

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T T.808
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(01/2005)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

 Information technology – JPEG 2000 image
coding system: Interactivity tools, APIs and
protocols

ITU-T Recommendation T.808

 ITU-T Rec. T.808 (01/2005) i

INTERNATIONAL STANDARD ISO/IEC 15444-9
ITU-T RECOMMENDATION T.808

Information technology – JPEG 2000 image coding system:
Interactivity tools, APIs and protocols

Summary
The purpose of this Recommendation | International Standard is to provide a network protocol that allows for the
interactive and progressive transmission of JPEG 2000 coded data and files from a server to a client. This protocol
allows a client to request only the portions of an image (by region, quality or resolution level) that are applicable to the
client's needs. The protocol also allows the client to access metadata or other content from the file.

Source
ITU-T Recommendation T.808 was approved on 8 January 2005 by ITU-T Study Group 16 (2005-2008) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 15444-9.

ii ITU-T Rec. T.808 (01/2005)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. T.808 (01/2005) iii

CONTENTS

 Page
1 Scope .. 1
2 Normative references ... 1
3 Definitions.. 2

3.1 JPEG 2000 Part 1 definitions .. 2
3.2 HTTP definitions... 2
3.3 JPIP definitions ... 2
3.4 Symbols... 3

4 Abbreviations ... 5
5 Conventions.. 5

5.1 ABNF rules ... 5
5.2 File format ABNF rules .. 6
5.3 Key to graphical descriptions of boxes (informative) ... 6

6 General description... 7
6.1 JPIP protocol ... 7
6.2 Purpose.. 8

7 Conformance .. 9
Annex A (normative) – The JPP-stream and JPT-stream media types .. 10

A.1 Introduction... 10
A.2 Message header structure .. 11
A.3 Data-bins ... 13
A.4 Conventions for parsing and delivery of JPP-streams and JPT-streams (informative) 21
A.5 Conventions for JPP-stream or JPT-stream Interoperability (informative)... 21

Annex B (normative) – Sessions, channels, cache model and model-sets... 22
B.1 Requests within a session vs stateless requests ... 22
B.2 Channels and sessions ... 22
B.3 Cache model management .. 23
B.4 Interrogation and manipulation of model-sets... 23

Annex C (normative) – Client request ... 24
C.1 Request syntax .. 24
C.2 Target identification fields .. 25
C.3 Fields for working with sessions and channels ... 27
C.4 View-window request fields.. 28
C.5 Metadata request fields ... 36
C.6 Data limiting request fields ... 39
C.7 Server control request fields.. 39
C.8 Cache management request fields ... 41
C.9 Upload request parameters .. 47
C.10 Client capability and preference request fields ... 47

Annex D (normative) – Server response signalling ... 53
D.1 Reply syntax.. 53
D.2 JPIP response headers ... 54
D.3 Response data.. 59

Annex E (normative) – Uploading images to the server.. 60
E.1 Introduction... 60
E.2 Upload request .. 60
E.3 Server response ... 60
E.4 Merging data on the server.. 61

Annex F (normative) – Using JPIP over HTTP... 63
F.1 Introduction... 63
F.2 Requests .. 63
F.3 Session establishment.. 64

iv ITU-T Rec. T.808 (01/2005)

 Page
F.4 Responses.. 64
F.5 Additional HTTP features ... 65
F.6 HTTP and length request field (informative) .. 66

Annex G (normative) – Using JPIP with HTTP requests and TCP returns ... 67
G.1 Introduction... 67
G.2 Client requests... 67
G.3 Session establishment.. 67
G.4 Server responses.. 68
G.5 TCP and length request field (informative)... 68

Annex H (informative) – Using JPIP with alternate transports ... 69
H.1 Introduction... 69
H.2 Reliable requests with unreliable data... 69
H.3 Unreliable requests with unreliable data ... 70
H.4 Request and response syntax... 71
H.5 Session establishment.. 71

Annex I (normative) – Indexing JPEG 2000 files for JPIP.. 72
I.1 Introduction (informative)... 72
I.2 Identifying the use of JPIP index boxes in the JPEG 2000 file format compatibility list 73
I.3 Defined boxes ... 73
I.4 Association of codestream indexes with codestreams... 81
I.5 Placement restrictions (informative) ... 81

Annex J (normative) – Registration of extensions to this Recommendation | International Standard....................... 82
J.1 Introduction to registration.. 82
J.2 Registration elements .. 82
J.3 Registration evaluation criteria ... 82
J.4 Items which can be extended by registration .. 82
J.5 Registration process .. 83
J.6 Timeframes for the registration process.. 83

Annex K (informative) – Application examples.. 84
K.1 Introduction... 84
K.2 Use of JPIP with codestreams in other file formats... 84
K.3 Tile-part implementation techniques... 84
K.4 Precinct-based implementation techniques ... 85
K.5 JPIP protocol transcripts ... 86
K.6 Using JPIP with HTML .. 89

Annex L (informative) – JPIP ABNF collection ... 91
L.1 JPIP Request ABNF.. 91
L.2 JPIP Response BNF .. 98

Annex M (informative) – Patent statements .. 101
Annex N (informative) – Bibliography.. 102

 ITU-T Rec. T.808 (01/2005) v

FIGURES

 Page
Figure 1 – Example of the box description figures.. 7
Figure 2 – Example of the superbox description figures ... 7
Figure 3 – JPIP protocol overview .. 8
Figure 4 – JPIP protocol stack ... 8
Figure A.1 – Examples of a JPEG 2000 file, JPIP data-bins and JPIP-stream relationships (after G.J. Colyer and

R.A. Clark, IEEE Trans. Consumer Electronics, 49 (2003), pp 850–854) ... 10
Figure A.2 – VBAS structure .. 11
Figure A.3 – Bin-ID VBAS structure .. 11
Figure A.4 – Example precinct data-bin .. 14
Figure A.5 – Metadata-bin example colour scheme .. 15
Figure A.6 – A sample JP2 file.. 16
Figure A.7 – A sample JP2 file divided into three metadata-bins.. 16
Figure A.8 – A superbox with a referenced metadata-bin ... 17
Figure A.9 – An illegal division of the file into metadata-bins ... 18
Figure A.10 – Example of the use of stream equivalents .. 19
Figure A.11 – Placeholder box structure ... 19
Figure C.1 – Desired region within an image .. 29
Figure C.2 – Desired region with respect to the subsampled reference grid.. 29
Figure C.3 – Colourspace specification box selection procedure .. 50
Figure G.1 – Response data structure on http-tcp connection ... 68
Figure I.1 – Part of an example JPEG 2000 file containing JPIP index boxes .. 73
Figure I.2 – Organization of the contents of a Codestream Index box .. 74
Figure I.3 – Organization of the contents of a Codestream Finder box ... 75
Figure I.4 – Organization of the contents of a Manifest box ... 75
Figure I.5 – Organization of the contents of a Fragment Array Index box.. 76
Figure I.6 – Organization of the contents of a Header Index Table box.. 77
Figure I.7 – Organization of the contents of a Tile-part Index Table box ... 78
Figure I.8 – Organization of the contents of a Tile Header Index Table box .. 78
Figure I.9 – Organization of the contents of a Precinct Packet Index Table box... 78
Figure I.10 – Organization of the contents of a Packet Header Index Table box .. 79
Figure I.11 – Organization of the contents of a File Index box ... 80
Figure I.12 – Organization of the contents of a File Finder box.. 80
Figure I.13 – Organization of the contents of a Proxy box.. 80
Figure I.14 – Organization of the contents of an Index Finder box ... 81

vi ITU-T Rec. T.808 (01/2005)

TABLES

 Page
Table A.1 – Bin-ID additional VBAS indication... 12
Table A.2 – Class identifiers for different data-bin message classes... 12
Table A.3 – Legal values for the Flags field of a Placeholder box .. 20
Table C.1 – Round direction options ... 31
Table C.2 – Metadata request qualifier flags ... 39
Table C.3 – Alignment boundaries based on bin type ... 40
Table C.4 – Legal image return types.. 40
Table C.5 – Cache descriptor option summary.. 44
Table C.6 – Legal capabilities of the processing-capabilities element.. 47
Table C.7 – Legal values of the config-capability parameter .. 48
Table C.8 – View-window handling preferences... 49
Table C.9 – Colourspace method client preferences.. 50
Table C.10 – Placeholder preferences ... 51
Table C.11 – Codestream sequencing preferences .. 52
Table D.1 – Legal values of transport-param .. 55
Table D.2 – Defined reason codes ... 59
Table I.1 – Defined boxes (Informative) ... 74
Table I.2 – Container type values .. 75
Table I.3 – Version values ... 77
Table K.1 – Example of the use of auxiliary fields in a simple case ... 85
Table K.2 – Example of the use of auxiliary fields in a more complicated case ... 85

 ITU-T Rec. T.808 (01/2005) vii

Introduction
ITU-T Rec. T.800 | ISO/IEC 15444-1 (JPEG 2000) is a specification that describes an image compression system that
allows great flexibility, not only for the compression of images but also for access into the codestream. The codestream
provides a number of mechanisms for locating and extracting portions of the compressed image data for the purpose of
retransmission, storage, display, or editing. This access allows storage and retrieval of compressed image data
appropriate for a given application without decoding.

The purpose of this Recommendation | International Standard is to provide a network protocol that allows for the
interactive and progressive transmission of JPEG 2000 coded data and files from a server to a client. This protocol
allows a client to request only the portions of an image (by region, quality or resolution level) that are applicable to the
client's needs. The protocol also allows the client to access metadata or other content from the file.

Any organization contemplating the use of this Recommendation | International Standard should carefully consider its
applicability.

The International Telecommunication Union (ITU), the International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this
Recommendation | International Standard may involve the use of a patent.

The ITU, ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ITU, ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statement of the holder of this patent right is registered with the ITU, ISO and IEC. Information may be obtained from
the companies listed in Annex M.

Attention is drawn to the possibility that some of the elements of this Recommendation | International Standard may be
the subject of patent rights other than those identified in Annex M. ITU, ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – JPEG 2000 image coding system:
Interactivity tools, APIs and protocols

1 Scope
This Recommendation | International Standard defines, in an extensible manner, syntaxes and methods for the remote
interrogation and optional modification of JPEG 2000 codestreams and files in accordance with their definition in the
following parts of ISO/IEC 15444:

– ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 and its definition of a JPEG 2000 codestream and JP2 file
format.

– the JPEG 2000 family of file formats as defined in further parts of ISO/IEC 15444.

In this Recommendation | International Standard, the defined syntaxes and methods are referred to as the JPEG 2000
Interactive Protocol, "JPIP", and interactive applications using JPIP are referred to as "JPIP systems."

JPIP specifies a protocol consisting of a structured series of interactions between a client and a server by means of
which image file metadata, structure and partial or whole image codestreams may be exchanged in a communications
efficient manner. This Recommendation | International Standard includes definitions of the semantics and values to be
exchanged, and suggests how these may be passed using a variety of existing network transports.

With JPIP, the following tasks may be accomplished in varying, compatible ways:
– the exchange of capabilities;
– the negotiation of capabilities to use in a session;
– the request and transfer of the following elements from a variety of containers, such as JPEG 2000

family files, JPEG 2000 codestreams and other container files:
• selective data segments;
• selective and defined structures;
• parts of an image or its related metadata.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

– ITU-T Recommendation T.800 (2002) | ISO/IEC 15444-1:2004, Information technology – JPEG 2000
image coding system: Core coding system.

– ITU-T Recommendation T.801 (2002) | ISO/IEC 15444-2:2004, Information technology – JPEG 2000
image coding system: Extensions.

– ITU-T Recommendation T.802 (2005) | ISO/IEC 15444-3:2005, Information technology – JPEG 2000
image coding system: Motion JPEG 2000.

– ISO/IEC 15444-6:2003, Information technology – JPEG 2000 image coding system – Part 6: Compound
image file format.

– IETF RFC 768 (1980), User Datagram Protocol. Available from World Wide Web:
<http://www.ietf.org/rfc/rfc0768.txt>.

ISO/IEC 15444-9:2005 (E)

2 ITU-T Rec. T.808 (01/2005)

– IETF RFC 793 (1981), Transmission Control Protocol. Available from World Wide Web:
<http://www.ietf.org/rfc/rfc0793.txt>.

– IETF RFC 2046 (1996), Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
Available from World Wide Web: <http://www.ietf.org/rfc/rfc2046.txt>.

– IETF RFC 2234 (1997), Augmented BNF for Syntax Specifications: ABNF. Available from World Wide
Web: <http://www.ietf.org/rfc/rfc2234.txt>.

– IETF RFC 2396 (1998), Uniform Resource Identifiers (URI): Generic Syntax. Available from World
Wide Web: <http://www.ietf.org/rfc/rfc2396.txt>.

– IETF RFC 2616 (1999), Hypertext Transfer Protocol – HTTP/1.1. Available from World Wide Web:
<http://www.ietf.org/rfc/rfc2616.txt>.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 JPEG 2000 Part 1 definitions

The definitions defined in clause 3 of ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 and clause 3 of ITU-T Rec. T.801 |
ISO/IEC 15444-2:2004 also apply to this Recommendation | International Standard.

3.2 HTTP definitions

The following definitions are intended to match HTTP/1.1. In the case of any difference, these definitions shall be used.

3.2.1 Connection: A transport layer virtual circuit established between two programs for the purpose of
communication.

3.2.2 Entity: The information transferred as the payload of a request or response. An entity consists of
metainformation in the form of entity-header fields and content in the form of an entity-body.

3.2.3 Proxy: An intermediary program which acts as both a server and a client for the purpose of making requests
on behalf of other clients. Requests are serviced internally or by passing them on, with possible translation, to other
servers.

3.3 JPIP definitions

The following definitions are used within this Recommendation | International Standard. In some cases, these
definitions differ from those used in other standards and/or Recommendations.

3.3.1 cache (client-side): The cache on the Client is the storage of the JPIP data-bins. The Client may have a
limited cache and may have to purge cached JPIP data-bins from time to time.

3.3.2 cacheable: A response is cacheable if a cache is allowed to store a copy of the response message for use in
answering subsequent requests. Even if a resource is cacheable, there may be additional constraints on whether a cache
can use the cached copy for a particular request.

3.3.3 cache-model (server-side): The server's estimation of the portions of the data-bins available in the client's
cache. The server may add items to its estimation of the client's cache because it assumes successfully delivery, or
because it has received acknowledgements of transmitted data, or because of cache-model update statements.

3.3.4 channel: A mechanism for grouping requests and responses such that only one request/response is active at a
time within the group. Multiple simultaneous requests and responses require multiple channels.

3.3.5 client: A program that establishes connections for the purpose of sending requests.

3.3.6 codestream image region: The codestream image region is the intersection between the image and the region
defined by the Offset and Region Size. The codestream image region may be empty (no area).

3.3.7 data-bin: A set of bytes of the same type of data which may be partially delivered.

3.3.8 incremental-codestream: The representation of the codestream as a collection of data-bins (main header, tile
header, precinct or tile data-bins) having the same codestream identifier.

3.3.9 JPIP index table: A file format box which provides information about the location of portions of a file or
codestream.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 3

3.3.10 logical target: A specific representation of specific original named resource, or a byte range from that
specific original named resource, to which the JPIP request is directed. This specific representation might be transcoded
from the original named resource.

3.3.11 message: A set of bytes from a single data-bin and the header identifying those bytes and the data-bin.

3.3.12 raw-codestream: The representation of the codestream as a single metadata-bin.

3.3.13 request: A group of fields and values sent from the client to the server to obtain portions of an image or
metadata.

3.3.14 resource: A network data object or service that can be identified by a URI. A HTTP target.

3.3.15 response: The bytes sent from the server to the client after receiving a request.

3.3.16 server: An application program that accepts connections in order to service requests by sending back
responses. Any given program may be capable of being both a client and a server; use of these terms refers only to the
role being performed by the program for a particular connection, rather than to the program's capabilities in general.

3.3.17 session: A collection of requests and responses applying to the same resource for which the server maintains a
cache model.

3.3.18 session-based: Where the server maintains a cache model.

3.3.19 stateless: A single request where the server does not make use of a cache-model in determining the response.

3.3.20 target: The logical identification of JPIP data. The name of the main target (often the name of a file on the
server).

NOTE − JPEG 2000 files or codestreams may be available in multiple representations (e.g., return type, precinct size) or vary in
other ways, each identified as a unique logical target.

3.3.21 tile header: All tile-part headers for a specific tile.

3.3.22 view-window: The portion of the image data the client desires, as expressed by the combination of the
following fields that appear in the request: Region Size, Offset, Frame Size, Codestream, Codestream Context,
Sampling Rate, ROI and Layers. The view-window is often smaller than the whole image data. If a view-window is
implied but not specified, then it shall be taken as a view-window on the entire imagery data of the logical target.

3.4 Symbols

For the purposes of this Recommendation | International Standard, the following symbols apply. The symbols defined in
clause 4 of ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 and clause 4 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004 also
apply to this Recommendation | International Standard.

c An index (starting from 0) of the image component to which the precinct belongs

fx x-axis frame size for client request view-window

fy y-axis frame size for client request view-window

fx' x-axis frame size for suitable codestream resolution

fy' y-axis frame size for suitable codestream resolution

fx" Modified jpx x-axis frame size for suitable resolution

fy" Modified jpx y-axis frame size for suitable resolution

Hcod The codestream height as recorded in the Image Header (ihdr) box (see Annex I.5.3.1 of ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004)

Hcomp The height of the composited result, supplied in the JPX composition options box (see
Annex M.11.10.1 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

Hreg The height of the compositing layer, as it appears on the compositing layer registration grid

Hsinst The cropped height

Htinst The composited height

l A unique identifier of the precinct within its codestream

ISO/IEC 15444-9:2005 (E)

4 ITU-T Rec. T.808 (01/2005)

NL Is the number of decomposition levels

num_components The number of components encoded

num_tiles The number of tiles in the codestream

ox x-axis offset for client request view-window

ox' x-axis offset for suitable codestream region

ox" Modified jpx x-axis offset for suitable region

oy y-axis offset for client request view-window

oy' y-axis offset for suitable codestream region

oy" Modified jpx y-axis offset for suitable region

r Resolution level

s A sequence number which identifies the precinct within its tile-component

sx x-axis size of client request view-window

sx' x-axis size for suitable codestream region

sx" Modified jpx x-axis size for suitable region

sy y-axis size of client request view-window

sy' y-axis size for suitable codestream region

sy" Modified jpx y-axis size for suitable region

t An index (starting from 0) of the tile to which the precinct belongs

Wcod The codestream width as recorded in the Image Header (ihdr) box (see Annex I.5.3.1 of ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004)

Wcomp The width of the composited result, supplied in the JPX composition options box (see
Annex M.11.10.1 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

Wreg The width of the compositing layer, as it appears on the compositing layer registration grid

Wsinst The cropped width

Wtinst The composited width

XCinst The x-axis cropping offset supplied via the relevant instruction (see Annex M.11.10.2.1 of
ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

XOinst The x-axis compositing offset, described via the relevant compositing instruction (see
Annex M.11.10.2.1 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

XOreg The x-axis codestream registration offset

XOsiz The horizontal offset from the origin of the reference grid of the relevant codestream's SIZ
marker segment

XRreg The x-axis codestream registration sampling factor, described at the beginning of any
codestream registration box (see Annex M.11.7.7 of ITU-T Rec. T.801 | ISO/IEC
15444-2:2004)

Xsiz The width of the reference grid of the relevant codestream's SIZ marker segment

XSreg The x-axis registration precision described at the beginning of any codestream registration box
(see Annex M.11.7.7 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

YCinst The y-axis cropping offset supplied via the relevant instruction (see Annex M.11.10.2.1 of
ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 5

YOinst The y-axis compositing offset, described via the relevant compositing instruction (see
Annex M.11.10.2.1 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

YOreg The y-axis codestream registration offset

YOsiz The vertical offset from the origin of the reference grid of the relevant codestream's SIZ marker
segment

YRreg The y-axis codestream registration sampling factor, described at the beginning of any
codestream registration box (see Annex M.11.7.7 of ITU-T Rec. T.801 | ISO/IEC
15444-2:2004)

Ysiz The height of the reference grid of the relevant codestream's SIZ marker segment

YSreg The y-axis registration precision described at the beginning of any codestream registration box
(see Annex M.11.7.7 of ITU-T Rec. T.801 | ISO/IEC 15444-2:2004)

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.

ABNF Augmented Backus-Naur Form
DICOM Digital Imaging and Communications in Medicine
DWT Discrete Wavelet Transformation
EOR End of Response
HTML HyperText Markup Language
IP Internet Protocol
JP3D JPEG 2000 Part 10: 3-D and floating point data
JPIP JPEG 2000 Interactive Protocol
JPP JPIP Precinct
JPSEC JPEG 2000 Part 8: Secure JPEG 2000
JPT JPIP Tile-part
JPWL JPEG 2000 Part 11: Wireless
JTC 1 Joint Technical Committee 1
MTF Modulation Transfer Function
PDF Portable Document Format
SC 29 Sub-Committee 29
SVG Scalable Vector Graphics
TCP Transmission Control Protocol
UDP User Datagram Protocol
UUID Universal Unique Identifier
VBAS Variable-length Byte Aligned Segment
WG 1 Working Group 1
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

5 Conventions

5.1 ABNF rules

This Recommendation | International Standard uses the ABNF notation defined in RFC 2234, including the core ABNF
syntax rules: ALPHA (letters), CR (carriage return), CRLF (Internet standard newline), CTL (control characters),
DIGIT (decimal digits), HEXDIG (hexadecimal digits), LF (line feed), LWSP (linear white space) and SP (space). For
the purposes of this Recommendation | International Standard, the following ABNF rules also apply.

ISO/IEC 15444-9:2005 (E)

6 ITU-T Rec. T.808 (01/2005)

NZDIGIT = %x31-39 ; 1-9
UPPER = %x41-5A ; A-Z
LOWER = %x61-7A ; a-z
UINT = 1*DIGIT
NONZERO = *"0" NZDIGIT *DIGIT
UINT-RANGE = UINT ["-" [UINT]]
UFLOAT = 1*DIGIT ["." 1*DIGIT]
ENCODED-CHAR = "%" HEXDIG HEXDIG
UUID = 16(HEXDIG)
TOKEN = 1*(ALPHA / DIGIT / "." / "_")

This Recommendation | International Standard also defines PATH, representing a file or pathname. In the general case,
PATH values may contain any character, although for a given server architecture, the server shall reject any characters
that are not legal on that particular server. In addition, PATH shall be properly encoded as specified by the transport
technology.

