may be multiple UUID boxes within the file, and those boxes may 
be found anywhere in the file except before the File Type box. 

The type of a UUID box shall be 'uuid' (0x7575 6964). The contents of the box shall be as in Figure I.19: 

T.800_FI-19

ID DATA

 

Figure I.19 – Organization of the contents of the UUID box 

ID:  This field contains a 16-byte UUID as specified by ISO/IEC 11578. The value of this UUID 
specifies the format of the vendor-specific information stored in the DATA field and the 
interpretation of that information. 

DATA: This field contains the vendor-specific information. The format of this information is defined 
outside of the scope of this Recommendation | International Standard, but is indicated by the value 
of the UUID field. 
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Table I.23 – Format of the contents of a UUID box 

Field name Size (bits) Value 

UUID 128 Variable 
DATA Variable Variable 

The existence of any UUID boxes is optional for conforming files. Also, any UUID box shall not contain any 
information necessary for decoding the image to the extent that is defined within this part of this Recommendation | 
International Standard, and the interpretation of the information in any UUID box shall not change the visual 
appearance of the image. All readers may ignore any UUID box. 

I.7.3 UUID Info boxes (superbox) 

While it is useful to allow vendors to extend JP2 files by adding information using UUID boxes, it is also useful to 
provide information in a standard form which can be used by non-extended applications to get more information about 
the extensions in the file. This information is contained in UUID Info boxes. A JP2 file may contain zero or more UUID 
Info boxes. These boxes may be found anywhere in the top level of the file (the superbox of a UUID Info box shall be 
the JP2 file itself) except before the File Type box. 

These boxes, if present, may not provide a complete index for the UUIDs in the file, may reference UUIDs not used in 
the file, and possibly may provide multiple references for the same UUID. 

The type of a UUID Info box shall be 'uinf' (0x7569 6E66). The contents of a UUID Info box are as in Figure I.20: 

T.800_FI-20

UList DE

 

Figure I.20 – Organization of the contents of a UUID Info box 

UList: UUID List box. This box contains a list of UUIDs for which this UUID Info box specifies a link to 
more information. The format of the UUID List box is specified in I.7.3.1. 

DE:  Data Entry URL box. This box contains a URL. An application can acquire more information about 
the UUIDs contained in the UUID List box. The format of a Data Entry URL box is specified 
in I.7.3.2 

I.7.3.1 UUID List box 

This box contains a list of UUIDs. The type of a UUID List box shall be ‘ulst’ (0x756C 7374). The contents of a UUID 
List box shall be as in Figure I.21: 

T.800_FI-21
NU ID0 IDNU – 1

 

Figure I.21 – Organization of the contents of a UUID List box 

NU:  Number of UUIDs. This field specifies the number of UUIDs found in this UUID List box. This 
field is encoded as a 2-byte big endian unsigned integer. 

IDi:  ID. This field specifies one UUID, as specified in ISO/IEC 11578, which shall be associated with 
the URL contained in the URL box within the same UUID Info box. The number of UUIDi fields 
shall be the same as the value of the NU field. The value of this field shall be a 16-byte UUID. 

Table I.24 – UUID List box contents data structure values 

Parameter Size (bits) Value 

NU 16 0 to (216– 1) 
UUIDi 128 0 to (2128– 1) 
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I.7.3.2 Data Entry URL box 

This box contains a URL which can use used by an application to acquire more information about the associated 
vendor-specific extensions. The format of the information acquired through the use of this URL is not defined in this 
Recommendation | International Standard. The URL type should be of a service which delivers a file (e.g., URLs of 
type file, http, ftp, etc.), which ideally also permits random access. Relative URLs are permissible and are relative to the 
file containing this Data Entry URL box. 

The type of a Data Entry URL box shall be 'url\040' (0x7572 6C20). The contents of a Data Entry URL box shall be as 
in Figure I.22: 

T.800_FI-22

FLAG

V
ER

S

LOC

 

Figure I.22 – Organization of the contents of a Data Entry URL box 

VERS: Version number. This field specifies the version number of the format of this box and is encoded as 
a 1-byte unsigned integer. The value of this field shall be 0. 

FLAG: Flags. This field is reserved for other use to flag particular attributes of this box and is encoded as a 
3-byte unsigned integer. The value of this field shall be 0. 

LOC: Location. This field specifies the URL of the additional information associated with the UUIDs 
contained in the UUID List box within the same UUID Info superbox. The URL is encoded as a null 
terminated string of UTF-8 characters. 

Table I.25 – Data Entry URL box contents data structure values 

Parameter Size (bits) Value 

VERS 8 0 
FLAG 24 0 
LOC varies varies 

I.8 Dealing with unknown boxes 

A conforming JP2 file may contain boxes not known to applications based solely on this Recommendation | 
International Standard. If a conforming reader finds a box that it does not understand, it shall skip and ignore that box. 
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Annex J 
 

Examples and guidelines 
(This annex does not form an integral part of this Recommendation | International Standard) 

This annex includes a number of examples intended to indicate how the encoding process works, and how the resulting 
codestream should be output. This annex is entirely informative. 

J.1 Software conventions adaptive entropy decoder 

This annex provides some alternate flowcharts for a version of the adaptive entropy decoder. This alternate version may 
be more efficient when implemented in software, as it has fewer operations along the fast path. 

The alternate version is obtained by making the following substitutions. Replace the flowchart in Figure C.20 with the 
flowchart in Figure J.1. Replace the flowchart in Figure C.15 with the flowchart in Figure J.2. Replace the flowchart in 
Figure C.19 with the flowchart in Figure J.3. 

T.800_FJ-1

INITDEC

BP = BPST
C = (B XOR 0xFF) << 16

BYTEIN

Done

C = C << 7
CT = CT – 7
A = 0x8000

 

Figure J.1 – Initialization of the software-conventions decoder 
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T.800_FJ-2

DECODE

No

No

Yes

A = A – Qe(I(CX))

Chigh < A?

A AND 0x8000 = 0?

D = MPS_EXCHANGE D = MPS(CX) D = LPS_EXCHANGE

RENORMD RENORMD

Return D

Yes

Chigh = Chigh – A

 

Figure J.2 – Decoding an MPS or an LPS in the software-conventions decoder 

T.800_FJ-3

NoYes

BYTEIN

Done

B = 0xFF?

YesNo B1 > 0x8F?

CT = 8

BP = BP + 1
C = C + 0xFF00 – (B << 8)

CT = 8

BP = BP + 1
C = C + 0xFE00 – (B << 9)

CT = 7

 

Figure J.3 – Inserting a new byte into the C register in the software-conventions decoder 
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J.2 Selection of quantization step sizes for irreversible transformations 

For irreversible compression, no particular selection of the quantization step size is required in this Recommendation | 
International Standard. Different applications may specify the quantization step sizes according to specific tile-
component characteristics. One effective way of selecting the quantizer step size for each sub-band b is to scale a 
default step size ∆d by taking into account the horizontal and vertical filtering procedures which produced these 
sub-band coefficients. One method consists in scaling ∆d with an energy weight parameter γb (the amount of squared 
errors introduced by a unit error in a transformed coefficient of sub-band b) in the following way [12]: 

   
b

d
b γ

∆=∆  (J-1) 

J.3 Filter impulse responses corresponding to lifting-based irreversible filtering procedures 

The irreversible filtering procedures described in Annex F implement the 9-tap/7-tap Cohen-Daubechies-Feauveau 
convolutional filter bank [20], [21]. Equivalent impulse responses of the analysis and synthesis filters are given in 
Tables J.1 and J.2. 

Table J.1 – Definition of impulse responses for the 9-7 irreversible analysis filter bank 

n Low-pass filter Approximate value 

0 32/316485 2
2

21 




 +ℜ−− xxx  0.602 949 018 236 360 

±1 8/85 2
2

21 




 ℜ−− xxx  0. 266 864 118 442 875 

±2 16/1445 2
2

21 




 −ℜ−− xxx  –0.078 223 266 528 990 

±3 ( ) 8/5 21 xx ℜ−  –0.016 864 118 442 875 

±4 64/5 1x−  0.026 748 757 410 810 

n High-pass filter Approximate value 

–1 ( ) 11 8/16 xx −  1.115 087 052 457 000 

–2, 0 ( ) 11 32/116 xx −−  –0.591 271 763 114 250 

–3, 1 ( ) 11 16/12 xx +  –0.057 543 526 228 500 

–4, 2 132/1 x−  0.091 271 763 114 250 
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Table J.2 – Definition of impulse responses for the 9-7 irreversible synthesis filter band 

n Low-pass filter Approximate value 

0 ( ) 11 8/16 xx −  1.115 087 052 457 000 

±1 ( ) 11 32/116 xx −  0.591 271 763 114 250 

±2 ( ) 11 16/12 xx +  –0.057 543 526 228 500 

±3 132/1 x  –0.091 271 763 114 250 

n High-pass filter Approximate value 

1 32/316485 2
2

21 




 +ℜ−− xxx  0.602 949 018 236 360 

0, 2 8/85 2
2

21 




 ℜ− xxx  –0.266 864 118 442 875 

–1, 3 16/1445 2
2

21 




 −ℜ−− xxx  –0.078 223 266 528 990 

–2, 4 ( ) 8/5 21 xx ℜ  0.016 864 118 442 875 

–3, 5 64/5 1x−  0.026 748 757 410 811 

J.4 Example of discrete wavelet transformation 

Table J.3 contains the integer-valued samples I(x, y) of a tile component that is 13 samples wide and 17 samples high.  

Table J.3 – Source tile component samples 

I(x, y) 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 1 2 3 4 5 6 7 8 9 10 11 12 
2 2 2 2 3 4 5 6 7 8 9 10 11 12 
3 3 3 3 4 5 5 6 7 8 9 10 11 12 
4 4 4 4 5 5 6 7 8 8 9 10 11 12 
5 5 5 5 5 6 7 7 8 9 10 11 12 13 
6 6 6 6 6 7 7 8 9 10 10 11 12 13 
7 7 7 7 7 8 8 9 9 10 11 12 13 13 
8 8 8 8 8 8 9 10 10 11 12 12 13 14 
9 9 9 9 9 9 10 10 11 12 12 13 14 15 
10 10 10 10 10 10 11 11 12 12 13 14 14 15 
11 11 11 11 11 11 12 12 13 13 14 14 15 16 
12 12 12 12 12 12 13 13 13 14 15 15 16 16 
13 13 13 13 13 13 13 14 14 15 15 16 17 17 
14 14 14 14 14 14 14 15 15 16 16 17 17 18 
15 15 15 15 15 15 15 16 16 17 17 18 18 19 
16 16 16 16 16 16 16 17 17 17 18 18 19 20 

J.4.1 Example of 9-7 irreversible wavelet transformation 

Tables J.4, J.5, J.6, J.7, J.8, J.9 and J.10 contain the coefficients of the sub-bands 2LL, 2HL, 2LH, 2HH, 1HL, 1LH, 
1HH resulting from the two-level decomposition with the 9-7 irreversible transformation of the source tile component 
samples given in Table J.3 (see Figure F.18). The coefficients' values displayed in the tables have been rounded to the 
nearest integer. 
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Table J.4 – 2LL sub-band coefficients (9-7 irreversible wavelet transformation) 

a2LL(u, v) 0 1 2 3 

0 1 4 8 11 
1 4 5 8 11 
2 8 9 11 13 
3 12 12 14 16 
4 15 15 17 18 

Table J.5 – 2HL sub-band coefficients (9-7 irreversible wavelet transformation) 

a2HL(u, v) 0 1 2 

0 0 0 0 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 

Table J.6 – 2LH sub-band coefficients (9-7 irreversible wavelet transformation) 

a2LH(u, v) 0 1 2 3 

0 0 0 0 0 
1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 

Table J.7 – 2HH sub-band coefficients (9-7 irreversible wavelet transformation) 

a2HH(u, v) 0 1 2 

0 –1 0 0 
1 0 1 0 
2 0 0 0 
3 0 0 0 

Table J.8 – 1HL sub-band coefficients (9-7 irreversible wavelet transformation) 

a1HL(u, v) 0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 –1 0 0 0 0 
4 0 0 0 –1 0 0 
5 0 0 1 1 0 –1 
6 0 0 0 0 0 0 
7 0 0 –1 –1 –1 0 
8 0 0 0 0 0 0 
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Table J.9 – 1LH sub-band coefficients (9-7 irreversible wavelet transformation) 

a1LH(u, v) 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 
1 0 0 0 –1 0 0 0 
2 0 0 0 0 0 1 1 
3 0 0 0 0 –1 1 0 
4 0 0 0 0 0 0 1 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 

Table J.10 – 1HH sub-band coefficients (9-7 irreversible wavelet transformation) 

a1HH(u, v) 0 1 2 3 4 5 

0 –1 0 0 0 0 0 
1 0 0 –1 0 0 0 
2 0 –1 1 0 0 0 
3 0 0 0 0 0 1 
4 0 0 0 0 –1 0 
5 0 0 0 0 0 0 
6 0 0 –1 0 –1 1 
7 0 0 0 0 –1 0 

J.4.2 Example of 5-3 reversible wavelet transformation 

Tables J.11, J.12, J.13, J.14, J.15, J.16 and J.17 contain the coefficients of the subbands 2LL, 2HL, 2LH, 2HH, 1HL, 
1LH, 1HH resulting from the two-level decomposition with the 5-3 irreversible transformation of the source tile 
component samples given in Table J.3 (see Figure F.18). The coefficients' values displayed in the tables have been 
rounded to the nearest integer. 

Table J.11 – 2LL sub-band coefficients (5-3 reversible wavelet transformation) 

a2HL(u, v) 0 1 2 3 

0 0 4 8 12 
1 4 5 8 12 
2 8 8 11 15 
3 12 12 14 18 
4 16 16 18 20 

Table J.12 – 2HL sub-band coefficients (5-3 reversible wavelet transformation) 

a2HL(u, v) 0 1 2 

0 0 0 0 
1 0 1 0 
2 0 1 0 
3 0 0 1 
4 0 0 0 
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Table J.13 – 2LH sub-band coefficient (5-3 reversible wavelet transformation) 

a2LH(u, v) 0 1 2 3 

0 0 0 0 0 
1 0 1 1 1 
2 0 0 0 0 
3 0 0 0 0 

Table J.14 – 2HH sub-band coefficients (5-3 reversible wavelet transformation) 

a2HH(u, v) 0 1 2 

0 –1 0 0 
1 0 –1 0 
2 0 1 0 
3 0 0 0 

Table J.15 – 1HL sub-band coefficients (5-3 reversible wavelet transformation) 

a1HL(u, v) 0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
2 0 1 0 1 0 0 
3 0 0 0 0 –1 1 
4 0 0 0 0 1 1 
5 0 0 1 1 0 –1 
6 0 0 1 0 1 1 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 

Table J.16 – 1LH sub-band coefficients (5-3 reversible wavelet transformation) 

a1LH (u, v) 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 
2 0 0 0 0 0 1 1 
3 0 0 1 0 0 1 1 
4 0 0 0 0 1 0 2 
5 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 1 
7 0 0 0 0 1 1 0 
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Table J.17 – 1HH sub-band coefficients (5-3 reversible wavelet transformation) 

a1HH (u, v) 0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
2 0 0 1 0 1 0 
3 0 0 0 0 0 1 
4 0 0 0 0 0 1 
5 0 0 0 1 0 0 
6 0 0 0 0 0 1 
7 0 0 0 0 –1 0 

J.5 Row-based wavelet transform 

Described here is an example of a row-based wavelet transformation for the 9-7 irreversible filter well suited for 
compression devices which receive and transfer image data in a serial manner. Traditional wavelet transformation 
implementations require the whole image to be buffered, and then the filtering to be performed in vertical and 
horizontal directions. While filtering in the horizontal direction is very simple, filtering in the vertical direction is more 
involved. Filtering along a row requires one row to be read; filtering along a column requires the whole image to be 
read. This explains the huge bandwidth requirements of the traditional wavelet transformation implementation. The 
row-based wavelet transformation overcomes the previous limitation while providing the exact same transformed 
coefficients as a traditional wavelet transformation implementation. However, the row-based wavelet transformation 
alone does not provide a complete row-based encoding paradigm. A complete row-based coder also has to take into 
account all the following coding stages up to the entropy coding and rate allocation stages. 

J.5.1 The FDWT_ROW procedure 

The FDWT_ROW procedure for the 9-7 irreversible filter uses one buffer buf(i, j) of five rows, 0 ≤ i ≤ 4, to perform the 
equivalent of the 2D_SD procedure described in F.4.2, except for the 2D_DEINTERLEAVE procedure. The range of 
the samples of input tile component I(x, y) is assumed to be defined by Equation (F-1). Each row of the buffer buf(i, j) is 
of size tcx1 – tcx0 + 1. The general description of the FDWT_ROW applied to one image tile component is illustrated in 
Figure J.4 for the first level of decomposition. The FDWT_ROW takes as input a level shifted image tile component 
row of samples and produces as output one row of transform coefficients. It is assumed throughout this clause that the 
image tile component has at least five rows. 
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T.800_FJ-4

FDWT_ROW

INIT(y, buf)

START_VERT(buf)

buf(0) = 1D_SD(buf(0), i0, i1)

No

Done

GET_ROW(y, buf)

RB_VERT_1(buf)

buf(i) = 1D_SD(buf(i), i0, i1)

GET_ROW(y, buf)

RB_VERT_2(buf)

END_1(y, buf)

Yes

YesNo

OUTPUT_ROW(buf(i))

y < tcy1 – tcy0

OUTPUT_ROW(buf(0))

y < tcy1 – tcy0

buf(i) = 1D_SD(buf(i), i0, i1)

OUTPUT_ROW(buf(i))

Done

END_2(y, buf)

y ← 0

i0 ← mod (tcx0, 2)

i1 ← tcx1 – tcx0 + i0

i ← mod(y – 4, 5)
y ← y + 1

i ← mod(y – 4, 5)
y ← y + 1

 

Figure J.4 – The FDWT_ROW procedure 
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J.5.1.1 The GET_ROW procedure 

In this description, the level shifted image tile component is assumed to be stored in an external memory I(x, y). As 
illustrated in Figure J.5, the GET_ROW procedure reads one row of samples of the level shifted image tile component 
and transfers this row of samples in the buffer, buf.  

T.800_FJ-5

GET_ROW

No

Yes

Done

buf (i, d + j) ← I(x, y + tcy0)

No

Yes

i ← mod(y, 5)
d ← 0

x ← tcx0
j ← 0

x ← x + 1
j ←  j+ 1

mod(tcx0, 2) = 0 d ← 1

x ≥ tcx1 

 

Figure J.5 – The GET_ROW procedure 

J.5.2 The INIT procedure 

As illustrated in Figure J.6, the INIT procedure reads five rows of samples of the level shifted image tile component and 
transfers these rows of samples to the buffer, buf. 
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T.800_FJ-6

INIT

i ← 0

Yes

Done

GET_ROW(y, buf)

i ≥ 5
No

i ← i + 1
y ← y + 1 

 

Figure J.6 – The INIT procedure 

J.5.3 The START_VERT procedure 

As illustrated in Figure J.7, the START_VERT procedure modifies the coefficients in the buffer buf(i, j). In this figure 
as well as in all the following figures of this clause, the expression buf(i) ← buf(i) + α · buf(i2) is equivalent to 
buf(i, j) ← buf(i, j) + α · buf(i2, j) for d ≤ j < tcx0 – tcx1 + d. 
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T.800_FJ-7

START_VERT

No

Done

mod(tcy0, 2) = 0

y < tcy1 – tcy0

buf(0) ← buf(0) + 2α · buf(1)
buf(2) ← buf(2) + α · buf(1)
buf(1) ← buf(1) + β · buf(0)
buf(2) ← buf(2) + α · buf(3)
buf(1) ← buf(1) + β · buf(2)
buf(0) ← buf(0) + 2γ · buf(1)
buf(4) ← buf(4) + 2α · buf(3)
buf(3) ← buf(3) + β · buf(2)
buf(2) ← buf(2) + γ · buf(1)
buf(1) ← buf(1) + δ · buf(0)

buf(0) ← K · buf(0)

Yes

Done

No

Yes

Done

buf(1) ← buf(1) + α · buf(0)
buf(1) ← buf(1) + α · buf(2)
buf(0) ← buf(0) + 2β · buf(1)
buf(3) ← buf(3) + α · buf(2)
buf(2) ← buf(2) + β · buf(1)
buf(1) ← buf(1) + γ · buf(0)
buf(3) ← buf(3) + α · buf(4)
buf(2) ← buf(2) + β · buf(3)
buf(1) ← buf(1) + γ · buf(2)

buf(0) ← buf(0) + 2δ · buf(1)

buf(0) ←    · buf(0)1
K

buf(0) ← buf(0) + 2α · buf(1)
buf(2) ← buf(2) + α · buf(1)
buf(1) ← buf(1) + β · buf(0)
buf(2) ← buf(2) + α · buf(3)
buf(1) ← buf(1) + β · buf(2)
buf(0) ← buf(0) + 2γ · buf(1)
buf(4) ← buf(4) + α · buf(3)
buf(3) ← buf(3) + β · buf(2)
buf(2) ← buf(2) + γ · buf(1)
buf(1) ← buf(1) + δ · buf(0)

buf(0) ← K · buf(0)

 

Figure J.7 – The START_VERT procedure 

J.5.3.1 The RB_VERT_1 procedure  

As illustrated in Figure J.8, the RB_VERT_1 procedure modifies the coefficients in buf(i, j). 
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T.800_FJ-8