UINT-RANGE specifies a range of integer values. The first integer in the range specifies the beginning of the range. If
two values are specified, the first and second values specify the inclusive beginning and ending limits to the range. If
only the first value and the "-" character are specified, the range includes all values greater than or equal to the first
value.

A numerical value immediately preceding an ABNF element refers to a repetition of the parameter that follows the
number, for the number of times given by the numerical value, with no intervening spaces between each occurrence.

The construct "1#" refers to one or more repetitions of the parameter that follows, each occurrence of which is
separated by a comma.

The construct "1$" refers to one or more repetitions of the parameter that follows, each occurrence of which is
separated by a semicolon.

5.2 File format ABNF rules
compatibility-code = 4(ALPHA / DIGIT / "_" / ENCODED-CHAR)

box-type = 4(ALPHA / DIGIT / "_" / ENCODED-CHAR)

box-type-list = "*" / 1#(box-type)

box-type specifies the four characters of the box type. For each character in the box type, if the character is alpha-
numeric (A..Z, a..z or 0..9), the character is written directly into the string. If the character is a space (0x20), then that
character shall be encoded as the underscore character ("_"). For any other character, a 3-character string is written in its
place, consisting of a percent character ("%") followed by two hexadecimal digits representing the value of the
character from the box type in hexadecimal. The compatibility-code is encoded the same way that a box-
type is encoded.

box-type-list specifies a list of box types. If the value of a box-type-list field is "*", then the field
refers to all box types.

5.3 Key to graphical descriptions of boxes (informative)

The description of each box is followed by a figure that shows the order and relationship of the parameters in the box.
Figure 1 shows an example of this type of figure. A rectangle is used to indicate the parameters in the box. The width of
the rectangle is proportional to the number of bytes in the parameter. A shaded rectangle (diagonal stripes) indicates that
the parameter is of varying size. Two parameters with superscripts and a grey area between indicate a run of several of
these parameters. A sequence of two groups of multiple parameters with superscripts separated by a grey area indicates
a run of that group of parameters (one set of each parameter in the group, followed by the next set of each parameter in
the group). Optional parameters or boxes will be shown with a dashed rectangle.

The figure is followed by a list that describes the meaning of each parameter in the box. If parameters are repeated, the
length and nature of the run of parameters is defined. As an example, in Figure 1, parameters A, B, C and D are 8, 16,
32 bit and variable length respectively. The notation E0 and EN–1 implies that there are N different parameters, Ei, in a
row. The group of parameters F0 and FM–1, and G0 and GM–1 specify that the box will contain F0, followed by G0,

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 7

followed by F1 and G1, continuing to FM-1 and GM-1 (M instances of each parameter in total). Also, the field D is
optional and may not be found in this box.

In addition, in a figure describing the contents of a superbox, an ellipsis (…) will be used to indicate that the contents of
the file between two boxes is not specifically defined. Any box (or sequence of boxes), unless otherwise specified by
the definition of that box, may be found in place of the ellipsis.

Figure 1 – Example of the box description figures

For example, the superbox shown in Figure 2 must contain an AA box and a BB box, and the BB box must follow the
AA box. However, there may be other boxes found between boxes AA and BB. Dealing with unknown boxes is
discussed in Annex I.8 of ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

Figure 2 – Example of the superbox description figures

6 General description

6.1 JPIP protocol

This Recommendation | International Standard describes the syntaxes and methods that are used when a client is
accessing JPEG 2000 compressed imagery and imagery related data residing on a JPIP-enabled server. This
Recommendation | International Standard enables the flexibility and functionality intended in ITU-T Rec. T.800 |
ISO/IEC 15444-1:2004 to be realized across multiple client/server transports.

JPIP defines the interactive protocol to achieve the efficient exchange of JPEG 2000 imagery and imagery-related data.
The protocol defines the Client-Server interactions based on a client request and server response as shown in Figure 3.
This Recommendation | International Standard defines the JPIP client requests and the JPIP server responses.
HTTP/1.1 (RFC 2616), TCP (RFC 793) and UDP (RFC 768) are shown as examples of possible transports for JPIP.
The client uses a View-Window request to define the resolution, size, location, components, layers, and other
parameters for the image and imagery related data that is requested by the client. The server responds by delivering
imagery and imagery-related data with precinct-based streams, tile-based streams, or whole images. The protocol also
allows for the negotiation of client and server capabilities and limitations. The client may request information about an
image as defined in JPIP index tables from the server, which enables the client to refine its View-Window request to
image specific parameters (e.g., byte range requests). The server's cache model is based on the capabilities defined by
the client and the statefulness of the session.

ISO/IEC 15444-9:2005 (E)

8 ITU-T Rec. T.808 (01/2005)

Figure 3 – JPIP protocol overview

This protocol can be used over several different transports as shown in Figure 4. This Recommendation | International
Standard includes informative annexes on the use of JPIP protocol over HTTP and TCP, and provides suggestions for
other example implementations.

Figure 4 – JPIP protocol stack

Provisions have been included for the extension of the JPIP protocol to support the current JPEG 2000 Standards:
ITU-T Rec. T.802 | ISO/IEC 15444-3, Motion JPEG 2000, and ISO/IEC 15444-6, Compound Documents, and the
future parts of JPEG 2000 (currently JP3D, JPSEC, and JPWL).

6.2 Purpose

This Recommendation | International Standard defines the syntax and methods required for both the client and server.
Each annex defines a component that is required to achieve interoperability and functionality between the client and
server over several transports. Each annex may be a requirement of the client, server, or both. The annexes are
described below.

– Annex A describes the tile-based and precinct-based streams that are required for both the client and the
server. The server is required to produce compliant JPP- and JPT-streams and understand uploaded JPP-
and JPT-streams. The client is required to understand and properly decode these streams and is
responsible for producing compliant streams when uploading partial imagery to the server.

– Annex B describes the session and cache modelling of a client/server session and is required for both the
client and server.

– Annex C defines the client request syntax. The client shall produce compliant requests and the server
shall be able to understand and respond to all compliant requests.

– Annex D defines the server response syntax. The server shall produce compliant responses and the client
shall be able to understand compliant responses.

– Annex E defines syntax and methods to upload a partial image for systems which use JPIP for upload.
– Annexes F, G and H define the methods and procedures for JPIP client/server interactions over several

different transport protocols.
– Annex I defines the indexing information syntax contained in a JPEG 2000 box that can be used by a

client and server to more efficiently access imagery and imagery related data.
– Annex J defines how this standard can be extended through registration.
– Annex K describes several examples of using this Recommendation | International Standard for several

different applications.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 9

7 Conformance
Conformance with this Recommendation | International Standard by a client means that the client's JPIP requests are
well structured, valid and conformant to the JPIP client requests as defined by this Recommendation | International
Standard. Clients shall support all normative requests types.

Conformance with this Recommendation | International Standard by a server means that the server's JPIP responses are
well structured, valid and conformant to the JPIP server response signalling as defined by this Recommendation |
International Standard. Servers shall support all normative request types.

While it is intended that this Recommendation | International Standard should be implemented such that imagery data is
requested on the basis of client-side application requirements in efficient JPIP requests, no conformant behaviour is
defined.

Equally, imagery data should be served on the basis of efficient JPIP server responses, minimizing the amount of served
data outside the client's signalled interests and redundant data already in possession by the client. However, no
conformant behaviour is defined.

It is expected that server applications may reduce efficiency by sending additional data or redundant data depending on
the network quality-of-service. Such implementation decisions are application-specific and provide the JPIP system
with high utility. However, this Recommendation | International Standard does not define conformance for engineering
these implementation decisions.

ISO/IEC 15444-9:2005 (E)

10 ITU-T Rec. T.808 (01/2005)

Annex A

The JPP-stream and JPT-stream media types
(This annex forms an integral part of this Recommendation | International Standard)

A.1 Introduction

JPP-stream and JPT-stream are media types useful for presenting JPEG 2000 codestreams and file format data in an
arbitrary order. Each media type consists of a concatenated sequence of messages, where each message contains a
portion of a single data-bin preceded by a message header. Data-bins contain portions of a JPEG 2000 compressed
image representation, such that it is possible to construct a stream that completely represents the information present in
a JPEG 2000 file or codestream. Each message is completely self-describing, so that the sequence of messages may be
terminated at any point and messages may be re-ordered subject to minimal constraints without losing their meaning.
For these reasons, JPP-stream and JPT-stream media types are useful for JPIP servers and the JPIP protocol is designed
with these media types particularly in mind. This annex defines the JPP-stream and JPT-stream media types without
reference to the JPIP protocol.

Figure A.1 – Examples of a JPEG 2000 file, JPIP data-bins and JPIP-stream relationships (after G.J. Colyer and
R.A. Clark, IEEE Trans. Consumer Electronics, 49 (2003), pp. 850–854)

Figure A.1 is an illustrative example of the relationship between the bit-streams from a JPEG 2000 file, JPIP data-bins,
and a JPIP stream. The figure shows the main header colour coded red, 2 precincts with packets coded in shades of
orange-yellow and green, and a meta-data box coded blue. Self-describing JPIP messages are formed from these data-
bins and concatenated to form a JPIP stream.

A JPIP stream consists of one or more concatenated JPIP messages. Each JPIP message consists of a header and a
body. The header provides descriptive information to identify the relevant data-bin. The body is data from that data-bin.
Unless further signalling is provided, the message is the concatenation of the header with the body.

NOTE − In this Recommendation | International Standard, all examples provided form binary messages by the concatenation of
header and body. It is implementation-specific to the transport and application if other signalling for header and body is provided.
For example, auxiliary signalling with variable error protection may be implemented for wireless-based applications.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 11

A.2 Message header structure

A.2.1 General

Each message represents a portion of exactly one data-bin. The message header consists of a sequence of variable-
length byte-aligned segments (VBAS). Each VBAS consists of a sequence of bytes, all but the last of which has a most
significant bit (bit 7) of 1, as seen in Figure A.2. The least significant 7 bits of each byte in the VBAS are concatenated
to form a bit stream which is used in different ways for different VBASs.

Figure A.2 – VBAS structure

The message header serves to identify the particular data-bin and byte range which is represented by the message body.
Message headers can take an independent form and a dependent form. The independent form is a long form where the
message headers are completely self-describing; their interpretation is independent of any other message headers. The
optional shorter dependent form message headers make use of information in the headers of previous messages; their
decoding is dependant on the previous message. Applications may choose to use the long form message headers; these
messages can be rearranged in any arbitrary order. Alternatively, applications may use the shorter form message
headers that do depend on previous message headers; these are shorter messages but will create erroneous results if the
messages are not arranged in the correct sequence when decoded. It is an application decision whether or not the
sequence ordering of received messages can be assumed to be reliable and, if so, whether to make use of the shorter
form message headers.

The message header consists of the following VBAS's (optional VBAS's identified by the use of square brackets):

Bin-ID [, Class] [, CSn], Msg-Offset, Msg-Length [, Aux]

The existence of the Class and CSn VBASs are determined by examining the Bin-ID VBAS. The existence of the Aux
VBAS is determined by the Class VBAS or the previous Class VBAS, if there is no Class VBAS in the current message
header.

The Bin-ID VBAS serves several roles. Bits 6 and 5 of the first byte of the Bin-ID VBAS, labelled 'b' in Figure A.3,
indicate whether the Class and CSn VBASs are present in the message header. Table A.1 defines the bit values and its
meaning.

Bit 4 of the first byte of the Bin-ID VBAS, labelled 'c' in Figure A.3, indicates whether or not this message contains the
last byte in the associated data-bin: '0' means it is not the last byte in the data-bin; '1' indicates that it is the last byte in
the data-bin. Receiving a message with this bit set allows determination of the length of the complete data-bin, although
it does not imply that the complete JPP-stream or JPT-stream contains sufficient messages to assemble all of the bytes
from that data-bin.

The remaining 4 bits of the first byte and the 7 low order bits of any remaining bytes in the Bin-ID VBAS (labelled 'd'
in Figure A.3) form an "in-class identifier", which is used to uniquely identify the data-bin within its class, in the
manner described in A.2.3.

Figure A.3 – Bin-ID VBAS structure

ISO/IEC 15444-9:2005 (E)

12 ITU-T Rec. T.808 (01/2005)

Table A.1 – Bin-ID additional VBAS indication

Indicator
Bits 'bb' Meaning

00 Prohibited.
01 No Class or CSn VBAS is present in message header
10 Class VBAS is present but CSn is not present in message header
11 Class and CSn VBAS are both present in the message header.

The Class VBAS, if present, provides a message class identifier. The message class identifier is a non-negative integer,
formed by concatenating the least significant 7 bits of each byte of the VBAS in big-endian order. If the Class VBAS is
not present, the message class identifier is unchanged from that associated with the previous message. If the Class
VBAS is not present and there is no previous message, the message class identifier is 0. Valid message class identifiers
are described in A.2.2.

The CSn VBAS, if present, identifies the index (starting from 0) of the codestream to which the data-bin belongs. The
codestream index is formed by concatenating the least significant 7 bits of each byte of the VBAS in big-endian order.
If the CSn VBAS is not present, the codestream index is unchanged from the previous message. If CSn VBAS is not
present and there is no previous message, the codestream index is 0.

The Msg-Offset and Msg-Length VBAS's each represent non-negative integer values, formed by concatenating the least
significant 7 bits of each byte in the VBAS in big-endian order. The Msg-Offset integer identifies the offset of the data
in this message from the start of the data-bin. The Msg-Length integer identifies the total number of bytes in the body of
the message.

An Aux VBAS may be present. Its presence, and meaning if present, is determined by the message class identifier
found within the Bin-ID VBAS, as explained in A.2.2. If present, the Aux VBAS represents a non-negative integer
value, formed by concatenating the least significant 7 bits of each byte in the VBAS in big-endian order.

NOTE – The information in the Aux VBAS cannot affect the length of the message body.

A.2.2 Message class identifiers

The message class identifiers defined by this Recommendation | International Standard are the non-negative integers
shown in Table A.2. The interpretation of the data-bin classes to which they refer is described in A.3. All other values
of message class identifier are reserved, and the associated messages should be skipped by decoders not recognizing the
value.

Class identifiers are chosen such that an Aux VBAS is present if and only if the identifier is odd. This property allows
unrecognized message headers to be correctly parsed and the contents skipped.

Extended precinct data-bin messages have exactly the same interpretation as non-extended precinct data-bin messages
and they refer to exactly the same precinct data-bins. The extended precinct messages include an Aux VBAS which
identifies the number of complete packets (quality layers) which would be available for the precinct if the bytes in this
message were combined with all previous bytes of the same precinct. If this message also contains the last byte of the
data-bin, the Aux VBAS indicates the total number of quality layers associated with the precinct in the original
codestream. Otherwise, the Aux VBAS indicates the quality layer to which the byte immediately following the last byte
in the message belongs. The information in the Aux VBAS may be useful to certain clients.

Table A.2 – Class identifiers for different data-bin message classes

Class
identifier Message class Data-bin class Stream type

0 Precinct data-bin message Precinct data-bin JPP-stream only
1 Extended precinct data-bin message Precinct data-bin JPP-stream only
2 Tile header data-bin message Tile header data-bin JPP-stream only
4 Tile data-bin message Tile data-bin JPT-stream only
5 Extended tile data-bin message Tile data-bin JPT-stream only
6 Main header data-bin message Main header data-bin JPP- and JPT-stream
8 Metadata-bin message Metadata-bin JPP- and JPT-stream

Extended tile data-bin messages have exactly the same interpretation as non-extended tile data-bin messages and they
refer to exactly the same tile data-bins. The extended tile messages include an Aux VBAS which identifies the smallest

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 13

n such that, in all components for which (NL – n) is non-negative, resolution level (NL – n) and all lower resolution
levels have been completed when the bytes in this message are combined with all preceding bytes of the same tile,
where NL is the number of decomposition levels, which may vary by component. If no resolution levels of any
component have been completed, the value of the Aux VBAS is one plus the maximum value of NL across all
components. The value zero is reached when all resolutions in all components have been completed. Because
resolutions do not necessarily appear in order in a tile, some resolution levels above the value signalled by the VBAS
may have been completed, but this cannot be determined from the message header. The information in the Aux VBAS
may be useful to certain clients.

A.2.3 In-class identifiers

The least significant 4 bits of the first byte and the least significant 7 bits of all other bytes from the Bin-ID VBAS are
concatenated in big-endian order to form a single word, having 7k-3 bits, where k is the number of bytes in the VBAS.
This word represents an unsigned integer which serves to uniquely identify the data-bin within its class and codestream.
A.3 provides a description of the various data-bin classes, along with the corresponding in-class identifiers.

A.3 Data-bins

A.3.1 Introduction

Data-bins contain portions of a JPEG 2000 file or codestream data. These may be based on imagery elements, such as
precinct-based data, tile-based data, and headers. They may also be based on metadata. Whatever the content of a data-
bin, each data-bin is treated as an individual bit-stream.

A.3.2 Precinct data-bins

A.3.2.1 Precinct data-bin format

Precinct data-bins appear only within the JPP-stream media-type. Each precinct data-bin corresponds to a single
precinct within a single codestream. The in-class identifier is defined by Equation A-1.

 num_tiles)entsnum_compon(××++= sctI (A-1)

where:
I is the unique identifier of the precinct within its codestream;
t is the index (starting from 0) of the tile to which the precinct belongs;
c is the index (starting from 0) of the image component to which the precinct belongs;
s is a sequence number which identifies the precinct within its tile-component.

Within each tile-component, precincts are assigned contiguous sequence numbers, s, as follows. All precincts of the
lowest resolution level (that containing only the LL sub-band samples) are sequenced first, starting from 0, following a
raster-scan order. The precincts from each successive resolution level are sequenced in turn, again following a raster-
scan order within their resolution level.

It follows that a precinct identifier of 0 refers to the upper left hand precinct from the LL sub-band of image component
0 in tile 0.

Each precinct data-bin corresponds to the string of bytes formed by concatenating all codestream packets, complete
with all relevant packet headers, which belong to the precinct. It is conceivable that packet headers will be packed into
PPM or PPT marker segments which shall then belong to main header or tile header data-bins, in which case the
precinct data-bin would hold only packet bodies. In any event, the precinct data stream should coincide with the
contiguous segment of bytes that would be found within a JPEG 2000 codestream having one of the layer-subordinate
progression sequences (CPRL, PCRL or RPCL).

ISO/IEC 15444-9:2005 (E)

14 ITU-T Rec. T.808 (01/2005)

Figure A.4 – Example precinct data-bin

A.3.2.2 Precinct data-bin example (informative)

Figure A.4 shows an example precinct data-bin (in-class identifier 3) with 4 quality layers (or packets).

For Case A, B and C, the message header is shown below, based on the extended and non-extended precinct data-bin
message structures. The underlined data denotes the Aux VBAS to identify the number of layers which are completed
by the message.

(Case A)

Non-extended header: 00100011 01101011 10000001 00100101 xxxxxxxx …

The initial 0 bit indicates only one byte is used in the Bin-ID VBAS. The next two bits ("01") indicate that no Class or
CSn VBAS is present. The next "0" bit indicates that the data-bin is not completed by this message. The remaining bits
of the first byte ("0011") indicate that the bin-ID is 3. The first bit of the second byte indicates that there is only one
byte used in the Msg-Offset VBAS. The next 7 bits ("1101011") mean that the offset is 107. The first bit of the 3rd byte
indicates that both this byte and at least the next byte are part of the Msg-Length VBAS. The 0 bit starting the 4th byte
indicates that it is the last byte of the Msg-Length VBAS. Thus all the low order bits from the 3rd and 4th bytes are
concatenated to determine the length. In this case, "0000001 0100101" = 165.

Extended header: 01000011 00000001 01101011 10000001 00100101 00000011 xxxxxxxx …

(Case B)

Non-extended header: 00100011 10000001 00001000 01010100 xxxxxxxx …

Extended header: 01000011 00000001 10000001 00001000 01010100 00000011 xxxxxxxx …

(Case C)

Non-extended header: 00110011 10000001 00001000 10000001 00110101 xxxxxxxx …

Extended header: 01010011 00000001 10000001 00001000 10000001 00110101 00000100 xxxxxxxx …

Note that since the response data contains the last byte of the data-bin in Case C, the Bin-ID VBAS indicates that it is a
"completed" message.

A.3.3 Tile header data-bins

Tile header data-bins appear only within the JPP-stream media type. For data-bins belonging to this class, the in-class
identifier holds the index (starting from 0) of the tile to which the data-bin refers. This data-bin consists of markers and
marker segments for tile n. It shall not contain an SOT marker segment. Inclusion of SOD markers is optional. This data
bin may be formed from a legal codestream, by concatenating all marker segments except SOT and POC in all tile-part
headers for tile n.

A.3.4 Tile data-bins

Tile data-bins shall be used only with the JPT-stream media type. For data-bins belonging to this class, the in-class
identifier is the index (starting from 0) of the tile to which the data-bin belongs. Each tile data-bin corresponds to the
string of bytes formed by concatenating all tile-parts belonging to the tile, in order, complete with their SOT, SOD and
all other relevant marker segments.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 15

A.3.5 Main header data-bin

Both JPP- and JPT-stream media types use the main header data-bin. For data-bins belonging to the codestream main
header class (completed or non-completed variations), the in-class identifier shall be 0. This data-bin consists of a
concatenated list of all markers and marker segments in the main header, starting from the SOC marker. It contains no
SOT, SOD or EOC markers.

A.3.6 Metadata-bins

A.3.6.1 Introduction to metadata-bins

Both JPP- and JPT-stream media types use metadata-bins. Metadata-bins are used to convey metadata from the logical
target that contains the codestream or codestreams whose elements may be referenced by other data-bins associated
with the JPP-stream or JPT-stream. For the purpose of this Recommendation | International Standard, the term
"metadata" refers to any collection of "boxes" from a JPEG 2000 family file. The codestream index shall be ignored in
any message which has the metadata-bin class identifier.

Unlike the numerical ID's used for other types of data-bins, metadata-bin ID's do not map algorithmically to some file
format construct or byte offset. The server is free to choose any numeric ID for any particular metadata bin. The one
and only one exception of this is that the metadata-bin containing the root of the logical target shall be given the ID
of 0.

NOTE – The mechanism for assignment is implementation-dependent; however, it is an informative suggestion that servers
assign bin-ID's using consecutive numbers.

A.3.6.2 Division of a logical target containing a JPEG 2000 file into metadata-bins

All metadata could conceivably be included in metadata-bin 0. In this case, all boxes from the logical target would
belong to metadata-bin 0, appearing in their original order. Since JPEG 2000 family file formats consist of nothing but a
sequence of boxes, this effectively means that metadata-bin 0 would consist of the entire logical target. More generally,
however, it is useful to break the logical target into pieces that can be transmitted in a manageable fashion. This allows
image servers to deliberately omit portions of the logical target that are not currently required by a client. To this end,
JPIP defines a new special box type, known as the "Placeholder box." The Placeholder box serves to identify the size
and type of a box from the logical target, while pointing to another data-bin that holds that box's contents. Placeholders
are also able to represent codestreams from the logical target. This is particularly significant in view of the fact that the
compressed data represented by any given codestream may be delivered incrementally via the other data-bin types
(header data-bins and precinct data-bins or tile data-bins).

Formally, metadata-bin 0 consists of all boxes from the logical target, appearing in their original order, with the
exception that a placeholder may replace any given box. The Placeholder box contains the original header of the box
that has been replaced, together with the identifier of the metadata-bin that holds that box's contents, not including the
header itself. Every metadata-bin, other than metadata-bin 0, shall consist of the contents of some box, whose header
appears in the placeholder that references that data-bin. These box contents may themselves include sub-boxes, any of
which may be replaced by further placeholders.

The following colour scheme will be used for metadata-bin example illustrations (FigureA.5):

Figure A.5 – Metadata-bin example colour scheme

ISO/IEC 15444-9:2005 (E)

16 ITU-T Rec. T.808 (01/2005)

As an example, consider a simple JP2 file with the following box structure (Figure A.6):

Figure A.6 – A sample JP2 file

This file may be divided up into three metadata-bins: one to represent the top-level of the original file (data-bin 0); one
to represent the JP2 Header box; and one to represent the codestream. This division is shown in Figure A.7.

While the contents of any metadata-bin shall be the contents of the box or file represented by that bin, the actual data
contained in those contents may conceptually vary depending on the type of box. For example, in Metadata-bin 1 in
Figure A.7, representing the contents of the JP2 Header box, the contents of that box is literally a series of other
complete boxes, as the JP2 Header box is a superbox. No data other than the series of those complete boxes may be
found within Metadata-bin 1, as there is no other data in the JP2 Header box. In contrast, the data inside Metadata-bin 2
is the raw contents of the Contiguous Codestream box, with no box headers, because that box is not a superbox.

One point of particular interest to note from the example in Figure A.7 is that access to codestream data may be
provided in two ways. The second placeholder bin is used to replace the contiguous codestream box (jp2c) in the
original file. It identifies metadata-bin 2 as holding the original contents of this box, i.e., the raw codestream itself. For
convenience of description in this Recommendation | International Standard, this shall be termed the "raw codestream"
representation. Raw codestreams are served from metadata-bins.

Figure A.7 – A sample JP2 file divided into three metadata-bins

The placeholder may also provide a codestream identifier. Any data-bins belonging to the main header, tile header,
precinct or tile data-bin classes, having this same codestream identifier, convey compressed data associated with the
same codestream as that found in metadata-bin 2. For convenience of description in this Recommendation |
International Standard, this shall be termed the "incremental codestream" representation. Incremental codestreams are
served from these data-bins.

In general, placeholders that reference codestream data may do so either by referencing a separate metadata-bin (raw
codestream), or by providing a codestream identifier (incremental codestream), or both. Even if both methods are
provided, the JPP-stream or JPT-stream data available at a client or image-rendering agent might only have the contents
of the raw codestream, or only have data from the incremental codestream. Moreover, if both the raw and incremental
versions of the same codestream are available, there is no guarantee that the two representations will have compatible

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 17

coding parameters. Only the reconstructed image samples associated with the two representations are guaranteed to be
consistent.

It is also possible to use Placeholder boxes to associate multiple codestreams with a single original box. The
interpretation of such an association is dependent upon the box being replaced. Further discussion of this topic appears
in A.3.6.4.

In the simple example of Figure A.7, Placeholder boxes appear only at the top-level of the file, in metadata-bin 0. As
already noted, however, placeholders may be used to replace any box, in any metadata-bin. This allows complex files to
be decomposed in hierarchical fashion. As such, a single original file may be encapsulated in a variety of different
metadata-bin structures, depending on how placeholders are used. However, a single JPP-stream or JPT-stream shall
adopt only one such encapsulation. In client-server applications, the server will generally determine a suitable
metadata-bin structure for the file, assigning a unique identifier to the resulting stream, and using the same metadata-bin
structure in all communication with all clients which reference this same unique identifier.

When a placeholder relocates a box into a new metadata-bin, the header of that box (LBox, TBox and XLBox fields) is
stored, unmodified, in the Placeholder box. If a client or rendering agent needs to map particular boxes to their original
file offsets, it may do so using the original box headers that appear in the Placeholder boxes. This information
ultimately allows any location in the original file to be mapped to a particular location in a particular metadata-bin, if
the contents of that data-bin exist. This is important since some JPEG 2000 family files contain boxes that reference
other boxes through their location within the file.

While considerable freedom exists in deciding how best to divide a file into metadata-bins, there is one restriction. Any
Placeholder box that appears within a metadata-bin shall replace a top-level box within that data-bin. Equivalently,
wherever a sub-box is to be replaced with a placeholder, its immediate containing super-box shall reside within its own
metadata-bin. For example, in the sample file shown in Figure A.6, the XML data contained within the JP2 Header box
may be placed in a separate data bin from the other boxes. This allows a server to deliver only those data-bins that are
actually required for decoding and display of the image, unless XML data is explicitly requested. A suitable data-bin
structure is shown in Figure A.8.

Figure A.8 – A superbox with a referenced metadata-bin

ISO/IEC 15444-9:2005 (E)

18 ITU-T Rec. T.808 (01/2005)

It would not be legal, however, for the JP2 Header box to be left in metadata-bin 0, as shown in Figure A.9:

Figure A.9 – An illegal division of the file into metadata-bins

NOTE – An equivalent way to express this same restriction is as follows. Wherever a placeholder replaces a sub-box, a
placeholder shall also replace its containing box. This restriction ensures that it is always possible for a client or rendering agent
to recover the lengths and locations of the original boxes within the file, even if some of the boxes are not understood by the
client.

In addition to providing the original contents of a box in a separate metadata-bin, JPP- and JPT-streams are also
permitted to provide alternate representations of the box, which did not explicitly appear within the original file. These
alternate representations are known as "stream equivalents." For example, the original file might contain a Cross-
reference box whose fragment list box collects one or more fragments of the file to reconstitute a Colourspace
Specification box. While a client or rendering agent should be able to follow the relevant file pointers to reconstruct the
Colourspace Specification box, a more convenient JPP- or JPT-stream representation might contain a placeholder which
references a data-bin containing the reconstructed Colourspace Specification box as a stream equivalent. To do this, the
placeholder includes a box header for the stream equivalent, together with the identifier of the metadata-bin that holds
the contents of the stream equivalent box.

The following example (shown in Figure A.10) illustrates the use of stream equivalents for Cross-reference boxes. In
this case, the data-bin that holds the stream-equivalent contents is also referenced as holding the original contents of
another box. While this is likely to be a common situation where the original file contained cross-reference boxes, there
is no need for the stream-equivalent to point to a metadata-bin that is connected to the original file hierarchy. The
stream equivalent box's contents may be created from scratch or they may refer to content which originally existed
within other files. This allows Cross-reference boxes whose fragment list references other files or URLs to be fully
encapsulated within a single JPP- or JPT-stream.

Stream equivalents may be used in any situation where the server can create an alternate form of the contents of a box
that provide some benefit to the client; they are not just for providing access to explicitly cross-referenced data.

In addition to pointing to actual or equivalent box data, a placeholder box can point to one or more codestreams where
the replaced box is equivalent to those codestreams. For example, the Contiguous Codestream box may be replaced by a
placeholder box that references the ID of the incremental codestream contained within that Contiguous Codestream
box. Another example would be to replace the Chunk Offset box in a Motion JPEG 2000 file with a placeholder that
specifies an array of codestream ID's. Those codestream ID's refer to the codestreams that are pointed to by the Chunk
Offset box.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 19

Figure A.10 – Example of the use of stream equivalents

A.3.6.3 Placeholder box format

Figure A.11 shows the format of a Placeholder box, including the box header (unlike the definition of most boxes in
Annex I and other parts of this Recommendation | International Standard); it is specified this way to emphasise that the
use of the length field in the box header for a Placeholder box is more restrictive than for other boxes.

Figure A.11 – Placeholder box structure

LBox: This is the standard 4-byte big-endian length field for a box. The value shall not be 1 for a Placeholder box,
meaning that the XLBox field shall not be present.

TBox: This is the standard 4-byte box type field for a box. The type value for a Placeholder box shall be 'phld'
(0x7068 6c64).

Flags: This field specifies what elements of the Placeholder box contain valid data. This field is encoded as a 4-byte
big-endian integer. Legal values for the Flags field are specified in Table A.3.

OrigID: This field specifies the metadata-bin ID of the bin containing the contents of the original box represented by
this Placeholder box. It is encoded as an 8-byte big-endian unsigned integer.

OrigBH: This field specifies the original header (LBox, TBox and XLBox, as needed) of the original box referenced by
this Placeholder box. The length of this field is 8 bytes if the original box header's LBox field is not equal to 1 and 16
bytes otherwise.

EquivID: This field specifies the metadata-bin ID of the bin that contains a stream-equivalent form of the contents of
this box. This field is encoded as an 8-byte big-endian unsigned integer.

ISO/IEC 15444-9:2005 (E)

20 ITU-T Rec. T.808 (01/2005)

EquivBH: This field specifies the header of the stream-equivalent box (LBox, TBox and XLBox as needed) of the box
referenced by this Placeholder box. The length of this field is 8 bytes if the equivalent box header's LBox field is not
equal to 1 and 16 bytes otherwise.

CSID: This field specifies the ID of the first codestream associated with the replaced box. This is the ID that is
associated with all header, precinct and/or tile data-bins used to incrementally communicate the contents of the first
codestream associated with the replaced box. This field is encoded as an 8-byte big-endian unsigned integer.

NCS: This field specifies the number of codestreams in the array of codestreams that is equivalent to the replaced box.
The codestream ID values of these codestreams run contiguously from the value specified by the CSID field. This field
is encoded as a 4-byte big-endian unsigned integer.

ExtendedBoxList: This field is not specifically shown in Figure A.11. The NCS field may be followed by a sequence
of boxes containing extended information from the server. The existence of any box following the NCS field shall be
specified through a bit in the Flags field. However, no extended boxes, nor any additional bit flags, are defined by this
Recommendation | International Standard. Clients shall ignore any box in ExtendedBoxList that is not understood.

A bit value of "x" in Table A.3 indicates that the specified value includes cases where that bit is set to either "1" or "0".
Bits indicated as "y" are unused by this standard and shall be set to 0 by servers and ignored by clients.

Not all of the fields defined for a Placeholder box need appear in every Placeholder box. As suggested by the arrows in
Figure A.11, if no box equivalent or incremental codestream ID is provided, the box may be terminated at the end of the
OrigBH field. Similarly, if no incremental codestream ID is provided, the box may be terminated at the end of the
EquivBH field, and if no more than one incremental codestream ID is provided, the box may be terminated at the end of
the CSID field.

Table A.3 – Legal values for the Flags field of a Placeholder box

Value Meaning

yyyy yyyy yyyy yyyy yyyy yyyy yyyy xxx1 Access is provided to the original contents of this box through the
metadata-bin specified in the OrigID field

yyyy yyyy yyyy yyyy yyyy yyyy yyyy xxx0 No access is provided to the original contents of this box, and the
value of the OrigID field shall be ignored

yyyy yyyy yyyy yyyy yyyy yyyy yyyy xx1x A stream-equivalent box is provided, whose contents are in the
metadata-bin specified by the EquivID field.

yyyy yyyy yyyy yyyy yyyy yyyy yyyy xx0x No stream-equivalent box is provided, and the value of any EquivID
and EquivBH fields shall be ignored

yyyy yyyy yyyy yyyy yyyy yyyy yyyy 01xx Access to the image represented by this box is provided by a single
incremental codestream, which is identified by the CSID field. The
value of the NCS field shall be treated as if was set to "1" regardless
of the actual value of that field.

yyyy yyyy yyyy yyyy yyyy yyyy yyyy 11xx Access to the image represented by this box is provided by one or
more incremental codestreams, as specified by the CSID and NCS
fields.

yyyy yyyy yyyy yyyy yyyy yyyy yyyy x0xx This placeholder does not provide access to an image representing
the original box as an incremental codestream; the CSID and NCS
fields shall be ignored.

Other values Reserved for ISO use

A.3.6.4 Referencing of incremental codestreams with placeholders

Wherever header, precinct or tile data-bins exist, their codestream ID shall appear in a Placeholder box within an
appropriate metadata-bin. The only exception to this requirement is for unwrapped JPEG 2000 codestreams, which are
not embedded within a JPEG 2000 family file format.

The codestream ID values that appear within the relevant Placeholder box shall conform to any requirements imposed
by the containing file format. For example, JPX files formally assign a sequence number to each codestream that
appears at the top level of the file, either through a Contiguous Codestream box or a Fragment Table box. The first top-
level codestream in the logical target shall have a codestream ID of 0; the next shall have a codestream ID of 1; and so
forth.

Placeholders that reference multiple codestream ID's may be used only where the meaning of those codestreams is well
defined by the type of the box that is being replaced.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 21

A.3.6.5 Using Placeholder boxes with MJ2

This Recommendation | International Standard defines only two box types suitable for placeholders with Motion JPEG
2000 (MJ2) files. Specifically, either the chunk offset box ('stco') or the chunk large offset box ('co64') may be
replaced by a Placeholder box which identifies multiple codestream ID's.

Each video track in an MJ2 file contains exactly one chunk offset box (either 'stco' or 'co64') that, in combination with
the sample to chunk box ('stsc'), serves to identify the locations of all of the contiguous codestream boxes that belong to
the video track. If the chunk offset box is replaced by a placeholder that provides one or more codestream ID's, there
shall be exactly one codestream ID for each contiguous codestream box in the video track. If the visual sample entry
box ('mjp2') identifies a field count of 2, there shall be 2N codestream ID's in the range provided by the Placeholder
box, where N is the number of video samples (i.e., N is the number of frames). Otherwise, there shall be only N
codestream ID's in the range provided by the Placeholder box. The codestream ID's shall be sequenced by sample
number (frame number) and by field number within each sample.

NOTE – For MJ2 files in a JPP-stream or a JPT-stream representation, there is no need for the stream to contain the contents of
the original chunk offset box, the sample to chunk box ('stsc'), or the sample size box ('stsz'). This indexing information can be
regenerated if needed if the stream representation is converted to an MJ2 file.

A.4 Conventions for parsing and delivery of JPP-streams and JPT-streams (informative)

Placeholder boxes create additional flexibility and some potential ambiguity for both clients and servers in how they
parse or deliver JPP- and JPT-streams. A server may choose to partition original boxes from a JPEG 2000 family file
into metadata-bins using any of a wide range of strategies, by introducing Placeholder boxes at appropriate points. The
server shall do this in a consistent way so that the data-bins associated with a JPP- or JPT-stream have the same nominal
contents for all clients which access the same logical target (possibly qualified by a unique target ID), whenever they
access it.

More significantly, however, Placeholder boxes allow servers to construct a single JPP- or JPT-stream whose data-bins
provide multiple alternate representations of the same original content. This can happen when a streaming equivalent is
identified within a placeholder, and/or when an incremental codestream ID is identified within a placeholder. In these
cases, an original box might be made available in a metadata-bin, while also being made available as a stream
equivalent in yet another metadata-bin, and/or also being made available as an incremental codestream via header,
precinct or tile data-bins. While servers might distribute the contents of all data-bins that represent an original box, for
efficiency reasons servers would be expected to distribute only sufficient information to convey the original content,
unless explicitly asked to distribute redundant data-bins. Client-side parsers of JPP- or JPT-streams, when confronted
with multiple representations of an original box, might choose to ignore all but one of the representations. The expected
client convention should have a significant impact on which metadata-bins the server chooses to actually send to a
client.

In view of this, this Recommendation | International Standard recommends the following conventions:
– Unless a server has reason to believe otherwise, it shall assume that the client parser will parse a stream

equivalent box in preference to the original box if the presence of both box types has been signalled to
the client by placeholders.

– Unless a server has reason to believe otherwise, it shall assume that the client parser will use the
incremental codestream representation (header, precinct or tile data-bins) in preference to a raw
codestream if the presence of both box types has been signalled to the client by placeholders.

A.5 Conventions for JPP-stream or JPT-stream interoperability (informative)

This convention describes the exchange file format for JPP-stream and JPT-stream, herein termed jpp-file and jpt-file
respectively. Such a file may contain the received JPEG 2000 data from a JPIP session (the client's cache for example),
or a subset thereof. It is possible for another JPIP client to read and use this file because JPP-stream and JPT-stream are
self-describing media types.

These files are formed by concatenation of JPT-stream or JPP-stream messages. For example, they may be formed by
the simple concatenation of all such messages received by a client in a single session or from multiple sessions. An
improved situation would be where clients generated a legal JPT-stream or JPP-stream using a single Message Header
and Message per data-bin.

It is recommended that the ".jpp" and ".jpt" extensions be used for these files and, if appropriate, that the file name
includes a reference to a relevant JPIP target token or target-id token.

This convention does not specify the implementation or structure of the cache for a client. For example, a client may
use a database to serve as its implementation of the cache function rather than a file-based cache system.

ISO/IEC 15444-9:2005 (E)

22 ITU-T Rec. T.808 (01/2005)

Annex B

Sessions, channels, cache model and model-sets
(This annex forms an integral part of this Recommendation | International Standard)

B.1 Requests within a session vs. stateless requests

The JPIP protocol makes a clear distinction between two different types of requests: stateless requests and requests
which belong to a session.

The purpose of sessions is to reduce the amount of explicit communication required between the client and server.
Within a session, the server is expected to remember client capabilities and preferences supplied in previous requests so
that this information need not be sent in each and every request. Even more importantly, the server would typically
maintain a log of the information it has already sent to the client in response to previous requests, so that this
information need not be re-transmitted in response to future requests. This log would be persistent for the duration of a
session. Unless explicitly instructed otherwise, the server may assume that the client caches the responses to all requests
issued within a session, and may model the client's cache, sending only those portions of the compressed image data or
metadata which the client does not already have in its cache.

Stateless requests are not associated with any session and so shall be entirely self-contained. It should be noted that the
term "stateless" applies only to the server, not the client. As for sessions, the client should generally cache the responses
from previous requests associated with the same logical target. Clients that issue multiple stateless requests for the same
target should generally include information about their cache contents with each request, so as to avoid the transmission
of redundant data. Thus, the benefits of sessions are smaller, less complex requests and/or less redundant response data
from the server. The benefit of stateless communication is that the server need not maintain state information between
requests; this means that the same host need not ultimately serve all requests for a single target image that emanate from
a single client.

B.2 Channels and sessions

Associated with each session are the following elements:
– One or more logical targets (usually image files), whose content does not change over the session.
– A single image data return type for each logical target associated with the session.
– For each logical target associated with the session, a model of the client's cache contents shall be

maintained wherever the data return type is one of "jpp-stream" or "jpt-stream". Note, however, that this
model need not perfectly reflect the actual state of the client's cache. Rules governing the maintenance of
cache models are outlined in B.3.

– One or more JPIP channels. Clients may generally open multiple channels within the same session. Each
JPIP channel may be associated with a separate underlying transport channel (e.g., a separate TCP
connection), although this might not be the case. Multiple channels allow clients to issue simultaneous
requests for multiple image regions, with the expectation that the server will respond to these requests
concurrently. Channels also allow for intelligent bandwidth allocation amongst different types of
requests either within a single target image or across multiple targets.

– Where multiple channels are associated with the same logical target, the session cache model applies
across all channels. Multiple clients may open JPIP channels within the same session, although this
might have undesirable side effects if the channels refer to the same logical target.

Associated with each channel are the following elements:
– A single logical target (usually an image file).
– A server-assigned identifier that shall be included with each request. JPIP does not define a separate

session identifier, since the channel identifier is sufficient to associate the request with its session.
– A record of the client's capabilities and preferences, which may be adjusted through appropriate request

fields.
– To the extent that the server queues requests, it should provide a separate queue for each JPIP channel.

There is a one-to-one correspondence for the client request and client response on a channel. Different JPIP channels
may be on the same transport channel or on different transport channels. Requests that use different JPIP channels may
arrive asynchronously at the server if separate transport channels are used to transport the requests. Responses that use
different JPIP channels may arrive asynchronously at the client if separate transport channels are used to transport the

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 23

responses. Servicing of multiple channels is at the discretion of the server, however, the delivery rate request field and
the max bandwidth and bandwidth slice preferences should guide the server.

B.3 Cache model management

As already noted, one of the principal functions of a session is that of server-side modelling of the client's cache. Unless
explicitly informed otherwise, the server may assume that the client has cached all information sent in response to
requests within the session: this information need not be re-transmitted. Note, however, that the server is not obliged to
maintain a complete cache model or indeed any cache model at all: redundant data may be transmitted in response to
requests.

In addition to the impact of transmitted data, explicit cache model manipulation statements in client requests may
update the server's cache model. These statements are to be processed before determining the data that should be
returned to the client in response to its request. There are two types of cache model manipulation statements: additive
and subtractive.

Additive cache model manipulation statements serve to augment the server's cache model, adding data-bins, or portions
of data-bins to the existing model. These provide a mechanism for a client to inform the server about information which
it received in a previous session, or using previous stateless requests. A server should attempt to exploit any additive
cache model manipulation statements that appear in client requests. However, servers are not obliged to maintain a
complete cache model, so a server may disregard, or partially disregard, additive cache model manipulation statements.

Subtractive statements serve to remove data-bins, or portions of data-bins from the server's cache model. A client might
issue subtractive cache model manipulation statements in order to inform the server that it has not cached or has
discarded some data which was previously sent by the server. The server is otherwise free to assume that the client has
cached all data transmitted during the session. The server shall remove all information identified by a subtractive cache
model statement from any cache model (complete or otherwise) that it is maintaining.