RB_VERT_1

Yes

mod(tcy0, 2) = 0

No

Done

y < tcy1 – tcy0 – 1

Done

Yes

No

Done

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + α · buf(mod(y, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + β · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + γ · buf(mod(y – 2, 5))
buf(mod(y – 4, 5)) ← buf(mod(y – 4, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 4, 5)) ←     · buf(mod(y – 4, 5))
1
K

buf(mod(y, 5)) ← buf(mod(y,5)) + 2α · buf (mod(y – 1, 5))
buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ←Κ· buf(mod(y – 4, 5))

buf(mod(y, 5)) ← buf(mod(y,5)) + α · buf(mod(y – 1, 5))
buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ←Κ · buf(mod(y – 4, 5))

 

Figure J.8 – The RB_VERT_1 procedure 

J.5.3.2 The RB_VERT_2 procedure 

As illustrated in Figure J.9, the RB_VERT_2 procedure modifies the coefficients in buf(i, j). 
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T.800_FJ-9

RB_VERT_2

Yes
mod(tcy0, 2) = 0

No

y < tcy1 – tcy0

Done

Yes

No

Done

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + α · buf(mod(y, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + β · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + γ · buf(mod(y – 2, 5))
buf(mod(y – 4, 5)) ← buf(mod(y – 4, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 4, 5)) ←     · buf(mod(y – 4, 5))
1
K

buf(mod(y, 5)) ← buf(mod(y, 5)) + α · buf(mod(y – 1, 5))
buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ←Κ · buf(mod(y – 4, 5))

buf(mod(y, 5)) ← buf(mod(y, 5)) + 2α · buf(mod(y – 1, 5))
buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ←Κ · buf(mod(y – 4, 5))

 

Figure J.9 – The RB_VERT_2 procedure 

J.5.3.3 The END_1 procedure 

The END_1 procedure is detailed in Figure J.10. 
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T.800_FJ-10

END_1

No

mod(tcy0, 2) = 0 Yes

Done

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 3, 5)

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 4, 5)

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 4, 5)

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 3, 5)

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 2, 5)

i ← mod(y – 1, 5)

buf(i) = 1D_SD(buf(i), i0, i1)OUTPUT_ROW(buf(i))

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ← Κ · buf(mod(y – 4, 5))

1
K

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + β · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + γ · buf(mod(y – 2, 5))
buf(mod(y – 4, 5)) ← buf(mod(y – 4, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 4, 5)) ←    · buf(mod(y – 4, 5))

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2γ · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 3, 5)) ← Κ · buf(mod(y – 3, 5))

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 2, 5))

buf(mod(y – 3, 5)) ←    · buf(mod(y – 3, 5))1
K

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2δ · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← Κ · buf(mod(y – 2, 5))

buf(mod(y – 1, 5)) ←    · buf(mod(y – 1, 5))1
K

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + δ · buf(mod(y – 1, 5))

buf(mod(y – 2, 5)) ←    · buf(mod(y – 2, 5))

buf(mod(y – 1, 5)) ← Κ · buf(mod(y – 1, 5))

1
K

 

Figure J.10 – The END_1 procedure 
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J.5.3.4 The END_2 procedure 
The END_2 procedure is detailed in Figure J.11 

T.800_FJ-11

END_2

No

mod(tcy0, 2) = 0
Yes

Done

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 3, 5)

OUTPUT_ROW(buf(i))

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 2, 5)

i ← mod(y – 1, 5)

buf(i) = 1D_SD(buf(i), i0, i1)

OUTPUT_ROW(buf(i))

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2β · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 3, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 4, 5))

buf(mod(y – 4, 5)) ← Κ · buf(mod(y – 4, 5))

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + δ · buf(mod(y – 1, 5))

buf(mod(y – 2, 5)) ←     · buf(mod(y – 2, 5))

buf(mod(y – 1, 5)) ← Κ · buf(mod(y – 1, 5))

1
K

OUTPUT_ROW(buf(i))

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 1, 5)

i ← mod(y – 2, 5)

buf(i) = 1D_SD(buf(i), i0, i1)

i ← mod(y – 3, 5)

buf(i)=1D_SD(buf(i), i0, i1)

3OUTPUT_ROW(buf(i))

i ← mod(y – 4, 5)

buf(i) = 1D_SD(buf(i), i0, i1)

OUTPUT_ROW(buf(i))

i ← mod(y – 4, 5)

buf(i) = 1D_SD(buf(i), i0, i1)

OUTPUT_ROW(buf(i))

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + β · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + γ · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 4, 5)) ←    · buf(mod(y – 4, 5))
1
K

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2γ · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + δ · buf(mod(y – 3, 5))

buf(mod(y – 3, 5)) ← Κ · buf(mod(y – 3, 5))

buf(mod(y – 2, 5)) ← buf(mod(y – 2, 5)) + γ · buf(mod(y – 1, 5))
buf(mod(y – 3, 5)) ← buf(mod(y – 3, 5)) + δ · buf(mod(y – 2, 5))

buf(mod(y – 3, 5)) ←    · buf(mod(y – 3, 5))1
K

buf(mod(y – 1, 5)) ← buf(mod(y – 1, 5)) + 2δ · buf(mod(y – 2, 5))
buf(mod(y – 2, 5)) ← Κ · buf(mod(y – 2, 5))

buf(mod(y – 1, 5)) ←    · buf(mod(y – 1, 5))1
K

 
Figure J.11 – The END_2 procedure 
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J.5.4 OUTPUT_ROW procedure 

This procedure returns a row buf(i) of transformed coefficients, which correspond either to the 1LL and 1HL sub-band 
or to the 1LH and 1HH sub-band. This row of transform coefficients can be either stored in an external memory or 
processed immediately. 

J.6 Scan-based coding 

Some applications use scanning sensors that create images (possibly unconstrained in length) row by row and have 
limited amounts of processing memory. These applications need full scan-based coding where only the minimum 
required number of bytes is retained in memory at any given time without significant loss in performance. Example 
implementations of such a scan-based coding systems have been demonstrated [39], [40]. The recommended procedure 
is outlined below. 

The example rate control described in J.14 requires buffering of the entire compressed codestream at a bit rate higher 
than the interleaved final bit rate. Alternatively, a scan-based approach can be used where the row-based wavelet 
transformation (see J.5) is followed by a scan-based rate allocation and coding procedure to ensure that compressed 
wavelet coefficients are transmitted soon after they have been generated. For this purpose, a limited memory buffer (the 
scan buffer) is introduced after the wavelet transform. The discrete compressed data segments within it are called "scan 
elements". A scan element consists of a localized set of wavelet coefficients. It may be a tile or a precinct, and 
corresponds to a small number of rows in image space. The scan buffer may contain one or more scan elements. 

The rate control algorithm is applied to the compressed data in the scan buffer and the first scan element is released to 
the bit stream. In case there is more than one scan element in the scan buffer, a sliding window rate control mechanism 
is implemented. This approach may give better compression results at the expense of a slight increase in complexity and 
memory requirements. 

This scan-based approach does not affect the JPEG2000 decoding process. 

J.7 Error resilience 

This clause describes a method for decoding images, which have been coded using an error resilient syntax. 

Many applications require the delivery of image data over different types of communication channels. Typical wireless 
communications channels give rise to random and burst bit errors. Internet communications are prone to loss due to 
traffic congestion. To improve the performance of transmitting compressed images over these error-prone channels, 
error-resilient bit stream syntax and tools are included in this Recommendation | International Standard. 

The error resilience tools (see Table J.18) in this Recommendation | International Standard deal with channel errors 
using the following approaches: compressed data partitioning and resynchronization, error detection and concealment, 
and Quality of Service (QoS) transmission based on priority. Error resilience tools are described in each category. 

Table J.18 – Error resilience tools 

Type of tool Name Reference 

Entropy coding level 

code-blocks 
termination of the arithmetic coder for each pass 
reset of contexts after each coding pass 
selective arithmetic coding bypass 
segmentation symbols 

Annex D 

Packet level 
short packet format 
packet with resynchronization marker (SOP) 

Annex B 

The entropy coding of the quantized coefficients is done within code-blocks. Since encoding and decoding of the code-
blocks are independent, bit errors in the bit stream of a code-block will be contained within that code-block (see 
Annex D). 

Termination of the arithmetic coder is allowed after every coding pass. Also, the contexts may be reset after each 
coding pass. This allows the arithmetic coder to continue to decode coding passes after errors (see D.4). 

The optional arithmetic coding bypass style puts raw bits into the bit stream without arithmetic coding. This prevents 
the types of error propagation to which variable length coding is susceptible (see D.6). 



ISO/IEC 15444-1:2002 (E) 

168 ITU-T Rec. T.800 (08/2002 E) 

Short packets are achieved by moving the packet headers to the PPM or PPT marker segments (see A.7.4 and A.7.5). If 
there are errors, the packet headers in the PPM or PPT marker segments can still be associated with the correct packet 
by using the sequence number in the SOP. 

A segmentation symbol is a special symbol. The correct decoding of this symbol confirms the correctness of the 
decoding of this bit-plane which allows error detection. (see D.5). 

A packet with a resynchronization marker SOP (see A.8.1) allows spatial partitioning and resynchronization. This is 
placed in front of every packet in a tile with a sequence number starting at zero. It is incremented with each packet. 
Packet ordering is described in B.10. 

J.8 Compatibility requirement with JFIF/SPIFF files 

This clause only impacts extensions to the ITU-T Rec. T.81 | ISO/IEC 10918-1 specification and has no influence of 
any kind on this Recommendation | International Standard nor will it have in any of its extensions. There is no 
requirement to support this profile in a JPEG 2000 decoder. 

J.8.1 Compatibility methodology 

In order to avoid any type of modification in the file format described in the normative part of this Recommendation | 
International Standard, a new profile in the ITU-T Rec. T.81 | ISO/IEC 10918-1 is defined according to the extension 
methodologies described in ITU-T Rec. T.86 | ISO/IEC 10918-4. This profile will facilitate the transition from the use 
of ITU-T Rec. T.81 | ISO/IEC 10918-1 to this Recommendation | International Standard. 

This new profile is available through the Registration Authority established for the purpose of extensions and is 
specified in ITU-T Rec. T.84 | ISO/IEC 10918-3 and ITU-T Rec. T.86 | ISO/IEC 10918-4 specifications. It will 
therefore appear on the JURA (JPEG Utilities Registration Authority) web site at http://jura.jpeg.org. The status of this 
new profile is the same as all other registered parameters; it is an extension to ITU-T Rec. T.81 | ISO/IEC 10918-1. 

J.8.2 Compatibility design parameters 
1) Transparent to a JFIF decoder (compliant with ITU-T Rec. T.81 | ISO/IEC 10918-1 and ITU-T Rec. T.83 

| ISO/IEC 10918-2). 
2) Transparent to a SPIFF decoder (compliant with ITU-T Rec. T.84 | ISO/IEC 10918-3). 
3) A box basic structure of JP2/JPX. 
4) No need to transcode DCT to wavelet codestream. 
5) Preserves the integrity of, and access to, any IPR-related information. 
6) Uses the ".jpg" or ".spf" extension according to its original file provenance. 
7) Takes advantage of any registered parameter as described in ITU-T Rec. T.86 | ISO/IEC 10918-4. 

J.9 Implementing the Restricted ICC method outside of a full ICC colour management engine 

This annex describes the Restricted ICC method for specifying the colourspace of a JP2 file using ICC profiles based on 
version ICC.1:1998-09 of the ICC Profile Format Specification [41]. This annex is specifically targeted at developers 
who are not using a full ICC colour management engine and thus must extract the transformation parameters from the 
ICC profile and process the image using application specific code. 

J.9.1 Extracting the colour transformation from an ICC profile 

J.9.1.1 ICC profile format 

An ICC profile uses a tagged data format to organize its information. It is described in clause 6 of the ICC Profile 
Format Specification. The format consists of a 128-byte header, a tag table, and tag data. Each tag is identified by a 
32-bit signature which usually corresponds to four ASCII characters. The data for each tag is stored in a format which 
specifies the various data elements. Each format is identified by a data type signature, which is the first 32 bits of the 
tag data. To get the data for a tag, first locate the signature for that tag in the tag table, which specifies the position and 
size of the data for that tag, and then retrieve the data based on its position and size within the tag data. Once retrieved, 
the tag data type signature specifies how to interpret the tag data. 

The important tags used in processing of an image through a Restricted ICC profile are summarized in Table J.19. 
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Table J.19 – Processing tags used by a Restricted ICC profile 

Tag name Tag signature Tag data type Tag data type 
signature 

redTRCTag 'rTRC' curveType 'curv' 
greenTRCTag 'gTRC' curveType 'curv' 
blueTRCTag 'bTRC' curveType 'curv' 

redColorantTag 'rXYZ' XYZType 'XYZ\040' 
greenColorantTag 'gXYZ' XYZType 'XYZ\040' 
blueColorantTag 'bXYZ' XYZType 'XYZ\040' 

grayTRCTag 'kTRC' curveType 'curv' 

Note that an ICC profile, and thus a Restricted ICC profile, may contain other tags, such as mediaWhitePoint. While 
these tags are not used in the default processing path of a Restricted ICC profile as described in J.9.2, more complex 
rendering scenarios may take advantage of that information to provide a more accurate or optimized rendition of the 
image. 

The ICC profile format, and thus a Restricted ICC profile, specifies a processing model which converts between device 
code values and the Profile Connection Space (PCS). This model consists of two parts, a set of three one-dimensional 
interpolation tables and a three-by-three matrix. The interpolation tables are formed from the redTRCTag, 
greenTRCTag, and blueTRCTag. The matrix is formed from the redColorantTag, greenColorantTag, and 
blueColorantTag. The basic processing model using these elements specified by Equation (4), clause 6.3.1.2 of the ICC 
Profile Format Specification and described in J.9.2. Note that the profile describes the device values to PCS conversion. 
The matrix and interpolation tables must be inverted to convert from the PCS to device values. 

The complete specification of the format of an ICC profile (and thus a Restricted ICC profile) is contained in the ICC 
Profile Format Specification, version ICC.1:1998-09. 

J.9.1.2 Interpolation tables 

The interpolation tables use the curveType format. A tag of type curveType consists of a count followed by that number 
of unsigned 16-bit table entries. 

If the count is 1, the single table entry is an encoded gamma value. In this case, the one-dimensional table is formed 
using the formula: 

   53565256 ×





=

tVal

dMax
dVallinear  (J-2) 

where dVal is the device component value dMax is the maximum device value, and tVal is the table entry value. 

If the count is more than one, the entries are the values of an interpolation table. The first entry corresponds to a device 
value of 0 and the last entry corresponds to the maximum device value (e.g., 255 for 8-bit data, 65 535 for 16-bit data). 
The remaining entries are uniformly spaced between those two entries. For example, if you have 8-bit data and 6 
entries, then the 4th entry corresponds to device value of 255 * ((4 – 1)/(6 – 1)) = 153. Note that 1 is subtracted from the 
position of the entry in the table to convert it to a zero-based index, and that 1 is subtracted from the number of entries 
to convert it to the number of intervals between entries. 

To convert the interpolation table to a look-up table, the number of entries in the interpolation must be adjusted to 
match the number of possible device values. In the case of 8-bit data, there are 256 possible values. If the interpolation 
table has 6 entries, it would have to be expanded to 256 entries. There are several methods to do this and often linear 
interpolation is used. Using this method, entries between the supplied interpolation table entries are calculated by 
linearly interpolating between adjacent interpolation table entries using the device value as the interpolant. For example, 
consider a 6-entry interpolation table with values T3 in the 3rd entry and T4 in the 4th entry. Look-up table index 128 
would have an interpolation table position of (128/255) * 5 = 2,5098. The look-up table value at index 128 is calculated 
by interpolating between the value at entry 3 and the value at entry 4 using an interpolant of 0,5098: value at index 
128 = T3 + ((T4 – T3) * 0,5098). 

Each entry in the table can be converted to floating point by dividing by 65 535. 
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When processing a pixel, each component of the pixel is applied to its corresponding look-up table. The floating point 
values obtained from the 3-element column vector seen in Equation (4) of clause 6.3.1.2 of the ICC Profile Format 
Specification. 

J.9.1.3 Matrix 

The matrix is formed from the values of the redTRCTag, greenTRCTag, and blueTRCTag. These tags use the 
XYZType, which contains three XYZNumberTypes. The first is the X component, the second is the Y component, and 
the third is the Z component. Each XYZNumberType contains a signed 32-bit integer which can be converted to 
floating point by dividing by 65 536. The XYZ values of each tag correspond to a row of the matrix, as shown in 
Equation (4) of clause 6.3.1.2 of the ICC Profile Format Specification. This matrix is multiplied by the column vector 
produced by the interpolation table to produce the XYZ PCS values. 

J.9.1.4 Combining source and destination profiles 

The profile embedded in the JP2 file describes how to convert the image data into the PCS. It is referred to as the 
"source" profile. Typically, the image data needs to be converted into the data for another device, such as the display. 
This device is referred to as the "destination" device and its profile is referred to as the destination profile. The 
conversion is done by combining the processing models of the source and destination profiles. Assuming that the 
destination device transformation is limited to a 3 × 3 matrix followed by a 1D table, the procedure would be: 

1) Obtain the interpolation tables and matrix from the source profile. 
2) Obtain the interpolation tables and matrix from the destination profile. 
3) Invert the interpolation tables and matrix of the destination profile. 
4) Combine the two matrices using matrix multiplication. 

This produces an overall processing model which is a set of one-dimensional tables, a matrix, and a second set of one-
dimensional tables. This can be used to convert the source image pixels into destination pixel images. 

J.9.2 Colour processing equations for three-component RGB images 

The goal of the Restricted ICC profile method is to restrict the set of all ICC profiles down to a set which can be 
described using a simple set of colour processing equations. The ICC specification defines this class of profile as Three-
Color Matrix-Based Input Profiles (defined in clause 6.3.1.2 of the ICC Profile Format Specification) and Monochrome 
Input Profiles (defined in clause 6.3.1.1 of the ICC Profile Format Specification). Profiles in the Three-Color Matrix-
Based Input Profile class can be described using the following equations: 
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where decompressedrgb is the original decompressed pixel and connectionxyz is the pixel converted into the XYZ form of 
the Profile Connection Space (XYZPCS). In Equation (J-3), the three look-up tables are loaded from the Restricted ICC 
profile from the redTRCTag, greenTRCTag and blueTRCTag tags respectively, as defined in clauses 6.4.38, 6.4.18 
and 6.4.4, respectively, in the ICC Profile Format Specification. The common data format of those tags is defined in 
clause 6.5.25 of the profile specification. In Equation (J-4), the rows of the matrix are loaded from the redColorantTag, 
greenColorantTag and blueColorantTag tags respectively, as defined in clauses 6.4.39, 6.4.19 and 6.4.5, respectively, in 
the ICC Profile Format Specification. The common data format of those tags is defined in clause 6.5.2 of the profile 
specification. 

The Monochrome Input Profile class can be described with the following equation: 

   [ ]devicegrayTRCconnection =  (J-5) 
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where device is the original decompressed pixel and connection is the achromatic channel of the profile connection 
space. In Equation (J-5), the look-up table is loaded from the Restricted ICC profile from the grayTRCTag, as specified 
in clause 6.3.17. The data format of that tag is defined in clause 6.5.2 of the profile specification. 

J.9.3 Converting images to sRGB 

One of the most common application scenarios will be the situation where an image specified using the Restricted ICC 
profile method must be converted to the sRGB colourspace for softcopy display (for example desktop editing and web 
browsers) [42]. 

This transformation is used in conjunction with the Restricted ICC method to create resulting sRGB values from 
original source colour values [47]. Where applicable, like transforms (1D look-up tables or matrices) may be combined 
to enhance processing performance. For this example, only the transformation from the Profile Connection Space 
(XYZPCS) will be shown. It may later be combined with the transforms in Equations (J-3) and (J-4). 

To move colours encoded in the XYZPCS to colours encoded in the sRGB colour space, there are three pieces necessary 
to complete the transformation. These pieces are embodied in two 3 × 3 matrices and a per channel, linear to non-linear 
conversion equation which may be applied in practice through three one dimensional look-up tables.  

The first matrix in the transformation is required to perform a chromatic adaptation transformation between the defined 
adaptive white point of the ICC Profile Connection Space (chromaticities of CIE D50) and the defined adaptive white 
point of sRGB (chromaticities of CIE D65). There are several different choices of transformation which can be used. 
For this example transformation, the Bradford chromatic adaptation transformation (BFD) will be used [43]. The 
Bradford transformation has been shown to produce accurate results and has been adopted as part of the CIE 
recommended colour appearance model (CIECAM97s) [44], [45]. The BFD transformation typically includes a linear 
and a non-linear portion. In the case of this example transform, the non-linear portion of the Bradford transformation 
has been left out to allow for simple 3 × 3 matrix processing. It has been shown that the Bradford transform's 
performance is still very good even with this omission [46]. 

The second matrix in the transformation is a primary transformation matrix required to move colours from the primaries 
of the XYZPCS to the ITU-R BT.709-2 primary set as defined in the sRGB standard, IEC/TC100/PT61966-2.1. 