Session-based JPIP requests have side effects, which may affect the response to future requests. This is true also of
requests that contain cache model manipulation statements – the effects of cache model manipulation are persistent.
Moreover, the side effects of a request arriving on one JPIP channel are reflected in the response to any requests that
might belong to a different JPIP channel which is associated with the same logical target. This follows from the fact that
there is only one cache model for each logical target in a session.

B.4 Interrogation and manipulation of model-sets

Where a logical target associated with a session contains a large number of codestreams (e.g., a video target), or a client
remains connected for a long period of time, partial cache modelling becomes an increasingly likely strategy for
practical server implementations. It also becomes increasingly likely that clients will be unable to cache all information
sent by the server. To avoid communication inefficiencies in such circumstances, the concept of an "mset" (model-set)
is introduced. The "mset" is the collection of codestreams for which client cache contents are being modelled by the
server.

In any request, the client may instruct the server to limit its "mset" to a particular set of codestreams. This provides a
convenient mechanism for clients to discard whole codestreams from their cache without running the risk that the server
will generate incomplete responses to future requests for those codestreams.

"mset" requests also result in server responses which indicate the actual set of codestreams for which cache model
information is being maintained. This allows clients to determine whether or not cache model manipulation statements
which refer to a variety of codestreams will be disregarded by the server.

In the absence of any explicit "mset" manipulation or interrogation, the client may assume only that the server's "mset"
includes all codestreams for which response data is generated to its request. Since servers generally have the right to
limit the scope of a client's request to a smaller number of codestreams than the number which was originally specified,
there is no guarantee that the server's "mset" will include all of the codestreams mentioned in a request, unless the
request mentioned only one codestream. These matters are explained further in C.8.6.

ISO/IEC 15444-9:2005 (E)

24 ITU-T Rec. T.808 (01/2005)

Annex C

Client request
(This annex forms an integral part of this Recommendation | International Standard)

C.1 Request syntax

C.1.1 Introduction

This annex describes all possible elements in a JPIP request. Each major subclause describes a group of fields and
possible values for those fields. In general, a request will consist of fields from more than one group, but some groups
are incompatible. Further, within each group, some request fields are incompatible. Some otherwise legal requests may
not be valid for use in some situations (e.g., sessions), even though this is not indicated by the BNF syntax. Finally,
even with a legal request, a server may not support all possible request fields or combinations thereof.

C.1.2 Request structure

The JPIP request consists of the following fields:
– Target identification fields;
– Session and channel management fields;
– View-window request fields;
– Metadata field;
– Data limiting request fields;
– Server control request fields;
– Cache management request fields;
– Upload request fields;
– Client capability and preference fields.

The elements in the request shall be sent in compliance with the selected transport protocol. For example, in HTTP, the
requests are expressed as the characters listed in the BNF syntax, multiple parameters are joined with an "&" character,
and the requests may be part of the query field of a GET request, or the body of a POST request. See Annexes F, G and
H for details.

NOTE – URI reserved characters may be escaped. For example, "request=a:b" in a HTTP GET URL would result in
"request=a%3Ab" where the URL-reserved character ':' being escaped to '%3A'.

jpip-request-field = target-field
 / channel-field
 / view-window-field
 / metadata-field
 / data-limit-field
 / server-control-field
 / cache-management-field
 / upload-field
 / client-cap-pref-field

target-field = target ; C.2.2
 / subtarget ; C.2.3
 / tid ; C.2.4

channel-field = cid ; C.3.2
 / cnew ; C.3.3
 / cclose ; C.3.4
 / qid ; C.3.5

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 25

view-window-field = fsiz ; C.4.2
 / roff ; C.4.3
 / rsiz ; C.4.4
 / comps ; C.4.5
 / stream ; C.4.6
 / context ; C.4.7
 / srate ; C.4.8
 / roi ; C.4.9
 / layers ; C.4.10

metadata-field = metareq ; C.5.2

data-limit-field = len ; C.6.1
 / quality ; C.6.2

server-control-field = align ; C.7.1
 / wait ; C.7.2
 / type ; C.7.3
 / drate ; C.7.4

cache-management-field = model ; C.8.1
 / tpmodel ; C.8.3
 / need ; C.8.4
 / tpneed ; C.8.5
 / mset ; C.8.6

upload-field = upload ; C.9.1

client-cap-pref-field = cap ; C.10.1
 / pref ; C.10.2
 / csf ; C.10.3

C.1.3 Restrictions on combining request fields

Each type of JPIP request field shall occur no more than once in a single request.

In general, requests for image data (view-window requests) may be combined with requests for additional metadata.
However, there are restrictions on how the request fields may be combined.

The upload request field shall not be combined with metadata-field, data-limit-field, or server-
control-field.

C.2 Target identification fields

C.2.1 Introduction to logical targets

Each JPIP request is directed to a specific representation of a specific original named resource or a specific portion of
that resource. That resource may be a physically stored file or object, or may be something that is created virtually by
the server upon request.

The specific representation, whether that is the original encoded form or a transcoded form, or whether that is a specific
byte range or is the entire resource, is referred to as the logical target. The logical target is specified through three
request fields: Target ID, Target and Sub-target.

The Target request field specifies the original named resource to which the request is directed. It is specified using a
PATH, which could be a simple string or a URI. If the Target field is not specified and the request is carried over
HTTP, then the JPIP request shall be directed to the resource specified through the path component of the JPIP request
URL. This original named resource may be an actual file or other object physically stored on the server, or it may be
something that the server creates in response to a JPIP request.

The Sub-target request field specifies the specific byte range of the original named resource (specified through the
Target request field) to which the request is directed. If the Sub-target request field is not specified, the request is
directed to the entire byte range of the original resource.

The Target ID request field can be used to further specify a particular encoding of the resource in situations where the
client and server have previously exchanged data from this resource. For example, the server may have previously
supplied a transcoded version of the file to the client based on information supplied and the conditions around a
previous request. If that client has preserved the data previously transmitted in its cache, it will desire to continue to
receive data using that same transcoding so that it can continue to use the data in the cache. The Target ID is a server

ISO/IEC 15444-9:2005 (E)

26 ITU-T Rec. T.808 (01/2005)

defined identification string, to which the server has previously associated with that specific representation of that
specific original named resource, or a byte range of some specific original named resource.

If a client specifies both the original named resource (through either the Target request field or through the path
component of the JPIP Request URL) and Target-ID, the server shall verify whether or not it can respond to the request
in the same manner as when it originally assigned that Target ID to that resource. If the server cannot respond in the
same manner, it shall use a JPIP-tid response header to inform the client of a new Target ID, at which point the client
will know that it must discard any previously cached data.

If a logical target is to be served with JPP-stream or JPT-stream messages, the associated data-bins shall remain
consistent throughout all responses that are issued within the same session. Where the server, or a related server, also
issues a Target ID, the data-bins shall remain consistent across all responses issued with the same Target ID, whether
they are issued within the same session or not.

If this request is part of a session and a channel ID as been assigned by the server, the client may specify the channel ID
through the Channel ID request field instead of specifying the Target, Sub-target and Target ID request field. If the
logical target is specified both through a combination of the Target, Sub-target and Target ID fields, and through the
Channel ID request field, then the server shall respond with an error.

The following examples show the specification of logical targets:

EXAMPLE 1: For JPIP request URL of

"http://one.jpeg.org/imageserver.cgi?target= http%3A%2F%2Fone.jpeg.org%2Fimages%2Fpicture.jp2&fsiz=200,200"
the logical target is the entire byte range contained within the URI "http://one.jpeg.org/images/picture.jp2," relative to
the server root document directory.

EXAMPLE 2: For JPIP request URL of

"http://one.jpeg.org/imageserver.cgi? target= http%3A%2F%2Fone.jpeg.org%2Fimages%2Fpicture.jp2&tid=4384-
5849-af4d-3dca&fsiz=200,200" the logical target is the entire byte range contained within the URI
"http://one.jpeg.org/images/picture.jp2," relative to the server root document directory, with a representation specified
by the server defined Target ID 4384-5849-af4d-3dca.

EXAMPLE 3: For JPIP request URL of

"http://one.jpeg.org/imageserver.cgi?target= http%3A%2F%2Fone.jpeg.org%2Fimages%2Fpicture.jp2&subtarget=103
8-13458&fsiz=200,200" the logical target is the range of bytes, starting with byte 1038, and all bytes up to and
including bytes 13458, contained within the URI "http://one.jpeg.org/images/picture.jp2," relative to the server root
document directory.

EXAMPLE 4: For JPIP request URL of "http://one.jpeg.org/imageserver.cgi?cid=1234-5849-af4d-3dca&fsiz=200,200"
the logical target is the resource to which the server has associated with the channel with ID 1234-5849-af4d-3dca.

EXAMPLE 5: For JPIP request URL of "http://one.jpeg.org/images/picture.jp2?fsiz=200,200" the logical target is the
entire byte range contained within the file "images/picture.jp2," relative to the server root document directory.

EXAMPLE 6: For JPIP request URL of "http://one.jpeg.org/images/picture.jp2?subtarget=1038-13458&fsiz=200,200"
the logical target is the range of bytes, starting with byte 1038, and all bytes up to and including byte 13458, contained
within the file "images/picture.jp2," relative to the server root document directory.

C.2.2 Target (target)

target = "target" "=" PATH

This field is used to specify the original named resource (often the name of a file on the server). If the Target request
field is missing then the original named resource is determined by other means.

C.2.3 Sub-target (subtarget)

subtarget = "subtarget" "=" byte-range

byte-range = UINT-RANGE

This field may be used to qualify the original named resource through the specification of a byte range. The logical
target is to be interpreted as the indicated byte range of the original named resource.

The lower and upper bounds of the supplied byte-range are inclusive, and 0 refers to the first byte of the target file.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 27

C.2.4 Target ID (tid)

tid = "tid" "=" target-id

target-id = TOKEN

This field may be used to supply a target-id string, which was previously generated by the server to absolutely
identify the logical target that is being accessed, including any discretionary transcoding performed by the server. The
logical target name is not necessarily unique and does not necessarily correspond to a single encoding of its contents,
whereas the target-id string, together with the original resource name and byte range, should absolutely identify
both the imagery and its encoding.

If target-id is "0", the logical target is specified through the use of the Target, Sub-target and JPIP URL path
component, and the client is explicitly requesting that the server inform it of the assigned target-id, if there is one.
The server shall include a Target ID header in its response to all client requests with a target-id of "0".

target-id shall not exceed 255 characters in length.

C.3 Fields for working with sessions and channels

C.3.1 Introduction

A request shall be stateless unless one or both of the following conditions occur:
– The request includes a valid Channel ID field;
– The request includes a New Channel field (see below), and the server response includes a New Channel

response header with a newly issued channel-id.

See B.2 for discussions on sessions and channels.

C.3.2 Channel ID (cid)

cid = "cid" "=" channel-id

channel-id = TOKEN

– This field is used to associate the request with a particular JPIP channel, and hence the session to which
the channel belongs.

C.3.3 New Channel (cnew)

cnew = "cnew" "=" 1#transport-name

transport-name = TOKEN

This field is used to request a new JPIP channel. If no Channel ID request field is present, the request is for a new
session. Otherwise, the request is for a new channel in the same session as the channel identified by the Channel ID
request field.

The value string identifies the names of one or more transport protocols that the client is willing to accept. This
Recommendation | International Standard defines only the transport names, "http" and "http-tcp," although it is
anticipated that other transports, such as "udp", may be defined elsewhere. Details of the use of JPIP over the "http"
transport appear in Annex F, while details of the use of JPIP over the "http-tcp" transport appear in Annex G.

If the server is willing to open a new channel, using one of the indicated transport protocols, it shall return the new
channel identifier token using the New Channel response header (see D.2.3). In this case, the present request is the first
request within the new channel.

It is possible for a client to open a channel to a new logical target within the same session. To do this, the client's
request shall identify both an existing Channel ID, and a logical target. When opening a new channel to the same logical
target which is associated with an existing channel, there is no need to specify the logical target explicitly.

If the server is not willing to open a new channel, it shall not return a New Channel response header, but the request
shall be serviced as though the New Channel request field had not been included. This means that a request that
specifies an existing Channel ID shall be treated as a request within that channel, while a request that includes no
Channel ID request field shall be treated as a stateless request. In the event that the New Channel request identifies a
different logical target to that which is associated with the supplied existing Channel ID, the server will not be able to
respond to the request without either issuing a new Channel ID or returning an error code.

ISO/IEC 15444-9:2005 (E)

28 ITU-T Rec. T.808 (01/2005)

EXAMPLE 1: "target=nice.jp2&cnew=http" requests the first channel of a new session to the image "nice.jp2" using
the "http" transport. If no channel is assigned by the server, the request will be treated as stateless.

EXAMPLE 2: "cid=013ac8&cnew=http-tcp" requests a new channel within the same session which is associated with
Channel ID 013ac8. The new channel is to use the "http-tcp" transport and refers to the same logical target as Channel
ID 013ac8. A single cache model is shared by these channels. If no channel is assigned by the server, the request will be
treated as though the New Channel request field had been omitted.

EXAMPLE 3: "target=nice.jp2&cid=013ac8&cnew=http" requests a new channel within the same session which is
associated with Channel ID "013ac8." The new channel is to use the "http" transport. The logical target associated with
the new channel is distinct from that associated with Channel ID "013ac8" and a separate cache model is used for the
new channel. The cache models for both targets are associated with this common session.

C.3.4 Channel Close (cclose)

cclose = "cclose" "=" ("*" / 1#channel-id)

This field is used to close one or more open channels to a session. If the value field contains one or more channel-id
tokens, they shall all belong to the same session. In this case, the Channel ID request field is not necessary, but if
provided it shall also reference a channel belonging to the same session.

If the value field is "*", all channels associated with the session will be closed. In this case, the session shall be
identified by the inclusion of a Channel ID request field.

The server shall complete its response on any channel specified in the Channel Close request before actually closing the
channel.

C.3.5 Request ID (qid)

qid = "qid" "=" UINT

This field is used to specify a Request ID value. Each channel has its own request queue, with its own Request ID
counter. Requests which are received within any given channel (as indicated by the Channel ID value) shall be
processed in the order of their Request ID values, where the Request ID field is used. The server may process requests
which do not contain a Request ID field on a first-come-first-served basis. However, it shall not process a request which
arrives with a Request ID value of n until it has processed all requests with a Request ID value less than n which is
associated with the same channel, unless n=0. The client shall not issue a request which specifies the same Request ID
value as any other request associated with the same channel, and shall not issue Request ID's that are smaller than any
previously issued Request ID on this channel.

C.4 View-window request fields

C.4.1 Mapping view-window requests to codestream image resolutions and regions

The purpose of JPIP is to provide portions of a JPEG 2000 image and associated metadata in response to requests from
a client. This is done via a sequence of requests and responses. For the image portion, the data requested may be less
than the full image in terms of image frame size, region, quality, and/or components.

In the simplest case, the image portion in question is defined directly with respect to the high resolution reference grid
of the JPEG 2000 codestream(s) identified in the request, not the sampled grid of any particular image component.
More generally, however, clients may request higher level image objects (e.g., JPX compositing layers or MJ2 video
tracks) via the Codestream Context request field (see C.4.7). In this case, the requested image portion may need to be
subjected to a coordinate transformation, in order to determine the portion of each associated codestream which is being
requested. These coordinate transformations are described in C.4.7, and they shall be understood in terms of the
following description of codestream image regions.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 29

Figure C.1 – Desired region within an image

Codestream image regions are described using 3 two-dimensional parameters, as shown in Figure C.1. The size
parameters (sx and sy) and the offset parameters (ox and oy) specify the width and height of the desired codestream
image region and the top-left corner of that region, with respect to a whole image that has the given frame size (fx
and fy).

EXAMPLE: A client wishing to fill a 640 × 480 display with the whole image could make a request as follows
"fsiz=640,480&rsiz=640,480&roff=0,0". Note that this can be done regardless of the original size of
the image (and indeed without knowing the original size of the image).

When none of the available image resolutions in the JPEG 2000 codestream correspond exactly to the requested frame
size, the returned image data may be larger or smaller than the requested frame size, and may even differ in aspect ratio.
The server shall determine a suitable codestream image resolution, denoted by size parameters fx' and fy', and a
suitable region on the codestream, denoted by parameters sx', sy', ox' and oy', as shown in Figure C.2. Although
the client may specify the direction for rounding, as part of the Frame Size request field, the client shall be prepared to
deal with returned data that does not match the requested parameters exactly.

Figure C.2 – Desired region with respect to the subsampled reference grid

ISO/IEC 15444-9:2005 (E)

30 ITU-T Rec. T.808 (01/2005)

As shown in Figure C.2, the size of the suitable codestream image resolution is given by fx' =Xsiz' -XOsiz'
and fy' = Ysiz' - YOsiz', where XOsiz', YOsiz', Xsiz', and Ysiz' are derived using
Equation C-1.

 






=′






=′






=′






=′
rrrr

YsizzYsiXsizzXsiYOsizzYOsiXOsizzXOsi
2

;
2

;
2

;
2

 (C-1)

where:
r is determined by the server in order to match the requested image size (fx and fy) as closely as

possible, subject to any rounding preferences supplied via the Frame Size request field.

Here, XOsiz, YOsiz, Xsiz and Ysiz are taken from the relevant codestream's SIZ marker segment. It is natural to
interpret r as a number of discarded highest DWT levels, and indeed r must be an integer no less than 0. However, the
value of r ris not limited by the number of DWT levels which were used to compress any tile-component in the
codestream.

Once the suitable frame size, fx' and fy', have been found, the region size, sx' and sy', and offset, ox' and
oy', associated with the codestream image region are determined by Equation C-2.

 yo
fy
yfoy)(syys;xo

fx
xfox)(sxxs;

fy
yfoyyo;

fx
xfoxxo ′−







 ′
⋅+=′′−



 ′

⋅+=′






 ′
⋅=′



 ′

⋅=′ (C-2)

EXAMPLE 2: Suppose the requested Frame Size is 128 × 128, and the image on the codestream's high resolution
reference grid is described by XOsiz=127, Xsiz=648, YOsiz=0 and Ysiz=504. Suppose also that 3 levels of wavelet
transform exist for all image components in the codestream. The available codestream image sizes are then:

























×

























×

























×

























×

0–
8

504by
8

127–
8

6486365

0–
4

504by
4

127–
4

648126130

0–
2

504by
2

127–
2

648252260

0–
1

504by
1

127–
1

648504521

Thus if the request is for a larger frame size (round-direction is round-up) the returned frame size will be
260 × 252. If the request is for a smaller frame size (round-direction is round-down), then a 65 × 63 frame
size will be used. Note that, as in this example, the available codestream image frame sizes are not generally exact
powers of 2.

Subsampling of an image component, as specified by XRsiz and YRsiz, has no effect on the interpretation of the
requested image region or image resolution within any requested codestream.

EXAMPLE 3: A request for a 256 × 256 region from the upper left corner of a 512 × 512 image can be made with:

fsiz=512,512&rsiz=256,256

Suppose the codestream contains an image subsampled in components 1 and 2 but not in component 0. Specifically,
suppose Xsiz=1024, Ysiz=1024, XOsiz=0, YOsiz=0, and XRsiz0=1, YRsiz0=1, XRsiz1=2, YRsiz1=2,
XRsiz2=2, and YRsiz2=2. The server would leave out the highest resolution level of all three components, and return
tiles or precincts sufficient to provide 256 × 256 samples of component 0, but only 128 × 128 samples of components 1
and 2. The client thus has data to display the upper left corner at half the size of the full image and still subsampled. If
the client desires to display non-subsampled chroma components, it could issue an additional request such as:

fsiz=1024,1024&rsiz=512,512&comps=1,2

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 31

The server would then return sufficient data to provide 256 × 256 samples of components 1 and 2, which could be
combined with the component 0 data already received to obtain a non-subsampled but half-sized image.

If all three components had been subsampled, the server would provide only 128 × 128 samples of all three components
for the original request (fsiz=512,512&rsiz=256,256) since image resolution and image regions are
assessed with respect to the reference grid of each requested codestream.

C.4.2 Frame Size (fsiz)

fsiz = "fsiz" "=" fx "," fy ["," round-direction]

fx = UINT

fy = UINT

round-direction = "round-up" / "round-down" / "closest"

This field is used to identify the resolution associated with the requested view-window. The values fx and fy specify
the dimensions of the desired image resolution. The round-direction value specifies how an available
codestream image resolution shall be selected for each requested codestream, if the requested image resolution is not
available within that codestream. The requested frame size is mapped to a codestream image resolution, following the
procedure described in C.4.1, possibly with the addition of coordinate transformations requested via a Codestream
Context request field (see C.4.7). A client wishing to control the exact number of samples received for a particular
image component may need to increase the requested frame size, as explained in C.4.1. The round-direction
options defined by this Recommendation | International Standard are described in Table C.1.

Table C.1 – Round direction options

Round-direction Meaning

"round-up" For each requested codestream, the smallest codestream image resolution whose
width and height are both greater than or equal to the specified size shall be
selected. If there is none, then the largest available codestream image resolution
shall be used.

"round-down" For each requested codestream, the largest codestream image resolution whose
width and height are both less than or equal to the specified size shall be selected.
This is the default value when the round-direction parameter is not
specified.

"closest" For each requested codestream, the codestream image resolution that is closest
to the specified size in area (where area = fx × fy) shall be selected. Where two
codestream image resolutions have areas which are equidistant from fx × fy, the
larger of the two shall be selected.

If the Frame Size request field is omitted from a view-window request and metadata-only is not specified in a
metadata request field (see C.5.1), the requested view-window includes no compressed image data and no tile-specific
headers, but it does include all other header (codestream and file format) information that would have been returned had
the client included the Frame Size request field. See C.5.1 for further information on the file format information
(metadata) which is implicitly requested along with the view-window request.

C.4.3 Offset (roff)

roff = "roff" "=" ox "," oy

ox = UINT

oy = UINT

This field is used to identify the upper left hand corner (offset) of the spatial region associated with the requested view-
window; if not present, the offsets default to 0. The actual displacement of a codestream image region from the upper
left hand corner of the image, at the actual codestream image resolution selected by the server, is obtained following the
procedure described in C.4.1, possibly with the addition of coordinate transformations requested via a Codestream
Context request field (see C.4.7).