Separate, the transformation looks as follows with the primary transformation denoted by a PT and the Bradford 
chromatic adaptation matrix denoted by a BFD: 
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 (J-6) 

However, the matrices can be combined to form a single matrix as shown in the following equation: 
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It is then necessary to transformation the slinearrgb to non-linear sRGB values. For each red, green and blue channel of 
the slinearrgb value (referred to as slinearX), the respective channel of the non-linear sRGB value (referred to as sRGBX) 
is calculated using Equation (J-8). 
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Note that the conversion from decompressed pixel to sRGB can be optimized by combining the colourant matrix 
described in Equation (J-4) with the XYZ to sRGB conversion matrix described in Equation (J-7) as follows: 
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This optimization reduces the colourspace processing from decompressed pixel to sRGB to the application of a 1D 
look-up table, a single 3 × 3 matrix and another 1D look-up table. 

The transforms shown above for sRGB can be generalized for use in converting to many other target colour spaces 
other than sRGB. In many cases, the steps taken will match exactly those needed for the conversion to sRGB. However, 
in other cases, fewer steps may be required such as when the adaptive white point of the target colour space matches 
that of the PCS XYZ thus removing the need for a chromatic adaptation transform. It is also possible that some cases 
may require additional steps to compensate for different factors such as viewing condition differences. The actual 
viewing condition transforms are beyond the scope of this annex, but have been covered in other publications [41], [42], 
[46], [48]. 

It should be noted that, depending on the storage colour space, there may be a loss of information involved with the 
conversion to sRGB, or any other limited colour gamut output colour space. For example, consider the case where the 
storage colour space is an extended colour gamut colour space. The conversion to sRGB will result in the clipping of 
colours that are outside the sRGB colour gamut. While this is a necessary step when displaying the image, colour 
transformations (such as a colour shift) may have been able to make use of that clipped data (by shifting into the sRGB 
gamut). As such, it is often preferable to perform most colour transformations on the original stored data before 
converting it to the sRGB colour space. Also, if the image were then to be printed on an output device that was capable 
of printing the colours that had been clipped, then it would be preferable to go back to the image in the storage colour 
space, rather than printing the sRGB image. As another example, consider the case where the storage colour space 
image is an extended dynamic range scene colour encoding. The conversion to sRGB will necessarily include a 
rendering step where highlight and/or shadow information is clipped to the dynamic range of the output display. (The 
rendering step is commonly implemented by applying a tonescale function as part of the TRCs shown in Equation (J-3). 
The information that is lost in the rendering step can not be used to modify the image at a later time. Similarly, the 
conversion to sRGB may introduce quantization errors to the image which would limit the quality of the image. In both 
of these examples, it may be desirable to retain the image in the storage colour space, and apply any image 
manipulations to the image there. Alternatively, the image could be converted to an intermediate large gamut colour 
encoding. The conversion to sRGB can be done for preview purposes only, or as a final step in the imaging chain. 

J.9.4 Converting images to other colour spaces 

Alternatively, it may be desirable in certain applications to convert images to other colour spaces besides sRGB for 
purposes of display on specific output devices, or manipulation in an application-specific colour space. For example, if 
it is desired to display the image on a CRT having known characteristics that are different than the reference sRGB 
display, then the matrix and nonlinearity specified in Equations (J-6) through (J-9) can be replaced with the 
corresponding matrix and nonlinearity for the particular CRT. Generally, a matrix related to the phosphor chromaticities 
and white point can be used to convert the PCS tristimulus values to the particular linear RGB values, and the nonlin-
earity can be used to relate the linear RGB values to the corresponding code values. Similarly, other additive RGB 
colour spaces, such as ROMM RGB can also be computed by substituting the appropriate matrix and nonlinearity [49]. 

In some cases, it may be desirable to convert images to other colour spaces that can not be described by a simple matrix/ 
nonlinearity transformation. This can be accomplished by replacing the transformation described in J.9.3 with the 
appropriate transformation to the desired colour space. In many cases, this can conveniently be accomplished by using 
an ICC profile for the desired colour space. 

J.9.5 Input and output ranges and quantization 

The input code values to the look-up tables in Equation (J-3) (redTRC, greenTRC and blueTRC) shall be integers of the 
same precision as the decompressed code values, and indexed such that TRC[i] produces the correct linear intensity 
value for an input code value of i. Input code values that are larger than the number of elements of the look-up table – 1 
should be clipped to the number of elements of the look-up table – 1. 

The output pixel from Equation (J-3) shall be real linear intensity values nominally in the range (0.0, 1.0). 

The input to the colourant matrix in Equation (J-4) shall also be real linear intensity values in the range (0.0, 1.0). The 
output of that equation (the XYZPCS values) is scaled such that the Y value will be in the range (0.0, 1.0). Neutral values 
in the image should map to XYZ values having the chromaticity of the PCS whitepoint (this implies that X/Y = 0.9642, 
and Z/Y = 0.8250). If the application is converting the input code values to the sRGB colourspace, this output range 
allows direct concatenation of the matrices as in Equation (J-8). 

The ranges and quantization of the XYZPCS to sRGB transformation are similar. The inputs and outputs of 
Equation (J-6), and thus the inputs to Equation (J-8), are also real values in the range (0.0, 1.0). 

The outputs of Equation (J-8) are values in the range (0.0, 1.0). However, those values will generally be scaled by 255 
to produce 8-bit sRGB values. This is highly application dependent and depends on what, if any, additional processing 
will be performed. However, it is strongly suggested that any colour processing be performed on the source image data 
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(decompressedr, decompressedg, decompressedb) before it is converted to sRGB, as the possibility of significantly 
decreased quantization exists. 

J.9.6 Taking advantage of multiple colourspace specifications 

The JP2 format allows for a file to specify multiple methods to interpret the colourspace of an image. For example, one 
application may write images in which the pixel values have already been converted to the signals necessary for driving 
a particular output device. In that situation, it is useful for the application to provide a simple mechanism for the device 
to determine that additional colour processing is not required. This can be accomplished by specifying the name of the 
device colourspace using the Enumerated Colourspace method in one Colour specification box in the file. 

However, other applications, such as web browsers, must convert the image to signals suitable for display on other 
devices; it is very likely that those applications will not know the definition of this vendor-specific colourspace. It is 
thus very useful for the original file writer to write a second Colour specification box in the file that uses the Restricted 
ICC profile method or the Generic ICC profile method. By providing a secondary mechanism, the number of 
applications that have the ability to properly interpret the colourspace of the image is dramatically increased. 

Note that the method for choosing from the multiple colour specification methods defined in a single file is not 
specified by this Recommendation | International Standard. Each application should select the method which best meets 
the requirements of that particular application. 

J.10 An example of the interpretation of multiple components 

An example of a non-traditional interpretation is the coding of Regions of Interest (ROIs) in a complex SAR data set. 
Each ROI may be thought of as a set of two image chips representing the real (I) and imaginary (Q) parts of the data. 
The ensemble of I and Q chips may be assembled into a set of "multiple components", even though the individual chips 
are disjoint and may have different spatial dimensions. Bypassing the colour space transform, the ensemble of chips 
may then be subjected to lossless or lossy compression. This procedure has two advantages: all the ROIs in a given data 
set can be compressed in a single pass; and bit allocation can be optimized across the ensemble of ROIs rather than on a 
chip-by-chip basis. 

J.11 An example of decoding showing intermediate steps 

Consider the following compressed bit stream where the offset from the beginning of the file is given in octal on the 
left, and the values in the file are given in Hexidecimal. 

 

00000 FF4F FF51 0029 0000 0000 0001 0000 0009

00020 0000 0000 0000 0000 0000 0001 0000 0009

00040 0000 0000 0000 0000 0001 0701 01FF 5C00

00060 0740 4048 4850 FF52 000C 0000 0001 0001

00100 0404 0001 FF90 000A 0000 0000 001E 0001

00120 FF93 C7d4 0C01 8F0D C875 5DC0 7C21 800F

00140 B176 FFD9       

The various parts of this bit stream can be decoded as follows. 

J.11.1 Main header 

The main header starts at byte 0 as indicated by the SOC marker and ends before byte 0104 (octal), which is known 
because of the SOT marker. 

 

00000 FF4F  SOC marker 

00002 FF51  SIZ marker 

00004 0029  Lsiz SIZ marker length 

00006 0000  Rsiz 

00010 0000 0001 Xsiz 

00014 0000 0009 Ysiz 

00020 0000 0000 XOsiz 

00024 0000 0000 YOsiz 

00030 0000 0001 XTsiz 

00034 0000 0009 YTsiz 

00040 0000 0000 XTOsiz 
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00044 0000 0000 YTOsiz 

00050 0001  Csiz 

00052 07  Ssiz 

00053 01  XRsiz 

00054 01  YRsiz 

 

Thus the "image" is one component, with 8 bits/sample unsigned, 1 sample horizontally, and 9 samples vertically, and 
all samples are in a single tile. 
 

00055 FF5C   QCD marker 
00057 0007   Lqcd QCD marker length 
00061 40   Sqcd 
00062 4048 4850  SPqcd 

 

There are 2 guard bits, no quantization is done (other than possible truncation), and the quantizer step size exponents εb 
are {8,9,9, 10}. 
 

00066 FF52  COD marker 

00070 000C  Lcod COD marker length 

00072 00  Scod (PPx = PPy = 15, No SOP, No EPH) 

00073 00  Progression order 

00074 0001  Number of layers 

00076 00  Multiple component transform 

00077 01  Number of decomposition levels 

00100 04  Code-block width exponent offset value 

00101 04  Code-block height exponent offset value 

00102 00  Style of the code-block coding passes 

00103 01  Transform 
 

No precincts are used. There is one level of wavelet transform. Progression is layer-resolution level-component-
position, but there is only one layer. Code-blocks are 64 × 64 samples (note the size is 26 while the value in the bit 
stream is 4). There is no selective arithmetic coding bypass, no reset of context probabilities or termination at each 
coding pass, no vertical stripe causal contexts, no predictable termination, and no segmentation symbols. The 5-3 
reversible filter is used. 

J.11.2 Tile-part header 

The first and only tile-part header begins at byte 0104 octal with the SOT marker and ends at byte 0120 octal with the 
SOD marker.  
 

00104 FF90   SOT marker 
00106 000A   Lsot SOT marker length 
00110 0000   Isot 
00112 0000 001E  Psot 
00116 00   TPsot 
00117 01   TNsot 

 

This is tile number 0. The length of the tile-part is 30 bytes. Thus the next tile-part or the end of codestream is at 
0104 + 036 = 0142. This is tile-part 0. There is only one tile-part for this tile. 
 

00120 FF93   SOD marker 
 

There were no COD, or QCD or comment markers in this tile-part header. Thus all coding parameters are determined 
from the main header. The next 16 bytes are compressed data (30-byte length – 14 bytes of marker segments). 

Compressed data (packet headers and packet bodies) 
 

00122 C7D4 0C01 8F0D C875 5DC0 7C21 800F

00140 B176       
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End of Image 
 

00142 FFD9  EOC marker 
 

J.11.3 Packet headers 

Because the image is 1 × 9, and there is one level of transform, (and the code-blocks, precincts, and tiles are too large to 
have an effect), there will be 5 low-pass wavelet coefficients, and 4 horizontal low-pass vertical high-pass coefficients. 
The compressed data begins with a packet header which is decoded as shown in Table J.20. 