Use of the Offset field is valid only in conjunction with the Frame Size request field.

If a codestream image region specified using Region Size and/or Offset turns out to be empty (no area), the server's
response should not include any compressed image data for that codestream. In particular, responses of type JPP-stream
or JPT-stream should contain no messages which reference precinct, tile or tile-header data-bins of that codestream. The

ISO/IEC 15444-9:2005 (E)

32 ITU-T Rec. T.808 (01/2005)

server may, at its discretion, opt to return main header or metadata-bin messages that would have been returned in
response to a request that omitted the Frame Size request field.

C.4.4 Region Size (rsiz)

rsiz = "rsiz" "=" sx "," sy

sx = UINT

sy = UINT

This field is used to identify the horizontal and vertical extent (size) of the spatial region associated with the requested
view-window; if not present, the region extends to the lower right hand corner of the image. The actual dimensions of a
codestream image region, at the actual codestream image resolution selected by the server, are computed following the
procedure described in C.4.1, possibly with the addition of coordinate transformations requested via a Codestream
Context request field (see C.4.7). A requested codestream image region need not necessarily be fully contained within
the codestream, in which case the server simply takes the intersection between the available codestream image region
and the requested region.

Use of the Region Size request field is valid only in conjunction with the Frame Size request field.

The codestream image region may be empty, for example if sx or sy were zero. If empty, then the server's response
should not include any compressed image data for that codestream. In particular, responses of type JPP-stream or JPT-
stream should contain no messages which reference precinct, tile or tile-header data-bins of that codestream. The server
may, at its discretion, opt to return main header or metadata-bin messages that would have been returned in response to
a request that omitted the Frame Size request field.

C.4.5 Components (comps)

comps = "comps" "=" 1#UINT-RANGE

This field is used to identify the image components that are to be included in the requested view-window; if not present,
the request is understood to include all available image components of all codestreams identified via the Codestream
request field, and all relevant components of all codestreams requested via the Codestream Context request field
(see C.4.7). These "relevant" components are those which are involved in the reproduction of the image entities
(e.g., JPX compositing layers or MJ2 video tracks) which are specified via the Codestream request field.

The values in this request field represent the indices of the image components of interest. Image component indices start
from 0, and have the interpretation assigned to them by the JPEG 2000 codestream syntax, as described in ITU-T
Rec. T.800 | ISO/IEC 15444-1, but note that these are the components which are obtained by decoding and inverse
wavelet transforming the compressed data, prior to the application of the inverse RCT or ICT component transform. For
codestreams conforming to ITU-T Rec. T.801 | ISO/IEC 15444-2, the components identified here are those identified as
"spatial components", i.e., those obtained by decoding and inverse wavelet transforming the compressed data, prior to
the application of any inverse multi-component transform, dependency component transform, or multi-component
wavelet transform.

Non-existent components in any of the requested codestreams shall be disregarded.

C.4.6 Codestream (stream)

stream = "stream" "=" 1#sampled-range

sampled-range = UINT-RANGE [":" sampling-factor]

sampling-factor = UINT

This field is used to identify which codestream or codestreams belong to the requested view-window. If the field is
omitted and the codestream(s) cannot be determined by other means, the default is the single codestream with
identifier 0. Note that the Codestream Context request field (see C.4.7) provides an additional means for requesting
codestreams.

For JPEG 2000 family targets, codestream indices are those which are embedded in the corresponding Placeholder box
that appears within the appropriate metadata-bin, as described in A.3.6. For file formats which have implied codestream
identifiers, those identifiers should agree with the indices used here.

Where a range of codestreams is identified, the absence of an upper bound means that the range extends to all
codestreams with larger identifiers. Where an upper bound is provided, the upper bound provides the absolute identifier
of the last codestream in the range.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 33

Whether or not an upper bound is provided, a codestream range may be qualified by an additional sampling-
factor. The sampling-factor, if provided, shall be a strictly positive integer, F. The range then includes all
codestream identifiers L+Fk which lie within the unqualified range, where L is the identifier of the first codestream in
the range. The client's index of the codestreams of interest is k and k is a UINT.

C.4.7 Codestream Context (context)

context = "context" "=" 1#context-range

context-range = jpxl-context-range / mj2t-context / reserved-context

jpxl-context-range = "jpxl" "<" jpx-layers ">" ["[" jpxl-geometry "]"]

jpx-layers = sampled-range

jpxl-geometry = "s" jpx-iset "i" jpx-inum

jpx-iset = UINT

jpx-inum = UINT

mj2t-context = "mj2t" "<" mj2-track ">" ["[" mj2t-geometry "]"]

mj2-track = NONZERO ["+" "now"]

mj2t-geometry = "track" / "movie"

reserved-context = 1*(TOKEN / "<" / ">" / "[" / "]" / "-" / ":" / "+")

This field may be used to request codestreams indirectly via "higher level" image entities. This Recommendation |
International Standard defines contexts corresponding to JPX compositing layers (a JPX compositing layer may involve
one or more codestreams) and MJ2 video tracks; however, the mechanism is designed for extensibility.

If a Codestream Context request field is supplied, the requested view-window includes each of the codestreams which
are associated with the requested context(s), in addition to any codestreams requested via the Codestream request field.

The body of a Codestream Context request field consists of one or more context-range values. Each
context-range is associated with a set of codestreams which can be determined by the server. A context-
range may also identify coordinate remapping transformations which shall be applied to the Frame Size, Region Size
and Offset parameters in order to determine the codestream image resolution and codestream image region for each of
the codestreams associated with that context-range. Where the server is prepared to process a context-
range, it shall identify the codestreams which are associated with that context-range by means of a
Codestream Context response header.

This Recommendation | International Standard defines two specific types of context-range, which are intended
to address the needs of the JPX and MJ2 file formats. The first of these context-range types, jpxl-
context-range, is used to identify one or more JPX compositing layers. The indices of the compositing layers
associated with a jpxl-context-range are supplied in the form of a sampled-range, following the same
semantics as sampled codestream ranges in the Codestream request field. Where a jpxl-context-range is
processed by the server, the codestreams belonging to the corresponding compositing layer(s) shall be identified within
a Codestream Context response header.

A jpxl-context-range may identify an optional coordinate remapping transformation, to be used in deducing
the codestream image resolution and the codestream image region for each of its codestreams. This coordinate
remapping transformation is determined by two non-negative integers, jpx-iset and jpx-inum. Together, these
two integers identify a specific compositing instruction within a JPX Composition (comp) box, found within the scope
of the logical target. The specific instruction in question is located in the instruction set (iset) box whose ordinal
position (starting from 0) within the composition box is given by the jpx-iset value. The jpx-inum value gives
the ordinal position (starting from 0) of the instruction within that instruction set box. The interpretation of these indices
is independent of repeat counts which may appear within a JPX composition box.

ISO/IEC 15444-9:2005 (E)

34 ITU-T Rec. T.808 (01/2005)

When jpx-iset and jpx-inum values are processed by the server, the requested frame size and region
parameters fx, fy, sx, sy, ox and oy, shall first be mapped to modified frame size and region parameters fx",
fy", sx", sy", ox" and oy" using the expressions in Equation C-3. These modified region parameters shall be
calculated separately for each requested codestream and shall then be used in place of fx, fy, sx, sy, ox and oy
when determining the codestream image resolution and the codestream image region following the procedure described
in C.4.1.

(){ } { }
(){ } { }

{ }

{ }

() ()











⋅+=












⋅+=












⋅=












⋅=












⋅














⋅










−−−=












⋅














⋅










−−−=

−+=
−+=












⋅⋅⋅=












⋅⋅⋅=

comp
instinstlim

comp
instinstlim

comp
instmin

comp
instmin

compinst

inst

reg

reg
instinstmin

compinst

inst

reg

reg
instinstmin

minlim

minlim

comp

cod

inst

inst

reg

reg

comp

cod

inst

inst

reg

reg

H

fy
HtYO;

W

fx
WtXOx

H

fy
YO;

W

fx
XOx

H

fy

Hs

Ht

YS

YO
YCYOoy,oy"

W

fx

Ws

Wt

XS

XO
XCXOox,ox"

oy,,syoysy"

ox,,sxoxsx"

H

H

Hs

Ht

YS

YR
fyfy";

W

W

Ws

Wt

XS

XR
fxfx"

y

y

y

x

yy
xx

max

3)-(Cmax

maxmin
maxmin

Note that the modified view-window region, defined by sx", sy", ox" and oy", can potentially lie slightly to the
left or above the origin. That is, ox" and/or oy" may be negative. Any portion of the view-window region which lies
to the left or above the origin should be ignored when determining the codestream image region following the
procedure described in C.4.1.

If jpx-iset and jpx-inum values are not supplied, the modified region parameters to be used in place of fx, fy,
sx, sy, ox and oy are given by the expressions in Equation C-4. As before, these modified parameters shall be used
when determining the codestream image resolution and the codestream image region, following the procedure in C.4.1.

sysy"sx;sx"

H

fy

YS

YO
-oyoy";

W

fx

XS

XO
-oxox"

H

H

YS

YR
fyfy";

W

W

XS

XR
fxfx"

regreg

reg

regreg

reg

reg

cod

reg

reg

reg

cod

reg

reg

==











⋅=












⋅=












⋅⋅=












⋅⋅=

 (C-4)

The second type of context-range described by this Recommendation | International Standard, mj2t-
context, allows clients to request specific tracks from an MJ2 file. The mj2-track identifier must be a strictly
positive integer, since 1 is the smallest allowable track identifier permitted within an MJ2 file. If an mj2-track
identifier includes the optional "+now" suffix, the mj2t-context consists of all codestreams belonging to the MJ2
video track, starting with the codestream whose capture time corresponds to the time at which the request is received.
This is useful when the source is a live video stream. Otherwise, the server may associate "now" with any codestream it
sees fit. If the "+now" suffix is not included, the mj2-context consists of all codestreams belonging to the MJ2
video track.

An mj2t-context may specify a coordinate remapping transformation, to be used in deducing codestream image
resolutions and codestream image regions for each of its codestreams. If not present, the frame size and region
parameters supplied via Frame Size, Offset and Region Size request fields shall be interpreted directly following the
procedure outlined in C.4.1. Otherwise, one of two types of coordinate transformation is being requested, as identified
by the appearance of one of the "track" or "movie" tokens.

Where "track" is specified, the Frame Size, Offset and Region Size request fields are being used to identify a desired
presentation size and a desired rectangular region within the smallest bounding rectangle which contains the track's

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 35

presentation, at this desired presentation size. The geometric transformations described by the MJ2 Track Header (tkhd)
box shall be applied to determine a corresponding image resolution and region on each codestream associated with the
track.

Where "movie" is specified, the Frame Size, Offset and Region Size request fields are being used to identify a desired
size for the entire (possibly composited) reproduced movie, and a desired rectangular region within the smallest
bounding rectangle which contains the movie, at this desired size. The geometric transformations described by the MJ2
Track Header (tkhd) box shall be combined with the geometric transformations described by the Movie Header (mvhd)
box and applied to determine a corresponding image resolution and region on each codestream associated with the
track.

In the event that a server is unable to apply any of the mj2t-context geometric transformations described above, it
provides a modified mj2t-context string in its Codestream Context response header.

NOTE 1 – The use of the Codestream Context request field together with the Codestream request field may result in a
codestream being requested multiple times with different geometric transformations of the Frame Size, Region Size and Offset
request fields. Where this happens, multiple disjoint or overlapping image portions of that codestream are effectively being
requested.
NOTE 2 – The expressions in Equation C-4 may equivalently be obtained by setting XScomp=Wsinst=Wtinst=Wreg,
YScomp=Hsinst=Htinst=Hreg and XOinst=YOinst in Equation C-3 when the limits on sx", sy", ox" and oy" are not bounded by

minlimminlim ,,, yyxx .

EXAMPLE 1: "context=jpxl<0-4:2>[s5i2]"
In this case, the server is requested to return the codestreams which are used by JPX compositing layers 0, 2 and 4,
remapping the requested frame size and image region according to the geometric adjustments represented by the third
instruction of the sixth instruction set box within the composition box (JPX files have at most one composition box).

EXAMPLE 2: "stream=0&context=mj2t<1+now>[track]"
In this case, the server is requested to return codestream 0, as well as all codestreams belonging to the first track of an
MJ2 file, starting from the codestream whose sampling time corresponds to the current time. Moreover, the server is
requested to remap the requested frame size and image region according to the geometric adjustments described in the
Track Header box, disregarding any additional geometric adjustments which may be described in the Movie Header
box.

C.4.8 Sampling Rate (srate)

srate = "srate" "=" streams-per-second

streams-per-second = UFLOAT

If this field is supplied, the codestreams which belong to the view-window are obtained by subsampling those
mentioned by the Codestream request field, in addition to those expanded from context-range values in the Codestream
Context request field (see C.4.7), so as to achieve an average sampling rate no greater than the streams-per-second
value. This is possible only if the codestreams have associated timing information (e.g., if they belong to a logical target
conforming to the MJ2 file format).

This request field serves only to determine which codestreams should be considered to belong to the view-window. The
server shall scan through all codestreams which would otherwise be included in the view-window, discarding
codestreams as required to ensure that the average separation between codestream source times is no less than the
reciprocal of the streams-per-second value. This Recommendation | International Standard does not prescribe an
algorithm for subsampling, or a precise interpretation for the term "average separation."

If no source timing information is available, the view-window will consist of all codestreams identified via the
Codestream request field and the Codestream Context request field, but this request field may nonetheless affect the
interpretation of a Delivery Rate request field, if present.

C.4.9 ROI (roi)

roi = "roi" "=" region-name

region-name = 1*(DIGIT / ALPHA / "_")
 / "dynamic"

This field specifies the desired spatial region of the image through a name rather than through coordinates. The mapping
between region-name and a specific spatial region of the image may come from several places; it may be defined
within an ROI description box within the logical target, or it may be defined within the implementation of the server
itself.

A region-name value of "dynamic" (a dynamic ROI) is reserved to represent a non-constant region within the
image that is mapped to a spatial region independently for each and every request. The server may use any information

ISO/IEC 15444-9:2005 (E)

36 ITU-T Rec. T.808 (01/2005)

about the client and any other request parameters when it determines what spatial region it will provide for that
particular request. For example, if the server knows that the physical display on the client is very small, it may choose
to provide only the foreground region of the image at a higher resolution rather than the entire region of the image at a
lower resolution. Servers are not required to support dynamic ROIs.

If an ROI field exists, and the server knows how to handle the ROI request, then the ROI field takes precedence over
the Offset request field and the Region Size fields, which shall be ignored by the server. If an ROI field exists, but the
server does not know how to handle it for any reason, the server shall ignore the ROI field and use the Offset and
Region Size fields. If these fields are omitted, the default values of those fields shall be used.

If the client specifies a Frame Size as well as an ROI, and the server understands the ROI specified, the value of the
Frame Size request field determines the image resolution at which the ROI is requested.

C.4.10 Layers (layers)

layers = "layers" "=" UINT

This field may be used to restrict the number of codestream quality layers that belong to the view-window request. By
default, all available layers are of interest. The value specifies the number of initial quality layers that are of interest.
The server should not attempt to augment any precinct data-bins beyond the relevant layer boundary. The server should
not attempt to augment any tile data-bins beyond the point at which all remaining contents lie beyond the relevant layer
boundary. Due to the order of data within a tile, it may be necessary for the server to return data beyond the boundary of
the requested layer for JPT-stream requests only.

C.5 Metadata request fields

C.5.1 Metadata requested implicitly with view-window requests

The Codestream request field and the Codestream Context request field identify one or more codestreams which are
associated with the requested view-window. Even if neither of these request fields is present, the view-window is
associated with at least one codestream, as mentioned in C.4.6. Moreover, as noted in C.4.2, even if the Frame Size
request field is omitted, the requested view-window includes at least the main codestream header for each requested
codestream. The only exception to this is when metadata-only is specified in a Metadata request field
(see C.5.2). Except in this case, the client is also implicitly requesting whatever metadata boxes may be required from
the file format, if any, in order to utilize the imagery represented by the requested codestreams. To ensure
interoperability between client and server components, this subclause identifies a minimal set of metadata which servers
shall regard as being implicitly requested along with the view-window. Where the server is aware of additional relevant
metadata elements, it may deliver these as well.

For JP2 and JPX files, the following metadata elements shall be considered to be requested along with the view-
window:

a) The entire contents of metadata-bin 0.
b) The entire contents of each of the following boxes, wherever they are found at the top level of the file:

1) JP2 Signature ("jP ");
2) File Type ("ftyp");
3) Reader Requirements ("rreq");
4) Composition ("comp").

c) All immediate sub-box headers from each of the following superboxes:
1) any JP2 Header ("jp2h") box;
2) any Codestream Header ("jpch") box associated with a requested codestream;
3) any Compositing Layer Header ("jplh") box associated with a JPX compositing layer requested via

the Codestream Context request field.
d) The entire contents of each of the following boxes, wherever these boxes are found within one of the

superboxes mentioned above:
1) Image Header ("ihdr");
2) Bits per Component ("bpcc");
3) Palette ("pclr");
4) Component Mapping ("cmap");
5) Channel Definition ("cdef");

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 37

6) Resolution ("res ");
7) Codestream Registration ("creg");
8) Opacity ("opct").

e) For JP2 files, JP2 compatible files and JPX files, one or more Colourspace Description boxes ("colr")
associated with each codestream or JPX compositing layer requested via the Codestream Context request
field, as follows:
1) If the server is able to determine exactly which box is preferred, the server should send only that

box, even if it means not sending the first box for JP2 or JP2 compatible files (for example if the
second box is Any ICC and the colorspace preferences specify that the client prefers Any ICC). If
the server is not able to determine exactly which box is preferred, it should send the entire first
Colourspace Description box.

2) For all boxes not sent, the server should send a portion of the box contents so the client can
determine if it later wants to request another colourspace specification.
• For enumerated boxes, the server should send at least the first 7 bytes of the box contents (up

to at least the EnumCS field).
• For vendor-defined colourspace boxes, the server should send at least the first 19 bytes of the

box contents (up to at least the VCLR field).
• For Restricted and Any ICC colourspace boxes, the server should send at least the first 3 bytes

of the box contents (at least the METH, APPROX and PREC fields).

The server is requested to return an initial prefix of each metadata-bin which contains any of the metadata mentioned
above, extending from the first byte of the metadata-bin and continuing to the end of all requested metadata from that
metadata-bin. As a result, the actual amount of metadata returned by the server may depend upon the particular way in
which the logical target has been partitioned into metadata-bins. A discussion of these issues may be found in A.3.6.2.

This Recommendation | International Standard does not advise on what constitutes the implicit MJ2 metadata for view-
window requests, however, this may be defined in a future standard.

C.5.2 Metadata Request (metareq)

metareq = "metareq" "=" 1#("[" 1$(req-box-prop) "]" [root-bin] [max-depth])
 [metadata-only]

req-box-prop = box-type [limit] [metareq-qualifier] [priority]

limit = ":" (UINT / "r")

metareq-qualifier = "/" 1*("w" / "s" / "g" / "a")

priority = "!"

root-bin = "R" UINT

max-depth = "D" UINT

metadata-only = "!!"

This field specifies what metadata is desired in response to this request, in addition to any metadata required for the
client to decode or interpret requested image data (see C.5.1). The value string in this request field is a list of
independent requests; however, the server may handle the requests as a group, and there may be overlap between the
requests.

Each request is relative to the data-bin specified by its root-bin value. If a root-bin value is not specified, the
root is metadata-bin 0. The request pertains only to data within or referenced (through Placeholder boxes) by that
particular data-bin.

If a value for max-depth is specified, then only boxes contained within the root metadata-bin, and those no more
than max-depth levels in the file hierarchy below that box are requested. If a value for max-depth is not
specified, there is no limit on the depth of the file hierarchy for this request.

The req-box-prop portion of the request specifies a list of box types that are of interest to the client. The special
string "*" may be substituted for the box type, in which case all box types are implied. Each box type (or "*") may be
followed by any combination of three attributes: a limit value, a metareq qualifier, and a priority flag.

ISO/IEC 15444-9:2005 (E)

38 ITU-T Rec. T.808 (01/2005)

limit specifies what type of information, and how much of the box contents the client is requesting for that box type.
The limit parameter takes the form of a colon followed by a value (the limit value), which shall be either an unsigned
integer or the character "r".

If the limit value is an integer n greater than zero, then the server is requested to return only the first n bytes of the
contents of relevant boxes of that box type, in addition to the box headers. If the limit value is 0, then only the box
headers for boxes of that type are requested. If limit is not specified, then the client is requesting the entire contents
of all boxes of that box type which match other aspects of the request, regardless of whether boxes of that type are
superboxes or not. Also, in the case of a numeric or not specified limit value on a superbox, the server is requested to
provide the amount of data requested by limit regardless of whether or not the hierarchy contained within that
superbox is deeper than would have been reached based on the values of root-bin and max-depth, and
regardless of the box types of sub-boxes found within the superbox.

If the limit value is "r" then the server is requested to send the box header, but not the box contents, for any box with the
indicated box type, as well as all of its descendant sub-boxes (regardless of their box type), down to the maximum depth
specified in the request. This is in effect a request for a skeleton of that portion of the box hierarchy. If the server is
unable to determine whether or not a box is a superbox, it might not be able to recurse into the box's sub-boxes, so that
it might not respond completely to some metadata requests. Servers should be able to recognize the superbox status of
all boxes defined by the file formats they are intended to support.

While a limit value of "r" means that the client is requesting a skeleton of the box structure, consisting of the box
headers, the division of the logical target into metadata-bins may force the server to return additional data, including the
contents of some boxes and the headers and/or contents of other non-requested boxes. This is because the server is
requested to return all bytes from the start of each metadata-bin which contains requested box bytes up to the last
requested box byte.

The metareq-qualifier takes the form of a "/" followed by one or more of the flags "g", "s", "w" and "a". Each
flag identifies a context from which boxes which match the request shall be drawn. The interpretation for each of these
contexts is supplied in Table C.2. If more than one of the flags is provided, the union of the corresponding contexts
shall be taken. If no metareq-qualifier is provided, the union of the "g", "s" and "w" contexts shall be used.
By way of clarification, note that contexts "g", "s" and "w" are mutually exclusive, but their union is generally smaller
than the catch-all context "a".

If the priority flag is specified, then the client is requesting that boxes of type box-type which match other
elements of the request be delivered with higher priority than the image data.

For any box type not specified in the req-box-prop list, no data is requested for boxes of that box type.

If metadata-only is specified at the end of the metadata request field, the client is requesting that the server's
response consist only of metadata, without any image data or codestream headers, regardless of whether view-window
request fields such as Frame Size have been used. For JPP-stream and JPT-stream return types, this means that the
returned JPIP messages will all be metadata-bin messages.

EXAMPLE 1: "metareq=[*]R31D4"

In this case, the server is requested to return the entire contents of all boxes it finds in the contents of bin 31. While a
restriction on the desired depth has been specified, the server shall ignore that restriction because the contents of those
boxes were not limited through the limit parameter.

EXAMPLE 2: "metareq=[*:r,drep]R31D4"

The "*:r" means that the server has been requested to return box headers for all boxes contained in metadata-bin 31 and
any bins referenced by placeholders contained within that bin, up to a depth of 4 levels from the contents of bin 31, but
not to include the contents of those boxes. The additional "drep" req-box-prop specifies that the server is
requested to return the entire contents of any "drep" box contained within metadata-bin 31 and any bins referenced by
placeholders within that bin, up to a depth of 4 levels from the contents of bin 31.

EXAMPLE 3: "metareq=[drep]R31D4"

In this case, the server is still requested to return the entire contents of any "drep" boxes it finds in the contents of bin 31
or any bins referenced by that bin, up to a depth of four levels from the contents of bin 31. However, because no other
boxes were specified, the server is requested to send only as much other data as are necessary to specify the position of
any "drep" box in the file hierarchy with respect to the box contained within metadata-bin 31.

Regardless of the box specifications provided via the Metadata Request field, the server may send other data, either
because it has determined that the other data is required for the client to decode or interpret the requested image data, or

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 39

because the server had previously divided the logical target into data-bins using different criteria and additional data
shall be sent in order to provide a consistent and meaningful view of the metadata-bins for this logical target.

Table C.2 – Metadata request qualifier flags

Flag Interpretation

"w" This metareq context includes all boxes which are known to be associated with a specific spatial
image region within one or more codestreams which belong to the view-window, where the spatial
region, resolutions and the image components to which the boxes relate intersect with those of the
view-window. Such an association might, for example, be established by an "asoc" box in a JPX file.

"s" This metareq context includes all boxes which are known to be associated with one or more
codestreams which belong to the view-window, or with one or more of the requested codestream
contexts (e.g., JPX compositing layers or MJ2 video tracks), where these boxes are not solely
associated with particular spatial regions. Such an association might be established by an "asoc" box
in a JPX file, for example.

"g" This metareq context includes all boxes which are relevant to the requested view-window, taking into
account the requested codestreams and the requested codestream contexts, excluding those boxes
which are included in the "w" and "s" metareq contexts.

"a" This metareq context includes all boxes in the logical target, without exception (Note).

NOTE – This metareq context is suitable for requests that wish to interrogate the file structure independently of the view-window.

C.6 Data limiting request fields

C.6.1 Maximum Response Length (len)

len = "len" "=" UINT

This field specifies a restriction on the amount of data the client wants the server to send in response to this request. The
unit shall be bytes. If not present, the server should send image data to the client until such point as all of the relevant
data has been sent, a quality limit is reached (see C.6.2), or the response is interrupted by the arrival of a new request
that does not include a Wait request field with a value of "yes" (see C.7.2). The client should use len=0 if it requires
response headers and no response data.

C.6.2 Quality (quality)

quality = "quality" "=" (1*2DIGIT / "100") ; 0 to 100

This field may be used to limit data transmission to a quality level (between 0 for lowest quality and 100 for highest
quality) associated with the image. Quality limits are difficult to formulate in a reliable manner, and the server may
ignore this request by responding with a value "–1" (see D.2.16). Nevertheless, it is useful to allow the client to provide
some indication of the maximum image quality that might be of interest. The quality factor may attempt to approximate
the ad hoc Quality commonly used to control JPEG compression. The client should expect that the returned data size is
monotonically non-decreasing with increasing quality, i.e., increasing the quality value generally corresponds to
increasing the returned data size.

NOTE – If a server supports this request and two different clients make identical requests to the same target having the same
quality value, e.g., "quality=80", the server should have a consistent implementation policy in returning data from data-bins.

C.7 Server control request fields

C.7.1 Alignment (align)

align = "align" "=" ("yes" / "no")

This field specifies whether the server response data shall be aligned on natural boundaries. The default value is "no". If
the value is "yes", any JPT-stream or JPP-stream message delivered in response to this request which crosses any
"natural boundary" shall terminate at any subsequent "natural boundary." The natural boundaries for each data-bin type
are listed in Table C.3. A message is said to cross a natural boundary if it includes the last byte prior to the boundary,
and the first byte after the boundary. For example, a precinct data-bin crosses a natural boundary if it includes the last
byte of one packet and the first byte of the next packet. Note carefully that aligned response messages are not actually
required to terminate at a natural boundary unless they cross a boundary. This means, for example, that the response
may include partial packets from precincts, which may be necessary if a prevailing byte limit prevents the delivery of
complete packets.

ISO/IEC 15444-9:2005 (E)

40 ITU-T Rec. T.808 (01/2005)

Table C.3 – Alignment boundaries based on bin type

Bin type Natural boundary

Precinct data-bin End of a packet (one boundary for each quality layer)
Tile data-bin End of a tile-part (one boundary for each tile-part)
Tile header data-bin End of the bin (only one boundary)
Main header data-bin End of the bin (only one boundary)
Metadata-bin End of a box at the top level of the data-bin (one boundary for

each box)

C.7.2 Wait (wait)

wait = "wait" "=" ("yes" / "no")

This field is used to indicate whether the server shall complete a response to the previous request. If the value of the
field is "yes", the server shall completely respond to the previous request on the same channel resource specified
through the channel ID field before starting to respond to this request.

If the value of this field is "no", the server may gracefully terminate the processing of any previous request on the same
channel resource (specified through the Channel ID field) prior to completion and may start to respond to this new
request. In this context, "graceful termination" implies that the server shall at least complete the current message.

The default value of this field is "no".

C.7.3 Image Return Type (type)

type = "type" "=" 1#image-return-type

image-return-type = media-type / reserved-image-return-type

media-type = TOKEN "/" TOKEN *(";" parameter)

reserved-image-return-type = TOKEN *(";" parameter)

parameter = attribute "=" value

attribute = TOKEN

value = TOKEN

This field is used to indicate the type (or types) of the requested response data. A server unwilling to provide any of the
requested return types shall issue an error response.

The value of the Image Return Type request field shall be either a media type (defined in RFC 2046) or one of the
reserved image return types defined in Table C.4.

Table C.4 – Legal image return types

Type Interpretation

"jpp-stream" A JPP-stream as defined in Annex A. "jpp-stream" may optionally be followed by
";ptype=ext", in which case the requested return type is one in which all precinct data-
bin message headers have the extended form. (see A.2.2)

"jpt-stream" A JPT-stream as defined in Annex A. "jpt-stream" may optionally be followed by
";ttype=ext", in which case the requested return type is one in which all tile data-bin
message headers have the extended form. (see A.2.2)

"raw" The client is requesting the entire sequence of bytes in the logical target to be delivered
unchanged.

Other values Reserved for ISO use

If the type request field is omitted, the return type should be determined by another means.

In a session, i.e., one whose requests involve a Channel ID request field, the value of the return parameter shall be
maintained in successive responses for image data or metadata requests which correspond to the same logical target.

NOTE 1 – Other image media types (e.g., jp2, jpeg, tiff, png), if available, can be provided by a server as a transcoding service
with JPIP functionality.
NOTE 2 – For the raw codestream return type, the response data should consist of the requested entity in full. Therefore, many of
the other possible client request fields would have no meaning and would be ignored by a server.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 41

C.7.4 Delivery Rate (drate)

drate = "drate" "=" rate-factor

rate-factor = UFLOAT

This field is used to specify the delivery rate of various codestreams. If this field is supplied, the server shall deliver
data belonging to the various codestreams in the view-window following a temporally sequenced schedule. The
codestreams which belong to the view-window are all those identified via the Codestream request field and the
Codestream Context request field, possibly subsampled in accordance with the Sampling Rate request field.

In order to provide meaning to this request field, timing information shall be associated with the various codestreams in
the view-window. If the codestreams belong to an MJ2 file, the timing information is provided by that file. The MJ2 file
provides a mapping between each codestream and a nominal playback time, which is identified here as the "source
time."

If the codestreams do not have source timing information, but the Sampling Rate request field is present, the server shall
assume that codestreams in the view-window have source times which are separated by the reciprocal of the value in the
Sampling Rate request field.

If the codestreams do not have source timing information, and the Sampling Rate request field is not present, the server
shall assume that the codestreams in the view-window have source times which are separated by exactly one second.

The Delivery Rate request field provides a scaling factor between delivery and source rates. If the rate-factor is given as
1, the server should attempt to deliver codestreams to the client at the rate suggested by their source times, noting that
these source times might not necessarily be regular. More generally, if the rate-factor is F, the server should attempt to
deliver codestreams to the client at a rate which is F times faster than that suggested by their source times.

If the server is unable to deliver all relevant data for each codestream at the requested rate (e.g., due to bandwidth
constraints), it should deliver only part of the data for each codestream, so as to avoid violating the requested delivery
rate. The portion of each codestream's data which is not delivered may depend upon the view-window-pref value
supplied in a Client Preferences request field (see C.10.2). If the preference is "progressive" or no such preference is
identified, the server should attempt to deliver a uniform, maximum image quality over the view-window, subject to the
delivery rate constraint. If a view-window-pref value of "fullwindow" has been supplied, the server might
truncate the representation associated with each codestream in some other way. In any event, the behaviour should be
similar to that which would have resulted from the client issuing a succession of requests for each of the relevant
codestreams in turn, at the delivery rate.

If the server is able to deliver all relevant data for each codestream, at the requested rate, it should idle the connection as
required to ensure that the delivery rate is not exceeded.

If this field is not supplied and if a view-window-pref value of "fullwindow" has not been specified, the server
should attempt to sequence the relevant data in such a way as to progressively increment the quality of all codestreams
uniformly.

C.8 Cache management request fields

C.8.1 Model (model)

C.8.1.1 General

model = "model" "=" 1#model-item

model-item = [codestream-qualifier ","] model-element

model-element = ["-"] bin-descriptor

bin-descriptor = explicit-bin-descriptor ; C.8.1.2

 / implicit-bin-descriptor ; C.8.1.3

codestream-qualifier = "[" 1$(codestream-range) "]"

codestream-range = first-codestream-id ["-" [last-codestream-id]]

first-codestream-id = UINT

last-codestream-id = UINT

This field may be used in session-based or stateless requests. A session-based request is any request that includes a
Channel-ID field, since channels are associated with a session managed by the server. The "model" field contains one or

ISO/IEC 15444-9:2005 (E)

42 ITU-T Rec. T.808 (01/2005)

more bin-descriptors, each of which identifies a data-bin, or a range of data-bins, about which cache information is
being signalled. For requests within a session, this cache information serves to update the server's model of the client's
cache. There is only one cache model for each logical target associated with the session. For a stateless request, the
server's model of the client's cache is empty at the start of the request, but is updated by the "model" field (if one exists)
before the server formulates its response. All cache model information is discarded at the conclusion of the processing
of a stateless request by the server.

Two forms are provided for bin-descriptor values to facilitate the efficient exchange of cache model information. These
are termed the "explicit" and the "implicit" forms and are described in the following subclause. Clients may issue
requests using either form and may mix the two forms of bin-descriptor within a single "model" request field if desired.

If a bin-descriptor is preceded by a "-" symbol, it is said to be subtractive. Otherwise, it is said to be additive. A
subtractive bin-descriptor informs the server that the relevant data should be removed from the server's model of the
client cache. Removal of elements from the cache model means that the server shall not assume that the client already
has these elements. Bin-descriptor values are processed in order.

An additive bin-descriptor (one which is not preceded by the "-" symbol) informs the server of data which the client
already has in its cache. The server may add this information to its cache model and may assume that the client already
has the indicated data.

The "model" field may reference data-bins that are not relevant to the view-window of interest identified by other
request fields (Frame Size, Region Size, Offset, etc.). Where this happens, the cache model manipulation might not
affect the response to the current request, but may nevertheless affect the response to future requests (unless the request
is stateless).

Wherever the list of model-items includes a codestream-qualifier, all subsequent model-elements shall be added or
subtracted (as appropriate) from all codestreams whose identifiers are listed by the codestream-qualifier. Codestream-
qualifiers may be interspersed throughout the list to progressively alter the collection of codestreams that are to be
affected by the ensuing model-elements. Any model-element that is not preceded by a codestream-qualifier applies to
the first codestream requested via a Codestream request field. If no Codestream request field is present, model-element
values which are not preceded by a codestream-qualifier shall refer to codestream 0, regardless of whether or not a
Codestream Context request field is included. If the last-codestream-id is not present, but the qualifier hyphen is, then
this shall mean the first-codestream-id and all subsequent codestreams are included.

Requests within a session shall not include any codestream-qualifier which references more than a single codestream.
NOTE 1 – The server should attempt to exploit additive cache model manipulation statements, but is free to disregard some or all
of them at the possible expense of transport efficiency. Clients should be aware that servers might be quite likely to disregard
additive cache model manipulation statements that refer to data-bins belonging to codestreams that will not be serviced by the
current request. To remove such uncertainties where multiple codestreams are involved, the "mset" request field may be used to
determine the set of codestreams which are being modelled.
NOTE 2 – Manipulation of a session-based server's cache model generally affects the response to both the current request and
any future requests. Moreover, all channels within a session that are associated with a single logical target share the same cache
model. Thus, "model" fields in requests that arrive using one channel (Channel ID field) may affect the response to requests that
arrive using a different channel. It is important to note that requests which use different JPIP channels (different Channel ID
values) may arrive asynchronously at the server, if separate TCP channels are used to transport the request either directly from
the client or indirectly at an intermediate proxy. Clients should take whatever action is necessary to ensure that their cache model
manipulation instructions remain meaningful in light of these considerations.

C.8.1.2 Explicit form

explicit-bin-descriptor = explicit-bin
 [":" (number-of-bytes / number-of-layers)]

explicit-bin = codestream-main-header-bin
 / meta-bin
 / tile-bin
 / tile-header-bin
 / precinct-bin

number-of-bytes = UINT

number-of-layers = %x4c UINT ; "L"

codestream-main-header-bin = %x48 %x6d ; "Hm"

meta-bin = %x4d bin-uid ; "M"

tile-bin = %x54 bin-uid ; "T"

tile-header-bin = %x48 bin-uid ; "H"

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 43

precinct-bin = %x50 bin-uid ; "P"

bin-uid = UINT / "*"

The bin-descriptor values that explicitly refer to data-bins are of the following types: M (metadata-bins), Hm (main
header data-bins), H (tile header data-bins), P (precinct data-bins) or T (tile data-bins). Explicit bin-descriptors identify
the relevant data-bin (or data-bins) within the relevant codestreams, using either a unique integer-valued identifier, or a
wildcard character, "*". The only exception to this is the codestream main header data-bin, whose bin-descriptor is
"Hm". For all other data-bin classes, the unique identifier is identical to the value communicated by the in-class
identifier in JPP-stream and/or JPT-stream message headers (see Annex A).

The wildcard character, "*", shall be used only in stateless requests. Where it is used, the bin-descriptor refers
simultaneously to all data-bins of the relevant class (metadata, precinct, tile header or tile), relevant to the view-
window.

Each bin-descriptor may be qualified by a number of bytes. An additive bin-descriptor which is qualified by the number
of bytes, B, indicates that the client already has at least the first B bytes of the indicated data-bin in its cache; the server
may add the first B bytes of the data-bin to its cache model. A subtractive bin-descriptor that is qualified by the number
of bytes, B, indicates that the client has at most the first B bytes of the indicated data-bin; the server shall remove any
bytes following the first B bytes of the data-bin from its cache model.

EXAMPLE 1: A qualified subtractor bin-descriptor such as "-P23:10" means that the server should remove all but the
first 10 bytes of precinct data-bin 23 from its cache model. This does not imply that the client has the first 10 bytes of
precinct data-bin 23 in its cache and the server should not assume this by adding these bytes to its cache model if they
were not already present.

Precinct bin-descriptors may alternatively be qualified by a number of layers. An additive bin-descriptor that is
qualified by the number of layers, L, indicates that the client already has at least the first L layers (first L packets) of the
indicated precinct; the server may add the bytes corresponding to these layers to its cache model. A subtractive precinct
bin-descriptor that is qualified by the number of layers, L, indicates that the client has at most the first L layers (L
packets) of the indicated precinct; the server shall remove the bytes corresponding to any subsequent layers of that
precinct from its cache-model.

A bin-descriptor with no number-of-bytes or number-of-layers qualifier means the entire explicit data-bin.

EXAMPLE 2: "model=M0,Hm,H7:20,P3" means that the client has at least all of metadata-bin 0, all of the main
codestream header, the first 20 bytes of tile header 7, and all of precinct 3 in its cache.

EXAMPLE 3: "model=P3:256,P5:L2,-P6:20" means that the client has at least the first 256 bytes of precinct 3 and the
first two layers (packets) of precinct 5, but (at most) it does not have anything beyond the 20th byte of precinct 6 (it
may not have the first 20 bytes either).

EXAMPLE 4: "model=M*,-M5,-H*,-P*:L3" means that the client has (or is prepared to let the server believe it has) all
metadata-bins except metadata-bin 5, no tile header data-bins which are relevant to the view-window and at most the
first 3 layers of any precinct which is relevant to the view-window. Note, that the wildcards used here are permissible
only when the "model" statement appears in a stateless request.

EXAMPLE 5: "model=[30-200],Hm,H*,M*,P0,[0-29],-Hm,-H*,-M*,-P*" means that the client has all headers and
metadata, plus precinct data-bin 0 from codestreams 30 through 200 inclusive, but that it has removed all header,
metadata and precinct data-bins from the first 30 codestreams.

C.8.1.3 Implicit form

implicit-bin-descriptor = 1*implicit-bin [":" number-of-layers]

implicit-bin = implicit-bin-prefix (data-uid / index-range-spec)

implicit-bin-prefix = %x74 ; t -- tile
 / %x63 ; c -- component
 / %x72 ; r -- resolution level
 / %x70 ; p -- position

index-range-spec = first-index-pos "-" last-index-pos

first-index-pos = UINT

last-index-pos = UINT

data-uid = UINT / "*"

ISO/IEC 15444-9:2005 (E)

44 ITU-T Rec. T.808 (01/2005)

The bin-descriptor values that implicitly refer to data-bins are of the following types: t (tile to which the precinct
belongs), c (image component to which the precinct belongs), r (resolution level of the tile-component to which the
precinct belongs) or p (position of the precinct within its tile-component-resolution). Implicit bin-descriptors are used to
identify precinct data-bins via the indices. All indices shall start from 0. A resolution level index of 0, r0, refers to the
lowest resolution level (LL sub-band) of the tile-component. Position indices, p, run from left to right and top to bottom
of the tile-component-resolution progression, in scan-line fashion, as described in ITU-T Rec. T.800 | ISO/IEC 15444-1.

In stateless requests, any or all of the tile, component, resolution level or position implicit-bin specifier may be replaced
with the index range or the wildcard character, "*". In either case, the bin-descriptor is expanded to include all values of
the index range relevant to the view-window. Neither of these options shall be used for requests within a session.

In stateless requests, any or all of the tile, component, resolution level or position indices may also be replaced with a
single range of indices. The first-index-pos value in an index-range-spec gives the first index in a range. The last-index-
pos value gives the last index in the range and shall be greater than or equal to the value of the first-index-pos. Both
indices specified are inclusive. The last-index-pos may not be omitted. If a range of tile indices ("t") is given, the range
refers to a rectangular array of tiles whose upper left-hand corner has the first-index-pos value and whose lower right-
hand corner has the last-index-pos value. Similarly, if a range of position indices ("p") is given, the range refers to a
rectangular array of precinct positions whose upper left and lower right corners are given by the first-index-pos and last-
index-pos values, respectively. As for wildcards, ranges shall not be used in requests within a session.

Implicit precinct bin-descriptors may be qualified by a number of layers, for which the syntax and interpretation are
identical to those of layer qualified explicit precinct bin-descriptors, described previously.

EXAMPLE 1: "model=t0c2r3p4:L5" indicates that the client has the first 5 packets of the 5th precinct in sequence, of
the fourth resolution level, of the third component, of tile 0.

EXAMPLE 2: "model=t10r0,t*r1:L4" means that the client has all layers of the tile index 10 at resolution level 0, and
the first 4 layers of all tiles relevant to view-window at resolution level 1. Note that the wildcard is appropriate only for
stateless requests.

EXAMPLE 3: "model=t0-10:L2" indicates that the client has the first 2 layers from tiles 0 to 10. Note that the range is
appropriate only for stateless requests.

EXAMPLE 4: "model=t*r0-2:L4" indicates that the client has the first 4 layers from resolution levels 0 to 2 of all the
tiles relevant to the view-window. Note that the wildcard and the range are appropriate only for stateless requests.

C.8.2 Summary of cache descriptor options (informative)

Table C.5 – Cache descriptor option summary

Wildcard
Form type

stateless session-based
Index-range number-of-layers

(e.g., ":L3")
number-of-bytes

(e.g., ":256")

Explicit form Allowed Not allowed Not allowed Allowed Allowed
Implicit form Allowed Not allowed Allowed only for

stateless Allowed Not allowed

C.8.3 Tile-part model involving JPT-streams (tpmodel)

tpmodel = "tpmodel" "=" 1#tpmodel-item

tpmodel-item = [codestream-qualifier ","] tpmodel-element

tpmodel-element = ["-"] tp-descriptor

tp-descriptor = tp-range / tp-number

tp-range = tp-number "-" tp-number

tp-number = tile-number "." part-number

tile-number = UINT

part-number = UINT

This field may be used to indicate specific tile-parts that the client would like to add to or subtract from the server's
cache model. Like the "model" field, it may be used in both session-based and stateless requests. In the case of stateless
requests, the cache model is empty at the start of the request and does not persist between requests, but it still provides a
useful mechanism for identifying the image elements which are already in the client's cache.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 45

If a tile-part descriptor is preceded by a "-" character, it is said to be subtractive. Otherwise it is additive. An additive
tile-part descriptor indicates that the client already has the indicated tile-part or range of tile-parts in its cache; the server
may add these elements to its cache-model. A subtractive tile-part descriptor indicates that the client does not have the
indicated tile-part or range of tile-parts in its cache; the server shall remove these elements from its cache-model.