Table J.20 – Decoding first packet header 

Codestream bytes Bits used Comments 

0xC7 1 Nonzero length packet 
 1 Only code-block is included 
 0001 3 zero bit-planesa) 

0xD4 11 1101010 16 coding passes for this code-
blockb) 

 0 LBlock remains 3 
0x0C 0000110 6 bytes of compressed datac) 

 0 unused padding bit 
a) Maximum bit-planes from Equation (E-2) is 9, 3 of them are zero, so first bit will be 

decoded into bit-plane 6. 
b) Number of bits to read depends on compressed data; see Table B.2. 
c) Number of bits to read is LBlock plus floor of base 2 log of number of passes: 

3 +  log 16  = 7. 

Decoding the first packet header requires 3 bytes and indicates 6 bytes of arithmetic coded compressed data are used for 
the only code-block in this packet. Thus the next packet header begins at offset 0134. This packet header is decoded in 
Table J.21. 

Table J.21 – Decoding second packet header 

Codestream bytes Bits used Comment 

0xC0 1 Non-zero length packet 
 1 Only code-block is included 

0x7C 000000 01 7 zero bit-planesa) 

0x21 111100 001 7 coding passes for this code-
block 

 0 LBlock remains 3 
0x80 0001 1 3 bytes of compressed datab) 

 0000000 unused padding bits 
a) Maximum bit-planes is 10, 7 of them are zero, so first bit will be decoded into 

bit-plane 3. 
b) Number of bits to read is 3 +  log 7  = 5. 

J.11.4 Arithmetic-coded compressed data 

The six bytes of compressed data for the first code-block (from the first packet) can be decoded as shown in Table J.22. 
The first item is the context label from Annex D (which could be completely different for each implementation). The 
second item is the type of context. Finally the bit returned from the arithmetic coder is listed. These bits are used to 
determine the low-pass horizontal low-pass vertical coefficients. The bytes provided to the arithmetic coder are those 
beginning at offset 0125. 
 

0000125 01 8F0D C875 5D 
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Table J.22 – Arithmetic decode of first code-block 

CTX Context Type Bit Comment 

17 C4(ZERO_RUN) 1 No zero run. 
18 
18 

C5(UNIFORM) 
C5(UNIFORM) 

1 
1 

First nonzero coefficient is the fourth (numbered from 1). 

9 C2(SIGN) 1 Negative. 
3 C1 (NEW_SIGNIFICANT) 0 Fifth coefficient is not significant. 

3 C1 (NEW_SIGNIFICANT) 1 Third coefficient is significant (first coefficient which is in the signifi-
cance pass). 

10 C2 (SIGN) 0 Negative (XOR bit is 1). 
3 C1 (NEW_SIGNIFICANT) 1 Fifth coefficient significant in this coding pass. 
10 C2 (SIGN) 0 Negative (XOR bit is 1) 
15 C3 (REFINE) 0 Next bit of fourth coefficient is 0. 
0 C1 (NEW_SIGNIFICANT) 1 First coefficient is significant. 
9 C2 (SIGN) 1 Negative. 
4 C1 (NEW_SIGNIFICANT) 1 Second coefficient is significant. 
10 C2 (SIGN) 0 Negative. 
15 
15 
15 
16 
15 

C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 

1 
0 
1 
0 
0 

All coefficients are in the refinement pass. Decoded bit is the next bit 
of the coefficient in order from first to fifth. 

16 
16 
16 
16 
16 

C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 

0 
1 
1 
0 
0 

Next bit-plane. 

16 
16 
16 
16 
16 

C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 

1 
1 
1 
0 
1 

Next bit-plane. 

16 
16 
16 
16 
16 

C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 
C3 (REFINE) 

0 
0 
0 
0 
1 

Last bit-plane. 

Thus the decoded coefficients are: 

 -26, -22, -30, -32, -19 

The compressed data for the only code-block in the second packet, representing the vertical high pass horizontal 
lowpass sub-band begins at offset 0137 octal.  

 0000137 0F B176 

The decoding process is described in Table J.23. 
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Table J.23 – Arithmetic decode of second code-block 

The decoded vertical high pass horizontal low pass coefficients are: 

 1, 5, 1, 0 

J.11.5 Wavelet and level shift 

After the inverse 5-3 reversible filter and level shifting, the component samples in decimal are: 

 101, 103, 104, 105, 96, 97, 96, 102, 109 

J.12 Visual frequency weighting 

The human visual system plays an important role in the perceived image quality of compressed images. It is therefore 
desirable to allow system designers and users to take advantage of the current knowledge of visual perception, e.g., to 
utilize models of the visual system's varying sensitivity to spatial frequencies, as measured in the contrast sensitivity 
function (CSF). Since the CSF weight is determined by the visual frequency of the transformation coefficient, there will 
be one CSF weight per sub-band in the wavelet transform. The design of the CSF weights is an encoder issue and 
depends on the specific viewing condition under which the decoded image is to be viewed. Please refer to [34] and [35] 
for more details of the design of the CSF weights.  

In many cases, only one set of CSF weights is chosen and applied according to the viewing condition. This application 
of visual frequency weighting is referred to as fixed visual weighting. In the case of embedded coders, as the coding bit 
stream may be truncated later, the viewing conditions at different stages of embedding may be very different. At low bit 
rates, the quality of the compressed image is poor and the detailed features of the image are not available. The image is 
usually viewed at a relatively large distance and the observers are more interested in the global features. As more and 
more bits are received, the image quality improves, and the details of the image are revealed. The image is usually 
examined at a closer distance, or is even magnified for close examination, which is equivalent to decreasing the viewing 
distance. Thus, different sets of CSF weights are called for at different stages of the embedding. This adjustable 
application of visual frequency weighting is referred to as visual progressive coding. It is clear that fixed visual 
weighting can be viewed as a special case of visual progressive coding. 

In fixed visual weighting, a set of CSF weights, {wi}, is chosen according to the final viewing condition, where wi is the 
weight for the ith subband. The set of CSF weights can be incorporated in one of the following two ways. 

J.12.1 Modify quantization step size 

At the encoder, the quantization step size qi of the transformation coefficients of the ith sub-band is adjusted to be 
inversely proportional to the CSF weight wi. The smaller the CSF weight, the larger the quantization step size. The 
CSF-normalized quantization indices are then treated uniformly in the R-D optimization process, which is not modified 
to take into account any changes in the quantization step size. The CSF weights do not need to be transmitted to the 
decoder. The information is included in the quantization step sizes, which are explicitly transmitted for each sub-band. 

CTX Context Type Bit Comment 

17 C4 (ZERO_RUN) 1 Not a zero run. 
18 
18 

C5 (UNIFORM) 
C5 (UNIFORM) 

0 
1 

First nonzero coefficient is 2nd. 

9 C2 (SIGN) 0 Positive. 
3 
0 

C1 (NEW_SIGNIFICANT) 
C1 (NEW_SIGNIFICANT) 

0 
0 

3rd and 4th coefficients in clean-up pass. 

3 
3 

C1 (NEW_SIGNIFICANT) 
C1 (NEW_SIGNIFICANT) 

0 
0 

1st and 3rd coefficients in significance pass. 

14 C3 (REFINE) 0 2nd coefficient. 
0 C1 (NEW_SIGNIFICANT) 0 4th coefficient in clean-up pass. 
3 C1 (NEW_SIGNIFICANT) 1 1st coefficient in significance pass. 
10 C2 (SIGN) 0 Positive. 
3 C1 (NEW_SIGNIFICANT) 1 3rd coefficient in significance pass. 
10 C2 (SIGN) 0 Positive. 
3 C1 (NEW_SIGNIFICANT) 0 4th coefficient in significance pass. 
16 C3 (REFINE) 1 2nd coefficient in refinement pass. 
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This approach needs to explicitly specify the quantizer. Therefore, it may not be very suitable for embedded coding, 
especially for embedded coding from lossy all the way to lossless. 

J.12.2 Modify the embedded coding order  

The quantization step sizes are not modified but the distortion weights fed into the R-D optimization are altered instead. 
This effectively controls the relative significance of including different numbers of bit-planes from the embedded bit 
stream of each code-block. The frequency-weighting table does not need to be transmitted explicitly. This approach is 
recommended since it produces similar results in J.12.1 and is compatible with lossless compression. This approach 
affects only the compressor and it is compatible with all quantization strategies, including implicit quantization. 

J.12.3 Visual progressive coding (VIP) 

If the visual frequency weights are to be changed during the embedded coding process, it is very clumsy to change the 
coefficient values or quantization step sizes. Furthermore, the performance of the subsequent entropy coder may 
degrade due to the changing statistics of the binary representation. An elegant way to implement the visual progressive 
coding (VIP) is to change, on the fly, the order in which code-block sub-bit-planes should appear in the overall 
embedded bit stream based on the visual weights, instead of changing the coefficient values or quantization step sizes. 
In other words, the coding order rather than the coding content is affected by the visual weights.  

A series of visual weighting sets for different bit rate ranges are denoted as follows: 
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( ) ( ) ( ) ( ) ( ){ },mw...,,mw,mwmWwith,mr:msetWeighting
...

;1w...,,1w,1w1Wwith,1r:1setWeighting
;0w...,,0w,0w0Wwith,0r:0setWeighting

n10

n10

n10

=

=
=

 (J-10) 

where r(j) represents a bit-rate at which the weighting factors are changed, r(0) < r(1) <... < r(m), and wi(j) is the weight 
applied to sub-band i over the bit rate range from r(j) to r(j + 1). Each set of visual weights will take effect within a 
certain bit rate range. If m = 0, i.e., there is only one set of visual weights, it degenerates to the fixed visual weighting 
case. The sets of visual weights, W(0) to W(m), will be used to determine the embedding order in their corresponding 
bit rate ranges. For high bit rate embedding, especially embedded coding from lossy all the way to lossless, the final 
visual weights W(m) need to be all ones (as no weighting for lossless coding). Visual progressive coding can adjust the 
visual weights to achieve good visual quality for all bit rates.  

The VIP weighting affects only the encoder and no signaling is required at the decoder. 

The encoder is expected to compute the order in which code-block sub-bit-planes should appear in the layered hierarchy 
of the overall bit stream, based upon rate-distortion criteria. A simple implementation of progressive visual weighting 
changes the distortion metric progressively based on the visual weights during bit stream formation. Since bit stream 
formation is driven by post-compression R-D optimization, progressively changing visual weights effectively controls 
the embedding order of code-block sub-bit-planes on the fly.  

J.12.4 Recommended frequency weighting tables 

Table J.24 specifies three sets of CSF weights which were designed for the luminance component based on the CSF 
value at the mid-frequency of each sub-band. The viewing distance is supposed to be 1000, 2000, and 4000 samples 
(e.g., corresponding to 10 inches for 100 dpi, 200 dpi, and 400 dpi print or display), respectively. Note that the tables 
are intended for a 5-level wavelet decomposition.  

Table J.24 does not include the weight for the lowest frequency sub-band, nLL, which is always 1. Levels 1, 2, …, 5 
denote the sub-band levels in low to high frequency order. (HL, LH, HH) denotes the three frequency orientations 
within each sub-band. 
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Table J.24 – Recommended frequency weighting 

Viewing distance 1000 Viewing distance 2000 Viewing distance 4000 
Level 

HL LH HH HL LH HH HL LH HH 

1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 0,731 668 
3 1 1 1 1 1 0,727 203 0,564 344 0,564 344 0,285 968 
4 1 1 0,727 172 0,560 841 0,560 841 0,284 193 0,179 609 0,179 609 0,043 903 
5 0,560 805 0,560 805 0,284 173 0,178 494 0,178 494 0,043 631 0,014 774 0,014 774 0,000 573 

For colour images, the frequency weighting tables of the Y, Cr, and Cb components should differ in order to take 
advantage of the properties of the human visual system. For example, it is usually desirable to emphasize the luminance 
component more than the chrominance components. Table J.25 specifies three sets of CSF weights for luminance and 
chrominance components.  

Table J.25 – Recommended frequency weighting for multiple component (colour) images 

Viewing distance 1000 Viewing distance 1700 Viewing distance 3000 C 
o 
m 
p 

L
e
v HL LH HH HL LH HH HL LH HH 

1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 0,921 045 0,921 045 0,848 324 
4 0,998 276 0,998 276 0,996 555 0,861 593 0,861 593 0,742 342 0,410 628 0,410 628 0,182 760 

Y 
(Y0) 

5 0,756 353 0,756 353 0,573 057 0,307 191 0,307 191 0,108 920 0,038 487 0,038 487 0,003 075 
1 0,883 196 0,883 196 0,833 582 0,818 766 0,818 766 0,745 875 0,717 086 0,717 086 0,613 777 
2 0,793 487 0,793 487 0,712 295 0,689 404 0,689 404 0,579 220 0,539 437 0,539 437 0,403 353 
3 0,650 482 0,650 482 0,531 700 0,501 652 0,501 652 0,362 279 0,319 773 0,319 773 0,185 609 
4 0,450 739 0,450 739 0,309 177 0,280 068 0,280 068 0,152 290 0,124 021 0,124 021 0,044 711 

Cb 
(Y1) 

5 0,230 503 0,230 503 0,113 786 0,097 816 0,097 816 0,031 179 0,023 308 0,023 308 0,003 413 
1 0,910 877 0,910 877 0,872 378 0,860 885 0,860 885 0,803 172 0,780 091 0,780 091 0,695 128 
2 0,841 032 0,841 032 0,776 180 0,757 626 0,757 626 0,665 951 0,631 632 0,631 632 0,509 729 
3 0,725 657 0,725 657 0,625 103 0,598 537 0,598 537 0,470 893 0,428 659 0,428 659 0,287 593 
4 0,552 901 0,552 901 0,418 938 0,388 492 0,388 492 0,248 566 0,211 871 0,211 871 0,100 658 

Cr 
(Y2) 

5 0,336 166 0,336 166 0,200 507 0,177 435 0,177 435 0,077 130 0,060 277 0,060 277 0,014 977 

J.13 Encoder sub-sampling of components 

It has become common practice in some compression applications to utilize component sub-sampling in conjunction 
with certain decorrelating transforms. A typical example is the use of an RGB to YCrCb decorrelation transformation 
followed by sub-sampling of the chrominance (Cr, Cb) components. While this is an effective way to reduce the amount 
of image data to encode for DCT-based compression algorithms (ITU-T Rec. T.81 | ISO/IEC 10918-1), it is not 
recommended for use in this Recommendation | International Standard. 

The multi-resolution nature of the wavelet transformation described in this Recommendation | International Standard 
may be used to achieve the same effect as that obtained from component sub-sampling. For example, if the 1HL, 1LH, 
and 1HH sub-bands of a component's wavelet decomposition are discarded and all other sub-bands retained, a 2:1 
sub-sampling has been achieved in the horizontal and vertical dimensions of the component. This technique provides 
the same benefits as explicitly sub-sampling the component prior to any wavelet transform. 

Furthermore, it frequently proves to be beneficial in terms of image quality to retain a few of the wavelet coefficients in 
the 1HL, 1LH, 1HH subbands, while still discarding the vast majority. In such cases the number of coefficients is still 
approximately reduced 2:1, but the resultant decoded imagery will exhibit better quality with fewer compression 
artifacts. Using a sub-sampling technique denies encoders from making such choices and can impair decoded image 
quality. 
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J.14 Rate control 

Rate control is useful for meeting a particular target bit-rate or transmission time. Rate control assures that the desired 
number of bytes is used by the codestream while assuring the highest image quality possible. 

J.14.1 Introduction to key concepts for rate control 

Divide each subband into code-blocks of samples which are coded independently. Since every code-block is coded 
completely independently using exactly the same algorithm in every sub-band, the association between sub-bands and 
code-blocks can be ignored for the moment and let {Bi}i=1,2,... denote the set of all code-blocks which represent the 
image. For each code-block, Bi, a separate bit-stream is generated without utilizing any information from any of the 
other code-blocks. Moreover, the bit-stream has the property that it can be truncated to a variety of discrete lengths 

...,,, 321
iii RRR , and the distortion incurred when reconstructing each of these truncated subsets is estimated and 

denoted by ...,,, 321
iii DDD The mean squared error distortion metric is often used, but this is not necessary. During the 

encoding process, the lengths, n
iR , and the distortions, n

iD , are computed and temporarily stored in a compact form 
with the compressed bit-stream itself.  

Once the entire image has been compressed, a post-processing operation passes over all the compressed code-blocks 
and determines the extent to which each code-block's embedded bit-stream should be truncated in order to achieve a 
particular target bit-rate, distortion bound or other quality metric. More generally, the final bit-stream is composed from 
a collection of so-called “layers,” where each layer has an interpretation in terms of overall image quality. The first, 
lowest quality layer, is formed from the optimally truncated code-block bit-streams in the manner described above. 
Each subsequent layer is formed by optimally truncating the code-block bit-streams to achieve successively higher 
target bit-rates, distortion bounds or other quality metrics, as appropriate, and including the additional code words 
required to augment the information represented in previous layers to the new truncation points. These layered bit-
stream concepts are discussed further in J.14.2. 

J.14.2 Layered Bit-Stream Abstraction 

An important aspect is the manner by which the encoder forms a final bit-stream from the independent embedded bit-
streams generated for every code-block. The bit-stream formation problem is very much simplified when the coder 
operates on entire sub-bands at a time, since the additional spatial organization imposed by independent code-blocks 
does not exist.  

Basically, the bit-stream is organized as a succession of layers, where each layer contains the additional contributions 
from each code-block (some contributions may be empty), as illustrated in Figure J.12. The code-block truncation 
points associated with each layer are optimal in the rate-distortion sense, which means that the bit stream obtained by 
discarding a whole number of least important layers will always be rate-distortion optimal. If the bit stream is truncated 
part way through a layer then it will not be strictly optimal, but the departure from optimally can be small if the number 
of layers is large. As the number of layers is increased so that the number of code bytes in each layer is decreased, the 
rate-distortion slopes associated with all code-block truncation points in the layer will become increasingly similar; 
however, the number of code-blocks which do not contribute to the layer will also increase so that the overhead 
associated with identifying the code-blocks which do contribute to the layer will increase. In practice, it is found that 
optimal compression performance for SNR progressive applications is achieved when the number of layers is 
approximately twice as large as the number of sub-bit-plane passes made by the entropy coder. The boundaries of the 
sub-bit-plane passes are also the truncation points for each code-block's embedded bit-stream. Consequently, on average 
each layer contains contributions from approximately half the code-blocks so that the cost of identifying whether or not 
a code-block contributes to any given layer (about 2 bits per code-block) is much less than the cost of identifying a strict 
order on the code-block contributions. Moreover, the relative contribution of this overhead to the overall bit-rate is 
independent of the size of the image. 

Figure J.12 is an illustration of code-block contributions to bit-stream layers. Only five layers are shown with seven 
code-blocks, for simplicity. Notice that not all code-blocks need contribute to every layer and that the number of bytes 
contributed by code-blocks to any given layer is generally highly variable. Notice also that the code-block coding 
operation proceeds vertically through each code-block independently, whereas the layered bit-stream organization is 
horizontal, distributing the coding passes of the code-block to the various layers. 
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Figure J.12 – Illustration of code-block contributions to bit-stream layers 

J.14.3 Rate-distortion optimization 

The rate-distortion algorithm described here is justified only provided the distortion measure adopted for the code-
blocks is additive. That is, the distortion, D, in the final reconstructed image should satisfy: 

   ∑=
i

n
i

iDD  (J-11) 

where ni is the truncation point for code-block Bi. Subject to suitable normalization, this additive property is satisfied by 
Mean Squared Error (MSE) and Weighted MSE (e.g., visually weighted MSE), provided the wavelet transformation is 
orthogonal. Additivity also holds if the quantization errors for individual sample values are uncorrelated, regardless of 
whether or not the transformation is orthogonal. In practice, the transformation is usually only approximately 
orthogonal and the quantization errors are not completely uncorrelated, so even squared error metrics are only 
approximately additive, but this is usually good enough. Let R denote the number of code bytes associated with some 
layer in the bit-stream (and all preceding layers). Then, for some set of truncation points, ni: 

   ∑=
i

n
i

iRR  (J-12) 

The need is to find the set of ni values which minimizes D subject to the constraint R ≤ Rmax. Constrained optimization 
problem by the method of Lagrange multipliers is a well-known solution to this problem. Specifically, the problem is 
equivalent to minimizing: 

   ( )∑ λ− ii n
i

n
i DR  (J-13) 

where the value of λ must be adjusted until the rate yielded by the truncation points which minimize Equation (J-13) 
satisfies R = Rmax. There is no simple algorithm which can yield a globally optimal set of truncation points in general. 
However, any set of truncation points, ni, which minimizes Equation (J-13) for some λ is guaranteed to be optimal in 
the sense that minimum distortion is achieved at the corresponding bit-rate. If the largest value of λ is found such that 
the set of truncation points, ni, obtained by minimizing Equation (J-13), yields a rate R ≤ Rmax, then it is not possible to 
find any set of truncation points which will yield a smaller overall distortion and a rate which is less than or equal to R. 
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In practice, it is found that it is usually possible to find values of λ, such that R is very close to Rmax (almost always 
within 100 bytes), so that any residual sub-optimally is of little concern. 