The first value in the tile-part number is the tile index (starting from 0); the second value is the part number (starting
from 0) within the tile. A tp-range is considered to independently contain tiles from the first tile number to the second
tile number and tile-parts from the first tile-part number to the second tile-part number. Thus 4.0-5.1 includes tile-
parts 4.0, 4.1, 5.0, and 5.1, but not 4.2 or 5.2.

The "tpmodel" and "model" request fields may both appear within a single request. In this case, however, the server
shall reflect the effects of the "model" field on its cache model before processing the "tpmodel" field.

Codestream-qualifier values may be interspersed amongst the list of tpmodel-elements in order to alter the collection of
codestreams to which the ensuing tpmodel-elements apply, following exactly the same principles as for the "model"
request field.

NOTE – Unlike the "model" request field, ranges of tile-parts and ranges of codestreams (in codestream-qualifiers) are both
permitted within the "tpmodel" request field, regardless of whether is appears within a session-based or a stateless request.

EXAMPLE 1: "tpmodel=4.0,4.1,5.0-6.2" indicates that the client already has the first two tile-parts of tile 4, and the
first 3 tile-parts of tiles 5 and 6 in its cache.

EXAMPLE 2: "tpmodel=-4.0-6.254" indicates that the client has no tile-parts from tiles 4, 5 or 6 in its cache.

EXAMPLE 3: "tpmodel=3.0,[131-133],4.0,[100],-0.0-65534.254" indicates that the client has tile-part 0 of tile 3 from
codestream 0 referenced in the request, plus tile-part 0 of tile 4 from each of codestreams 131 through 133 inclusive,
and that it is deleting all tile-parts from its cache of codestream 100.

C.8.4 Need for stateless requests (need)

need = "need" "=" 1#need-item

need-item = [codestream-qualifier ","] bin-descriptor

This field may appear only in stateless requests, i.e., those which do not include a Channel ID request field. It has the
same syntax as the model request field, except that bin-descriptors shall not be preceded by a "-" symbol. The "need"
request field shall not appear within the same request as a "model" or "tpmodel" request field.

The "need" request field indicates the set of data-bins (or data-bin suffices) which are of potential interest to the client.
The server need not send information that is not of potential interest. Regardless of how large the set of potentially
interesting data-bins may be, the server should only send information which is relevant to the view-window request
fields or the metadata request field.

The effect of the "need" field on the server's request may be explained using the concept of a temporary cache model.
The temporary cache model is initialized (empty) immediately before the request is processed and discarded after the
response is generated. If a "need" field appears in the request, all possible data-bins are added into the cache model,
after which all elements referenced by the bin-descriptors in the "need" field are removed from the cache model. The
server then processes the requested view-window, using this cache model to determine the elements that need not be
sent to the client.

Codestream-qualifiers may be interspersed amongst the list of bin-descriptors in order to alter the collection of
codestreams to which the ensuing bin-descriptors apply, following exactly the same principles as for the "model" and
"tpmodel" request fields.

EXAMPLE 1: "need=M1,H0:20,P0" means that the client needs all metadata-bin 1, data from the 20th byte of tile
header data-bin 0 and all of precinct data-bin 0.

EXAMPLE 2: "need=P1:256,P5:L2" means that the client needs data beyond the 256th byte (or from byte 256) of
precinct data-bin 1, and layers beyond the 2nd layer of precinct data-bin 5.

EXAMPLE 3: "need= H*,P*:L3" means that the client needs all tile header data-bins relevant with the view-window
and layers beyond the 3rd layer of all precinct data-bins relevant with the view-window.

EXAMPLE 4: "need=t10r0,t*r1:L4" means that the client needs all layers of the tile index 10 at resolution level 0, and
layers beyond the 4th layer of all tiles relevant to view-window at resolution level 1.

EXAMPLE 5: "need=t*r0-2:L4" means that the client needs all layers from layer 4 of all the precinct data-bins in
resolution levels 0 to 2 (0, 1 and 2) in all the tiles and components relevant to the view-window request.

ISO/IEC 15444-9:2005 (E)

46 ITU-T Rec. T.808 (01/2005)

EXAMPLE 6: "need=[120-131],r0,[140;143-145],r0-1" means that the client needs resolution level 0 of codestreams
120 through 131 inclusive, and resolution levels 0 and 1 of codestreams 140 and 143 through 145 inclusive.

C.8.5 Tile-part need for stateless requests (tpneed)

tpneed = "tpneed" "=" 1#tpneed-item

tpneed-item = [codestream-qualifier ","] tp-descriptor

This field may appear only in stateless requests, i.e., those which do not include a Channel ID request field. It has the
same syntax as the tpmodel request field, except that tp-descriptors shall not be preceded by a "-" symbol. The "tpneed"
request field shall not appear within the same request as a "model" or "tpmodel" request field.

The "tpneed" request field indicates the set of tile-parts which are of potential interest to the client. The server need not
send information that is not of potential interest. Regardless of how large the set of potentially interesting tile-parts may
be, the server should only send information which is relevant to the view-window request fields or the metadata request
field.

The effect of the "tpneed" field on the server's request may be explained using the concept of a temporary cache model.
The temporary cache model is initialized (empty) immediately before the request is processed and discarded after the
response is generated. If a "tpneed" field appears in the request, all possible tile-parts and data-bins are added into the
cache model, after which all elements referenced by the bin-descriptors in the "need" field and all tile-parts in the
"tpneed" field are removed from the cache model. The server then processes the requested view-window, using this
cache model to determine the elements that need not be sent to the client.

Codestream-qualifiers may be interspersed amongst the list of tile-parts in order to alter the collection of codestreams to
which the ensuing tile-parts apply, following exactly the same principles as for the "model" and "tpmodel" request
fields.

C.8.6 Model set for requests within a session (mset)

mset = "mset" "=" 1#sampled-range

This field serves two purposes. In the first instance, it informs the server of the set of codestreams for which the client is
prepared to cache data delivered by the server. In the second instance, it provides a mechanism for the client to learn
about the codestreams for which the server is prepared to model the client's cache. Specifically, if the collection of
codestream indices supplied in an "mset" request differs in any way from the set of codestreams over which the server is
currently prepared to offer cache modelling, the server shall provide a Model Set response header, as discussed
in D.2.18.

The "mset" request field's parameter string consists of a comma-separated list of ranges of codestream indices, possibly
subsampled, following the conventions outlined in connection with the Codestream request field in C.4.6.

In addition to codestreams mentioned in the "mset" request, the server may also provide a cache model for all
codestreams associated with its response to the current request. This is the collection of codestreams identified by the
client's request (see the Codestream and Codestream Context request fields C.4.7), unless the server indicates a reduced
set of codestreams via a Codestream response header (see D.2.9). If no "mset" request field is provided, the client
should not assume that the server is providing a cache model for any codestreams other than those associated with its
response; however, it may model other codestreams. If an "mset" request field is given, the server shall discard any
cache model information it has for all codestreams other than those mentioned either in the "mset" request, or in the set
of codestreams associated with its response data. Moreover, the effects of any cache model manipulation via "model" or
"tpmodel" request fields shall be restricted to just these codestreams.

The server may, at its discretion, reduce the number of codestreams in the "mset", in which case, it shall supply a
"mset" response header identifying the actual set of codestreams which are being modelled; moreover, this set of
modelled codestreams shall at least include all codestreams associated with the server's response data (those requested
by the client's request, or identified by the server's Codestream response header, if any). In this case, these statements
apply to those codestreams contained in "mset" identified by the server. The server may not identify a larger set of
codestreams than those mentioned in the client's "mset" request, combined with those codestreams which are associated
with the server's response data.

Note that the server may change its "mset" from request to request, so clients which need to keep track of and/or tightly
constrain the server's "mset" might choose to include an "mset" request field with every request.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 47

C.9 Upload request parameters

C.9.1 Upload (upload)

upload = "upload" "=" upload-type

upload-type = image-return-type ; C.7.3

This field specifies that the client is uploading new image or metadata to the server. The value of upload-type can
be any of the valid image-return-type values that could be used with the type request field. See Annex E for
information on uploading data.

C.10 Client capability and preference request fields

C.10.1 Client capability (cap)

cap = "cap" "=" 1#capability-group

capability-group = processing-capability
 / depth-capability
 / config-capability

processing-capability = compatibility-capability
 / vendor-capability

compatibility-capability = "cc." compatibility-code

vendor-capability = "vc." vendor-code [":" vendor-value]

vendor-code = 1*(LOWER / DIGIT / "." / "-")

vendor-value = TOKEN

depth-capability = "depth:" UINT

config-capability = "config:" UINT

This field specifies the capabilities of the client. For session-based requests (those which include a Channel ID request
field), any capability fields transmitted by the client shall affect only the channel associated with the request, and shall
be considered persistent. Capabilities need not be retransmitted by the client for subsequent requests on the same
channel.

When a new channel is created from an existing channel, its client capabilities are inherited. For stateless requests, and
for requests issued within a channel whose capabilities have never been specified or inherited, the client capabilities
may be determined or anticipated by other means. The capabilities associated with a channel may be changed by
including a Client Capabilities request field within any request.

If the Client Capabilities request field identifies one or more of the processing-capability options, the
server shall assume that the client does not have any of the other processing-capability options which
could have been mentioned. If no processing-capability options are supplied in the Client Capabilities
request field, the server shall continue to use whatever previous knowledge it had concerning processing capabilities.
The processing-capability options defined by this Recommendation | International Standard are described
in Table C.6.

Table C.6 – Legal capabilities of the processing-capabilities element

Capability Meaning

compatibility-
capability

The client supports all files that contain compatibility-code in the compatibility
list in the File Type box. For example, to indicate that the client supports all JP2 files, the
client would transmit the "cc.jp2_" in a Capability request field. A compatibility-code value
of "jp2c" shall be used to indicate support for raw JPEG 2000 codestreams.

vendor-capability The client supports the vendor capability defined by vendor-code. vendor-code
shall be a string specifying the reverse domain name of the vendor that defined the feature,
followed by the vendor feature name. For example, if example.com defined a feature called
"distance", then the value of vendor-code for this feature shall be
"com.example.distance". vendor-value specifies an optional value, as defined by the
particular vendor feature.

ISO/IEC 15444-9:2005 (E)

48 ITU-T Rec. T.808 (01/2005)

If a depth-capability parameter is supplied, it indicates the maximum sample bit depth (precision) at which the
client is able to exploit decompressed imagery. If the client supports different bit depths for different image
components, this field shall specify the bit depth of the component for which the client has the greatest bit depth
capability.

NOTE 1 – If a client supports 12 bits for luminance and 8 bits for chrominance, the value of depth-capability shall be 12.
NOTE 2 – Clients having the capability to handle only N bits per sample will still generally be able to handle codestreams whose
SIZ marker indicates a bit depth much larger than N. However, this flag may be used by the server to determine an appropriate
manner in which to deliver the requested image data.

If a config-capability parameter is supplied, it shall be in the range 0 to 255, representing an 8-bit word
whose individual bits are interpreted as configuration flags. The interpretation of the configuration flags is provided in
Table C.7.

Table C.7 – Legal values of the config-capability parameter

Value Meaning

1xxx yyyy The client is capable of processing colour image data.
0xxx yyyy The client is not capable of processing colour image data and desires the server to transmit

any requested image regions as greyscale.
x1xx yyyy The client has a pointing device for end-user interaction
x0xx yyyy The client does not have a pointing device for end-user interaction
xx1x yyyy The client has a keyboard for end-user interaction
xx0x yyyy The client does not have a keyboard for end-user interaction
xxx1 yyyy The client has sound output capabilities
xxx0 yyyy The client does not have sound output capabilities

Other values Reserved for ISO use

A bit value of "x" in Table C.7 indicates that the specified value includes cases where that bit is set to either "1" or "0".
Bits indicated as "y" are unused by this Recommendation | International Standard and shall be set to 0 by clients and
ignored by servers.

C.10.2 Client preferences (pref)

C.10.2.1 General

pref = "pref" "=" 1#(related-pref-set ["/r"])

related-pref-set = view-window-pref ; C.10.2.2
 / colour-meth-pref ; C.10.2.3
 / max-bandwidth ; C.10.2.4
 / bandwidth-slice ; C.10.2.5
 / placeholder-pref ; C.10.2.6
 / codestream-seq-pref ; C.10.2.7
 / other

other = TOKEN

This field specifies the client preferences for server behaviour. For session-based requests (those which include a
Channel ID request field), any preference fields transmitted by the client shall affect only the channel associated with
the request, and shall be considered persistent. Preferences need not be retransmitted by the client for subsequent
requests on the same channel. Each preference shall occur no more than once in a single preference request field.

When a new channel is created from an existing channel, its preferences are inherited. For stateless requests, and for
requests issued within a channel whose preferences have never been specified or inherited, the client preferences may
be determined or anticipated by other means. If the client desires to change its preferences, it shall send the entire
affected related-pref-set again.

Unless otherwise stated, each related-pref-set specifies an ordered list of individual preference tokens, from
most preferred to least preferred. Where possible, the server shall respect the client preferences identified by this request
field. If a related-pref-set is followed by the "/r" modifier (required), the server shall either support one of
the preferences listed in the related-pref-set, or else it shall respond with an error. In the latter case, the
server shall return an Unavailable preference response header which identifies any related-pref-set which had
the "/r" modifier but could not be supported. See D.2.20 for more on the Unavailable preference response header.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 49

For example, consider the following Client Preferences request:

pref=fullwindow/r,color-ricc:2;color-icc

This preference request requires that the server return the complete view-window requested, regardless of how large
that view-window may be (see C.10.2.2 for a discussion of the "fullwindow" preference). Since the "/r" modifier has
been used, the server should return an error response unless it is able to support this preference. In addition, the client
prefers to use Restricted ICC profiles rather than arbitrary ICC profiles, provided the Restricted ICC profile is at least of
"exceptional quality." See C.10.2.3 for a discussion of colourspace preferences.

A server shall ignore any value for related-pref-set that it does not understand and is not immediately
followed by "/r". If the not-understood value is followed by "/r", then the server shall return the Unavailable
preference response header, indicating the preference that it is not able to perform.

Values of the token other are reserved for ISO use.

C.10.2.2 View-window handling preferences

view-window-pref = "fullwindow" / "progressive"

This Recommendation | International Standard defines two options to specify the behaviour of the server in the event
that the request cannot be serviced exactly as stated, following a quality-progressive ordering of the response data.
These two options are specified in Table C.8.

Table C.8 – View-window handling preferences

Option Meaning

"fullwindow" The server shall honour the view-window request parameters but is allowed to return the
data in a non-quality-progressive order.

"progressive" The server may modify the view-window request parameters in order to retain quality-
progressive properties of the response data. In the event that the server does modify view-
window request parameters, the modified view-window should be a subset of the originally
requested view-window.

If neither "fullwindow" nor "progressive" is specified in the Client Preferences request field, the server shall assume
that the client's preference is "progressive".

Note that the interpretation of "progressive" delivery may be affected by the presence of a Delivery Rate request field,
as explained in C.7.4.

C.10.2.3 Colourspace method preference

color-meth-pref = 1$(color-meth [":" meth-limit])

color-meth = "color-enum" / "color-ricc" / "color-icc" / "color-vend"

meth-limit = UINT

This Recommendation | International Standard defines four options that specify what forms of colourspace specification
data should be returned by the server. A single JPEG 2000 file may contain multiple specifications of the colourspace
for a single codestream or compositing layer. This allows a file writer to provide the optimal colourspace specification
while still providing interoperable solutions.

However, not all readers will support all colourspace methods, and the data provided for some colourspace methods
may be of significant size. In those cases, the server should only send the colourspace specification data that is desired
by the client.

If the Client Preferences request field does not contain any colourspace method preferences, then the supported
colourspace methods are defined according to the information contained within the Capability field, and no preference
is defined.

Each colourspace method preference consists of two parts: the particular colourspace method, and an optional limit on
that preference. Legal values of the colourspace method are specified in Table C.9.

ISO/IEC 15444-9:2005 (E)

50 ITU-T Rec. T.808 (01/2005)

Table C.9 – Colourspace method client preferences

Method Meaning

"color-enum" The client prefers colourspace specifications that use the Enumerated Method
"color-ricc" The client prefers colourspace specifications that use the Restricted ICC Method
"color-icc" The client prefers colourspace specifications that use the Any ICC Method
"color-vend" The client prefers colourspace specifications that use the Vendor Method

The optional meth-limit value specifies a limit on the APPROX value for that particular colourspace method.
When using these preferences to select a colourspace specification, the server shall consider a colourspace method
specification with an APPROX value of meth-limit or less as if the actual APPROX value was 1 (exact). This
allows clients to specify the point at which colour fidelity is not important for a particular colourspace method, for the
current application. For example, a page-layout application that is only concerned with aligning the image data with
other elements on the page may not care at all about colour fidelity and set meth-limit to 4, meaning that the
accuracy of the colourspace methods is unimportant. Another application that displays images on a low-quality screen
may set meth-limit to 3, to indicate that as long as the colour accuracy is reasonable, it would be satisfied. The
characters of the field shall be interpreted as an unsigned decimal integer. Legal values are defined by the definition of
the APPROX field in Table M.24 of ITU-T Rec. T.801 | ISO/IEC 15444-2, and by extensions and amendments to that
Recommendation | International Standard.

When selecting which Colourspace Specification box to transmit to the client, the server shall use the following
algorithm, as shown in Figure C.3.

Figure C.3 – Colourspace specification box selection procedure

For each Colourspace Specification box which uses a method that is supported by the client, where:
– spec[] is an array containing all of the Colourspace Specification boxes from the given logical target.
– spec[i].APPROX is the value of the APPROX field for the ith Colourspace Specification box as it

appears in the logical target.
– spec[i].METH is the value of the METH field for the ith Colourspace Specification box as it appears in

the logical target.
– spec[i].PREC is the value of the PREC field for the ith Colourspace Specification box as it appears in the

logical target.
– limit[] is an array containing the meth-limit values specified in the request field, indexed by the

legal values of the METH field in the Colourspace Specification box.
– priority[] is an array of calculated priority values for each Colourspace Specification box in the given

logical target. priority[i] corresponds to spec[i].

If the server knows that the client does not support a particular Colourspace Specification box, then the server shall
ignore that box for purposes of selecting the preferred Colourspace Specification box. Once the priority[] values have
been calculated for each supported Colourspace Specification box, the server shall select the box with the lowest

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 51

priority value. In the event that multiple boxes have a priority value equal to the minimum value for this logical target,
the server shall select the colourspace method using the following preference order:

1) Enumerated method;
2) Vendor method;
3) Restricted ICC method;
4) Any ICC method.

Regardless of the client preferences for Colourspace Specification boxes, the server may return more Colourspace
Specification boxes than the single colour box specified by this algorithm, depending upon the division of a file into
metadata-bins.

C.10.2.4 Max bandwidth

max-bandwidth = "mbw:" mbw

mbw = UINT ["K" / "M" / "G" / "T"]

This preference signals the maximum rate at which the client would like to be sent data per logical target. If the mbw
value ends in "K" the value is in kilobits/second, where 1 kilobit = 1024 bits. If the mbw value ends in "M" the value is
in megabits/second, where 1 megabit = 10242 bits. If the mbw value ends in "G", the value is in gigabits/second, where
1 gigabit = 10243 bits. If the mbw value ends in "T", the value is in terabits/second, where 1 terabit = 10244 bits.
Otherwise, the value is in bits/second. Either the capacity of the server or the network may further limit the available
maximum bandwidth for the JPIP service.

C.10.2.5 Bandwidth slice

bandwidth-slice = "slice:" slice

slice = NONZERO

This preference may be used to identify the fraction of the available bandwidth that should be allocated to this channel.
The value of slice shall be strictly greater than 0. The bandwidth fraction is obtained by dividing each channel's slice
value by the sum of all channel slice values. If not specified, the channel's slice value defaults to 1.

As an example, a low slice value could be used for requesting a "background" view-window, while a higher slice
might be used for a "foreground" view-window. If the session contains channels that are associated with different
logical targets, slice values affect the proportion of the available bandwidth which is assigned to these different targets
(images).

C.10.2.6 Placeholder preference

placeholder-pref = "meta:" placeholder-branch

placeholder-branch = "incr" / "equiv" / "orig"

This preference may be used to indicate the preferred treatment of Placeholder boxes. Where Placeholder boxes appear
within the metadata in a JPP-stream or JPT-stream, there may be as many as three different representations of the
content of a box: the original box; a streaming equivalent box; and an incremental codestream (signalled via the index).
These possibilities are explained in A.3.6 and A.4. As explained in A.4, the recommended default assumption is that the
client would prefer to receive the incremental codestream, if available, failing which it would prefer to receive the
streaming equivalent box, if available. The client may signal an alternate preference using the mechanism described
here. Legal values of the Placeholder preference are specified in Table C.10.

Table C.10 – Placeholder preferences

Method Meaning

"orig" The client would prefer to receive the original box, if available. Failing that, the client would prefer
to receive a streaming equivalent box, if available.

"equiv" The client would prefer to receive a streaming equivalent box, if available. Failing that, the client
would prefer to receive the original box, if available.

"incr" The client would prefer to receive the incremental codestream data-bins, if available. Failing that, the
client would prefer to receive the streaming equivalent box, if available. This is the same as the
recommended default policy.

It is not legal to provide more than one value for the placeholder preference.

ISO/IEC 15444-9:2005 (E)

52 ITU-T Rec. T.808 (01/2005)

C.10.2.7 Codestream sequencing

codestream-seq-pref = "codeseq:" codestream-seq-option

codestream-seq-option = "sequential" / "reverse-sequential"
 / "interleaved"

This preference may be used to indicate how the client desires that the server deliver multiple codestreams that have
been requested within a single request. Legal values of the Codestream sequencing preference are specified in
Table C.11.

Table C.11 – Codestream sequencing preferences

Method Meaning

"sequential" The client would prefer to receive the multiple codestreams in a frame sequential order
(e.g., serve multiple frames in a Motion JPEG 2000 file in a sequential order).

"reverse-sequential" The client would prefer to receive the multiple codestreams in a frame sequential order
(i.e., multiple frames in a Motion JPEG 2000 file), in the reverse order.