Returning now to the problem of minimizing the expression in Equation (J-13), it is a separate optimization problem for 
each individual code-block. Specifically, for each code-block, Bi, the truncation point, ni, needs to be found which 

minimizes ( )ii n
i

n
i DR λ+ . A simple algorithm to do this is as follows: 

Set ni = 0 (i.e., no information included for the code-block) 

For k = 1,2,3,... 

Set in
i

k
i

k
i RRR −=∆ and in

i
k
i

k
i DDD −=∆  

If ( ) 1/ −λ>∆∆ k
i

k
i RD  then set ni = k 

Since this algorithm might need to be executed for many different values of λ, it makes sense to first identify the subset, 
Ni, of thresholds such that the rate-distortion slope values, k

i
k
i

k
i RDS ∆∆= / , are monotonically decreasing with k, 

for all k in Ni. Specifically, a suitable algorithm for determining Ni is as follows: 
1) Set Ni = {n}, i.e., the set of all truncation points. 
2) Set p = 0 
3) For k = 1, 2, 3, 4,... 

If k belongs to Ni 

Set p
i

k
i

k
i RRR −=∆  and k

i
p

i
k
i DDD −=∆  

Set k
i

k
i

k
i RDS ∆∆= /  

If p ≠ 0 and p
i

k
i SS >  then remove p from Ni and go to step (2) 

Otherwise, set p = k 

Once this information has been pre-computed, the optimization task for any given λ is simply to set P equal to the 
largest k in Ni such that 1−λ>k

iS . Clearly, λ may be interpreted as a quality parameter, since larger values of λ, 
correspond to less severe truncation of the code-block bit streams; its inverse may be identified as a rate-distortion slope 
threshold. 

The set Ni and the slopes k
iS  are computed immediately after code-block Bi is coded, and enough information to later 

determine the truncation points which belong to Ni and the corresponding k
iR  and k

iS  values during the rate-distortion 
optimization phase is stored. This information is generally smaller than the bit-stream itself which is stored for the code-
block. 

J.14.4 Efficient distortion estimation for R-D optimal truncation 

The candidate truncation points for the embedded bit-stream representing each code-block correspond to the conclusion 
of each coding pass. During compression, the number of bytes, n

iR , required to represent all coded symbols up to each 

truncation point, n, as well as the distortion, k
iD , incurred by truncating the bit stream at each point, n, must be 

assessed. Actually, distortion estimation is not strictly necessary to generate a legal decompressible bit-stream, but it is 
important to the success of the rate-distortion optimization algorithm described in J.14.3.  

J.14.4.1 Considerations for non-reversible transformations 

The rate-distortion optimization algorithm described in J.14.3 depends only on the amount by which each coding pass 
reduces the distortion. Specifically, if 0

iD  denotes the distortion incurred by skipping the code-block altogether 

(i.e., setting all samples to zero), then only the differences, 1−− n
i

n
i DD , need to be computed for n = 1, 2, 3,... It turns 

out that this computation can be performed with the aid of two small look-up tables which do not depend upon the 
coding pass, bit-plane or sub-band involved. To see this, let 2

ii ∆ω  denote the contribution to distortion in the 
reconstructed image which would result from an error of exactly one step size in a single sample from code-block Bi. 
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Here ωi is a positive weight, which is computed from the L2 norm of the relevant sub-band's wavelet synthesis 
waveform and may, additionally be modified to reflect visual weighting or other criteria. Now define: 

   [ ] [ ] [ ]











−=

−
−

2
,22,2, nmvnmvnmv i

p
i

pp
i  (J-14) 

Thus, [ ]nmv p
i ,  holds the normalized difference between the magnitude of sample si[m, n] and the largest quantization 

threshold in the previous bit-plane which was not larger than the magnitude. It is easy to verify that [ ] 2,0 ≤≤ nmv p
i . 

Although si[m, n] is actually a quantized integer quantity, we will allow for the fact that the quantizer can supply 
fractional bits for si[m, n] and hence vi[m, n], which can be used in Equation (J-14) to produce accurate estimates of the 
distortion associated with coding passes in the less significant bit-planes. Now when a single sample first becomes 
significant in a given bit-plane, p, we must have [ ] p

i nmv 2, ≥  and hence [ ] 1, ≥nmv p
i and the reduction in distortion 

may be expressed as: 

   [ ] [ ]( )[ ] [ ]( )nmvfnmvnmv p
isii

pp
i

p
iii

p ,25,1,,2 222222 ∆ω=−−∆ω  (J-15) 

provided the representation levels used during inverse quantization are midway between the quantization thresholds. 
Also, the reduction in distortion which may be attributed to magnitude refinement of a sample in bit-plane p may be 
expressed as: 

  [ ]( ) [ ]( )[ ] [ ]( )nmvfvnmvnmv p
imii

pp
i

p
iii

p ,25,0,1,2 222222 ∆ω=−−−−∆ω  (J-16) 

Thus, the reduction in distortion incurred during a single coding pass may be computed by summing the outputs of one 
of two different functions, fs(.) or fm(.) as appropriate, whenever a sample becomes significant or its magnitude is 
refined and then scaling the result at the end of the coding pass by a constant value which is easily computed from the 
bit-plane index and the value of 2

ii∆ω . The argument to these functions, [ ]nmv p
i , , has a binary representation of the 

form v.xxxxx, where v, the only bit before the binary point, is simply the value of magnitude bit p, i.e., [ ]nmv p
i , . 

Exactly 6 extra bits beyond the binary point are used to index a 7-bit look-up table for fm(.) and a 6-bit look-up table for 
fs(.) (recall that we must have [ ] 2,1 <≤ nmv p

i  when a sample first becomes significant). Each entry of these look-up 

tables holds a 16-bit fixed point representation of [ ]( )nmvf p
is ,213 or [ ]( )nmvf p

im ,213 , as appropriate, which 
means that the total distortion reduction associated with any given coding pass may be computed by accumulating these 
integer values into a 32-bit accumulator, without any risk of overflow. 

J.14.4.2 Considerations for reversible transformations 

Generally, the process for estimating distortion whilst encoding the coefficients produced by a reversible transformation 
is no different to that for a non-reversible transformation. There are, however, two subtle differences which must be 
pointed out here. Equations (J-15) and (J-16) are based upon the assumption that the dequantizer will represent each 
coefficient with the mid-point of the relevant quantization interval. This is the most likely behaviour for the quantizer 
most of the time, except for the least significant bit-plane in the reversible mode. In this case ∆i = 1, with no 
quantization error; midpoint reconstruction makes no sense here and the dequantizer represents the transform 
coefficients using the lower (in magnitude) threshold of the relevant quantization interval. Accordingly, 
Equations (J-15) and (J-16) should be modified to: 

   [ ] [ ]( )nmvfnmv p
imii

pp
iii

p ,2,2 ´22222 ∆ω=∆ω  (J-17) 

and: 

   [ ]( ) [ ]( )nmvfnmv p
imii

pp
iii

p ,21,2 ´22222 ∆ω=−∆ω  (J-18) 

respectively. 
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J.15 Guidelines on handling YCC codestream 

There are numerous applications and devices in both still and motion consumer imaging that cannot be considered 
without support for YCC and direct production of sub-sampled chrominance data. In such cases, the signalling of 
multiple component transformation within the codestream may not be necessary. This clause provides guidelines on 
how to handle YCC data. 

However, it is not intended to imply that YCC data shall be sub-sampled. 

J.15.1 Use of multiple component transformation 

It is not necessary to use the multiple component transformation in order to support YCC data as the components are 
already decorrelated. Therefore, the multiple component transformation signal of the SGcod parameter defined in 
Table A.17 shall always be "0000 0000". 

J.15.2 Using the JP2 format 

There are devices that will automatically output component transformed YCC data in sYCC colourspace. The JP2 
format supports these cases by specifying the EnumCS value to "18" as defined in Table I.10. 

J.15.3 Chrominance offset  

Chrominance offset (a common term for the sub-sampling of chrominance components and their relative offsets) is 
specified in a JPEG 2000 codestream using the CRG marker (see A.9.1). Figures J.13, J.14, J.15, and J.16 shows 
examples of well-known chrominance offset patterns. Table J.26 shows example SIZ (see A.5.1) and CRG maker 
segment parameter values for each pattern. 
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Figure J.13 – 4:2:2 format (co-sited) 
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Figure J.14 – 4:2:2 format (centered) 
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Figure J.15 – 4:2:0 format (co-sited) 
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Figure J.16 – 4:2:0 format (centered) 

Table J.26 – CRG (Component registration) values 

  Figure J.13 Figure J.14 Figure J.15 Figure J.16 

Y (XRsiz, YRsiz) 
(XOsiz, YOsiz) 

(Xcrg, Ycrg) 

(2, 2) 
(0, 0) 
(0, 0) 

(2, 2) 
(0, 0) 
(0, 0) 

(2, 2) 
(0, 0) 
(0, 0) 

(2, 2) 
(0, 0) 
(0, 0) 

Cb (XRsiz, YRsiz) 
(XOsiz, YOsiz) 

(Xcrg, Ycrg) 

(4, 2) 
(0, 0) 
(0, 0) 

(4, 2) 
(0, 0) 

(16 384, 0) 

(4, 4) 
(0, 0) 

(0, 16 384) 

4, 4) 
(0, 0) 

(16 384, 16 384) 
Cr (XRsiz, YRsiz) 

(XOsiz, YOsiz) 
(Xcrg, Ycrg) 

(4, 2) 
(0, 0) 
(0, 0) 

(4, 2) 
(0, 0) 

(16 384, 0) 

4, 4) 
(0, 0) 

(0, 16 384) 

4, 4) 
(0, 0) 

(16 384, 16 384) 

NOTE – The CRG value is defined so that all component samples shall be located in the reference grid points. Therefore, (XRsiz, 
YRsiz) = (2, 2) for Y does not mean samples of Y are also sub-sampled. 
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Annex L 
 

Patent statement 
(This annex does not form an integral part of this Recommendation | International Standard) 

The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) 
draw attention to the fact that it is claimed that compliance with this Recommendation | International Standard may 
involve the use of patents, as indicated in Table L.1. 

Table L.1 – Received intellectual property rights statements 

Number Company 

1 Algo Vision plc 
2 Canon Incorporated 
3 Digital Accelerator Corporation 
4 Telefonaktiebolaget LM Ericsson 
5 Hewlett Packard Company 
6 International Business Machines, Inc. 
7 LizardTech, Incorporated 
8 LuraTech 
9 Mitsubishi Electric Corporation 
10 PrimaComp Incorporated 
11 Ricoh Company, Limited 
12 Sarnoff Corporation 
13 Sharp Corporation 
14 TeraLogic Incorporated 
15 University of Arizona 
16 Washington State University 
17 Sony Corporation 

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights. 

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences under 
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the 
statements of the holders of these patents right are registered with ISO and IEC. 

Attention is drawn to the possibility that some of the elements of this Recommendation | International Standard may be 
the subject of patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying 
any or all such patent rights. 
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