"interleaved" The client would prefer to receive the multiple codestreams in an interleaved manner
(e.g., server interleaved multiple compositing layers from a JPX file).

It is not legal to provide more than one value for the codestream sequencing preference.

C.10.3 Contrast sensitivity (csf)

csf = "csf" "=" 1#csf-sample-line

csf-sample-line = csf-density [";" csf-angle] ";" 1$sensitivity

csf-density = "density" ":" UFLOAT

csf-angle = "angle" ":" UFLOAT

sensitivity = UFLOAT

This field may be used to supply information concerning contrast sensitivity. While this information may represent the
effects of both visual sensitivity and the modulation transfer function of a display device, it is most easily described in
terms of an assumed hypothetical modulation transfer function. When reproduced at the frame size identified by the
Frame Size request field, the imagery is assumed to be passed through a device whose modulation transfer function
(MTF) is m(ω1, ω2), after which it is viewed by a subject whose human visual system has a perfectly uniform contrast
sensitivity function. The MTF m(ω1, ω2) is described through a collection of samples. The samples are logarithmically
spaced in the radial direction, along one or more oriented axes. The server may interpolate these samples using any
method it sees fit, in order to recover the MTF, which in turn may be used to adjust the order in which byte ranges of
data-bins are communicated to the client through JPP-stream or JPT-stream messages.

Each csf-sample-line represents MTF samples m(ω1, ω2) given ω1 = πdncosψ, ω2 = πdnsinψ, where n is the
sample index, starting from n = 0 for the first csf-density sample in the csf-sample-line, ψ is the orientation
of the CSF sample line, expressed in degrees (defaults to 0 if there is no csf-angle value), and d is the sampling
density; it shall be no larger than 1.0. The ω1 value describes the horizontal frequency in radians, where ω1 = π is the
horizontal Nyquist frequency. The ω2 value describes the vertical frequency in radians, where ω2 = π is the vertical
Nyquist frequency.

The MTF sample values have meaning only in relation to each other; there is no particular interpretation for their
absolute values.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 53

Annex D

Server response signalling
(This annex forms an integral part of this Recommendation | International Standard)

D.1 Reply syntax

D.1.1 Introduction

This annex describes all possible elements in a JPIP response. Each major subclause describes the status code and its
associated reason phrase, response headers and possible values for those headers, and the response data. In general, a
response will consist of multiple response headers.

D.1.2 Reply structure

The JPIP response consists of the following elements:
– status-code;
– reason-phrase;
– jpip-response-header;
– response data.

The elements in the response should comply with the selected transport protocol. As an example, in HTTP, the status
code and the reason phrase appear in the status line, the JPIP response headers appear in the HTTP response headers
and the response data (if any) appears in the HTTP entity-body.

Status-Code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR and LF>

jpip-response-header =
 / JPIP-tid ; D.2.2
 / JPIP-cnew ; D.2.3
 / JPIP-qid ; D.2.4
 / JPIP-fsiz ; D.2.5
 / JPIP-rsiz ; D.2.6
 / JPIP-roff ; D.2.7
 / JPIP-comps ; D.2.8
 / JPIP-stream ; D.2.9
 / JPIP-context ; D.2.10
 / JPIP-roi ; D.2.11
 / JPIP-layers ; D.2.12
 / JPIP-srate ; D.2.13
 / JPIP-metareq ; D.2.14
 / JPIP-len ; D.2.15
 / JPIP-quality ; D.2.16
 / JPIP-type ; D.2.17
 / JPIP-mset ; D.2.18
 / JPIP-cap ; D.2.19
 / JPIP-pref ; D.2.20

The reason-phrase string should ideally impart a textual explanation of the status code. The following status codes may
be sufficient for JPIP applications.

D.1.3 Status codes and reason phrases

D.1.3.1 General

The Status-Code is a 3-digit integer result code of the attempt to understand and satisfy the request. A subset of the
status codes and reason phrases from HTTP/1.1 are used. JPIP clients should expect the following codes. JPIP clients
operating over HTTP may see other status codes as well.

D.1.3.2 200 (OK)

The server should use this status code if it accepts the view-window request for processing, possibly with some
modifications to the requested view-window, as indicated by additional headers included in the reply.

ISO/IEC 15444-9:2005 (E)

54 ITU-T Rec. T.808 (01/2005)

D.1.3.3 202 (Accepted)

Servers should issue this status code if the view-window request was acceptable, but a subsequent view-window request
was found in the queue which consequently superseded the request (because wait=no). When the first request
becomes irrelevant before the server is able to process and commence transmission of a response, then the 202 status
code shall be used. This is a common occurrence in practice, since an interactive user may change his/her region of
interest multiple times before the server finishes responding to an earlier request, or before the server is prepared to
interrupt ongoing processing.

D.1.3.4 400 (Bad request)

Servers should issue this status code if the request is incorrectly formatted, or contains an unrecognized field in the
query string.

D.1.3.5 404 (Not found)

This status code should be issued if the server cannot reconcile the requested resource with an issued Target ID. This
may result from unauthorized access attempts or, more likely, from a time limit expiring. If the client misses this time
window, due to a poor connection, it may find that the Target ID is no longer active.

D.1.3.6 415 (Unsupported media type)

This status code may be used if the single image type specified in the Image Return Type request field cannot be
serviced.

D.1.3.7 501 (Not implemented)

This status code may be used if a portion of this Recommendation | International Standard that is required by the request
cannot be serviced.

D.1.3.8 503 (Service unavailable)

This status code should be used if a channel id specified in the Channel ID request field is invalid.

D.2 JPIP response headers

D.2.1 Introduction to JPIP response headers

In responding to a client request, the server may modify some aspects of the request. If the server modifies the request,
the modified parameters shall be identified via response headers. The name of each response header is derived from the
name of the request field whose parameters are being modified, by prefixing the name of the request field with
"JPIP-". Unless otherwise specified, if the parameters identified in the response header had been originally specified
in the client's request, then the server would have responded in the same way, except the response would now not
contain these response headers. In addition, JPIP response headers may be sent by the server to inform the client of the
values of other unspecified request fields for use in future requests.

The JPIP-qid response is an exception in that it shall be sent whenever the client has included a Request ID in the
request, and then value of JPIP-qid shall always be the same as qid.

Parameters to the derived response header indicated by the same BNF element as parameters in the original request
field have the same meaning and formatting as the parameters to the original request field.

The only exceptions to this rule are found in connection with the New Channel and Quality response headers.

D.2.2 Target ID (JPIP-tid)

JPIP-tid = "JPIP-tid" ":" LWSP target-id

The server shall send this response header if the server's unique target identifier differs in any way from the identifier
supplied with a Target ID request field, or if the client did not specify a Target ID request field. The target-id is
an arbitrary, server-assigned string, not exceeding 255 characters in length. If the Target ID request field specifies a
value of "0", the server is obliged to include a Target ID response header, indicating the actual target-id. If the server is
unable to assign unique identifiers to the requested logical target, and hence cannot guarantee its integrity between
multiple requests or sessions, then the Target ID response header shall specify a value of 0. If the server supplies a
target-id which is different from that specified in the request, it shall disregard all model, tpmodel, need
and tpneed request fields when responding to this request.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 55

D.2.3 New channel (JPIP-cnew)

JPIP-cnew = "JPIP-cnew" ":" LWSP "cid" "=" channel-id
 ["," 1#(transport-param "=" TOKEN)]

transport-param = TOKEN

The server shall send this response header if, and only if, it assigns a new channel in response to a New Channel request
field. The value string consists of a comma-separated list of name=value pairs, the first of which identifies the new
channel's channel-id token.

The following transport-param tokens are defined by this Recommendation | International Standard (see
Table D.1).

Table D.1 – Legal values of transport-param

Value Meaning

"transport" This parameter shall be assigned one of the values in the list of acceptable transport names supplied in
the New Channel request field. If multiple transport names were supplied in the request field, the
response header shall identify the actual transport that will be used with the channel.

"host" This parameter identifies the name or IP address of the host for the JPIP server that is managing the
new channel. The parameter need not be returned unless the host differs from that to which the request
was actually sent.

"path" This parameter identifies the path component of the URL to be used in constructing future requests
with this channel. The parameter need not be returned unless the path name differs from that used in
the request which was actually sent.

"port" This parameter identifies the numerical port number (decimal) at which the JPIP server that is
managing the new channel is listening for requests. The parameter need not be returned if the host and
port number are identical to those to which the original request was sent. The parameter also need not
be returned if the host differs from that to which the request was sent and the default port number
associated with the relevant transport is to be used.

"auxport" This parameter is used with transports requiring a second physical channel. If the "http-tcp" transport
is used, the auxiliary port is used to connect the auxiliary TCP channel. For further details, see
Annex G. The parameter need not be returned if the original request involved a channel that also
employed an auxiliary channel, having the same auxiliary port number. Otherwise, the parameter need
be returned only if the auxiliary port number differs from the default value associated with the selected
transport.

D.2.4 Request ID (JPIP-qid)

JPIP-qid = "JPIP-qid" ":" LWSP UINT

The server shall send this response header if the client's request included a Request ID qid. The value of JPIP-qid
shall be identical to qid. The server shall not include a Request ID response header when the respective client request
did not include a Request ID.

NOTE – The server's Request ID, JPIP-qid, shall always be identical to the client's Request ID. Thus the Request ID is
distinctive in that this response header is sent when the client has used the Request ID, not when the server modifies the value.

D.2.5 Frame size (JPIP-fsiz)

JPIP-fsiz = "JPIP-fsiz" ":" LWSP fx "," fy

The server should send this response header if the frame size for which response data will be served differs from that
requested via the Frame Size request field.

D.2.6 Region size (JPIP-rsiz)

JPIP-rsiz = "JPIP-rsiz" ":" LWSP sx "," sy

The server should send this response header if the size of the region for which response data will be served differs from
that requested.

D.2.7 Offset (JPIP-roff)

JPIP-roff = "JPIP-roff" ":" LWSP ox "," oy

The server should send this response header if the offset of the region for which response data will be served differs
from that requested.

ISO/IEC 15444-9:2005 (E)

56 ITU-T Rec. T.808 (01/2005)

D.2.8 Components (JPIP-comps)

JPIP-comps = "JPIP-comps" ":" LWSP 1#UINT-RANGE

The server should send this response header if the components for which it will serve data differ from those requested
via the Components request field. It is not obliged to send this response header if requested image components do not
exist within any of the requested codestreams.

D.2.9 Codestream (JPIP-stream)

JPIP-stream = "JPIP-stream" ":" LWSP 1#(prefixed-range / sampled-range)
prefixed-range = "<" ctxt-id ":" ctxt-elt ">" sampled-range
ctxt-id = UINT
ctxt-elt = UINT

The server should send this response header to inform the client of the codestream or codestreams for which it will
serve data, unless it is serving data in response to all codestreams requested directly via any Codestream request field
and all codestreams requested indirectly via any Codestream Context request field. The server should use the
prefixed-range syntax to identify those codestreams for which data is being served in response to a translated
Codestream Context request field. In this case, the ctxt-id value shall identify the specific context-range
from the Codestream Context request field whose translation is producing the relevant codestreams. Moreover, the
ctxt-elt value shall identify the particular element within the context-range identified by ctxt-id,
whose translation is producing the relevant codestreams.

A value of 0 for the ctxt-id means that the first context-range in the Codestream Context request field is the
one which produced the range of codestreams which follows the prefix. Similarly, a value of 1 for ctxt-id means
that the second context-range in the Codestream Context request field is the one which produced the ensuing
range of codestreams, and so forth.

A value of 0 for the ctxt-elt means that the first context in the relevant context-range is the one which
produced the range of codestreams which follows the prefix.

Example:
Client request:

stream=0&context=jpxl<2-7:2>[s0i0],jpxl<3-5>[s1i3]
Server response:

JPIP-context: jpxl<2-7:2>[s0i0]=0,1;jpxl<9-10>[s1i3]=0
JPIP-stream: 0,<0:1>1,<1:0>0,<1:1>0

This means that the server is responding with data resulting from:
1) the direct application of the view-window to codestream 0 (as requested via "stream=0");
2) the translation of the view-window to JPX compositing layer 4, according to compositing

instruction 0 in compositing instruction set 0, as it applies to codestream 1;
3) the translation of the view-window to JPX compositing layer 9, according to compositing

instruction 3 in compositing instruction set 1, as it applies to codestream 0; and
4) the translation of the view-window to JPX compositing layer 10, according to compositing

instruction 3 in compositing instruction set 1, as it applies to codestream 0.

D.2.10 Codestream Context (JPIP-context)

JPIP-context = "JPIP-context" ":" LWSP 1$(context-range "=" 1#sampled-range)

The server should send this response header if it is able to process any of the context-range values supplied via a
Codestream Context request field. The header describes each context-range which is being processed, along with
the indices of all codestreams which are associated with that context-range. The server may omit some
context-range values which were originally provided in the Codestream Context request field, if they are not being
processed. The server may also modify context-range values originally provided in the Codestream Context
request field. Two types of modification are allowed:

a) the server may restrict the collection of image elements (e.g., compositing layers) which were originally
requested;

b) the server may drop geometric transformation modifiers which it is not able to support (e.g., a "track" or
"movie" modifier within an mj2t-context string).

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 57

D.2.11 ROI (JPIP-roi)

JPIP-roi = "JPIP-roi" ":" LWSP
 "roi" "=" region-name ";"
 "fsiz" "=" UINT "," UINT ";"
 "rsiz" "=" UINT "," UINT ";"
 "roff" "=" UINT "," UINT ";"

region-name = 1*(DIGIT / ALPHA / "_")

In response to a client request for an ROI, a server shall specify through the ROI response header the extent of the ROI
actually being served. If the server is unable to fulfil the ROI request, it shall reply with the ROI response header simply
set to: "JPIP-roi: roi=no-roi". In addition to the ROI, the server also specifies through the Frame Size, Region Size and
Offset response headers the region of the image that it is serving as a fallback.

If the server is able to serve the ROI, but for some reason needs to resize the portion of the returned image, it shall send
the ROI response header describing the ROI and the Frame Size, Region Size and Offset response headers describing
the part of the ROI being returned.

D.2.12 Layers (JPIP-layers)

JPIP-layers = "JPIP-layers" ":" LWSP UINT

The server should send this response header if the number of layers for which it will serve is smaller than the value
specified by the layers request field. Since the view-window is typically served in quality progressive fashion, the server
is not obliged (and indeed may not be able) to determine the number of layers which are spanned by the response data it
delivers. However, if the requested number of layers exceeds the number of layers available from any codestreams in
the view-window, the server should at least identify the maximum number of available layers. Any server that accepts
an Alignment request field (see C.7.1) shall provide a JPIP-layers response if the number of layers for which it will
serve is smaller than the value specified by the layers request field.

D.2.13 Sampling rate (JPIP-srate)

JPIP-srate = "JPIP-srate" ":" LWSP UFLOAT

The server should send this response header if the average sampling rate of the codestreams which it will send to the
client is expected to differ from that requested via a Sampling Rate request field and the sampling rate is known. If the
source codestreams have no timing information, this response header should not be sent.

D.2.14 Metadata request (JPIP-metareq)

JPIP-metareq = "JPIP-metareq" ":" LWSP
 1#("[" 1$(req-box-prop) "]" [root-bin] [max-depth])
 [metadata-only]

req-box-prop = box-type [limit] [metareq-qualifier] [priority]

The server should send this response header if it is modifying the max-depth, limit, metareq-qualifier
or priority value provided in a Metadata Request request field.

D.2.15 Maximum response length (JPIP-len)

JPIP-len = "JPIP-len" ":" LWSP UINT

The server should send this response header if the byte limit specified in a Maximum Response Length request field
was too small to allow a non-empty response unless the byte limit was equal to zero. If returned, JPIP-len shall be a
value that informs the client of a suitable maximum response length, len, for subsequent requests. If len=0, the
server should respond to the request with response headers and no response data.

D.2.16 Quality (JPIP-quality)

JPIP-quality = "JPIP-quality" ":" LWSP (1*2DIGIT / "100" / "-1")

The server may send this response header to inform the client of the quality value that will be associated with the image
data returned once this request has been completed. If the request is interrupted by another request (not having
"wait=yes"), this quality value may not be accurate. The quality value refers only to the view-window requested, and
has the same interpretation as the Quality request field. If the server ignored the client's request, a value "–1" shall be
returned.

ISO/IEC 15444-9:2005 (E)

58 ITU-T Rec. T.808 (01/2005)

D.2.17 Image return type (JPIP-type)

JPIP-type = "JPIP-type" ":" LWSP image-return-type

The server should include this response header unless another mechanism identifies the MIME subtype of the return
image data. Examples of other mechanisms include:

– an HTTP "Content-Type:" header,
– Responses to requests that are associated with a session whose return image type has already been

signalled.

D.2.18 Model set (JPIP-mset)

JPIP-mset = "JPIP-mset" ":" LWSP 1#sampled-range

The server should include this response header if the client's request contains a Model Set request field, and the
collection of codestreams identified by the client's Model Set request field differ in any way from the collection of
codestreams for which the server is actually prepared to maintain cache model information. The set of codestreams for
which the server maintains cache model information should include all codestreams which are associated with the
server's response data (either those identified in the client's request, or those identified by the server's Codestream
response header, if any). Apart from those codestreams, the server's "mset" may be no larger than that identified by the
client's Model Set request field.

D.2.19 Needed capability (JPIP-cap)

JPIP-cap = "JPIP-cap" ":" LWSP 1#capability-code

This response header specifies that the client shall support a particular feature in order to interpret the logical target in a
conformant manner. Legal capabilities are the same as those defined for the Capability request field in Table C.6.

D.2.20 Unavailable preference (JPIP-pref)

JPIP-pref = "JPIP-pref" ":" LWSP 1#related-pref-set

This response header should be provided if and only if a Client Preferences request field contained a related-
pref-set with the "/r" modifier (required), which the server was unwilling to support. In this case, an error value
should also be returned for the response status code. The value string consists of one or more of the related-
pref-sets that could not be supported, repeated in exactly the same form as they appeared in the Client Preferences
request.

Although desirable, it is not necessary for this response header to list all of the required related-pref-sets that
cannot be supported. Thus, it is permissible for a server to walk into the Client Preferences request field only until it
encounters a related-pref-set which specifies "/r" and cannot be supported. See C.10.2.1 for more
information on when this response header is to be used.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 59

Table D.2 – Defined reason codes

Reason code Reason Explanation

1 Image done The server has transferred all available image information (not just information relevant to
the requested view-window) to the client. This reason code has a particular meaning to
session-based requests. For a session-based request, this reason code implies that the client
has received all data which could be sent in response to any session-based request associated
with this logical target. With the possible exception of requests which include cache
management requests fields, any subsequent session-based request will be responded with no
response data and R=1 EOR.

2 Window done The server has transferred all available information that is relevant to the requested view-
window. This reason code has a particular meaning to session-based requests. For a session-
based request, this reason code implies that the client has received all data which could be
sent in response to this request and the response data was not limited by any data-limit-field
(len or quality) in the request, or by the handling of a subsequent request. With the
possible exception of requests which include cache management request fields, any
subsequent repetition of the request will be responded with no response data and R=2 EOR.

3 Window change The server is terminating its response in order to service a new request which does not
specify Wait=yes.

4 Byte limit
reached

The server is terminating its response because the byte limit specified in a Maximum
Response Length request field has been reached.

5 Quality limit
reached

The server is terminating its response because the quality limit specified in a Quality request
field has been reached.

6 Session limit
reached

The server is terminating its response because some limit on the session resources, e.g., a
time limit, has been reached. No further request should be issued using a channel ID
associated with that session.

7 Response limit
reached

The server is terminating its response because some limit, e.g., a time limit, has been
reached. If the request is issued in a session, further requests can still be issued using a
channel ID associated with that session.

0xFF Non-specified
reason

The server is terminating its response for a reason that is not specified.

Other values Reserved for ISO use.

D.3 Response data

For anything other than the JPP- or JPT-stream image return types, including raw codestream, the response data should
consist of the requested entity in full. For JPP- or JPT-stream image return types, the response data consist of a
sequence of messages as defined in Annex A, terminated by a single EOR (End Of Response) message. The EOR
message is not defined in Annex A and is not formally part of the JPP- or JPT-stream media types.

An EOR message consists of a header and a body. The EOR message header consists of the single byte identifier, 0x00,
followed by a single byte reason code, R, and then a single VBAS byte count, indicating the number of bytes in the
body of the EOR message. This Recommendation | International Standard provides no normative interpretation for the
contents of the EOR message body.

Note that the EOR message body does not contribute to the byte count restriction associated with the Maximum
Response Length request field as defined in Annex C.

Note that the EOR message means that the server has delivered all the pertinent contents of the relevant data-bins for a
client request. This is not necessarily the entire contents of those data-bins. The response is terminated when a client
specified limit has been reached. If no limit was specified, then the EOR message would mean that all the contents of
the relevant data-bins have been served.

The reason codes are currently defined (see Table D.2).

ISO/IEC 15444-9:2005 (E)

60 ITU-T Rec. T.808 (01/2005)

Annex E

Uploading images to the server
(This annex forms an integral part of this Recommendation | International Standard)

E.1 Introduction

It is anticipated that images will be placed on a server in a variety of ways outside of the scope of this
Recommendation | International Standard. The purpose of this annex is to describe a mechanism that allows portions of
an image to be uploaded to a server.

E.2 Upload request

E.2.1 Request structure

An upload request consists of one or more request fields defined in Annex C, and a request body.

E.2.2 Upload request fields

The request fields for an upload shall contain an Upload request field. The Target, Sub-target and Target ID request
field (see C.2.2, C.2.3, and C.2.4) may also be used. For an upload of a complete image media type, the Frame Size,
Offset and Region Size request fields (see C.4.2, C.4.3, and C.4.4) are used to indicate the position of the uploaded
portion within the entire image. For uploads of JPT-stream and JPP-stream, the number of the data-bin (and hence the
tile or precinct number) along with the main header indicate the location of the coded data and the view-window request
fields are unnecessary.

E.2.3 Upload request body

E.2.3.1 General

The body of an upload request consists of one of the supported image types: JPP-stream, JPT-stream, or a complete
image media type. The body contains the data that the client is requesting to have handled by the server. This
Recommendation | International Standard does not support uploading raw image data.

E.2.3.2 JPT-stream

The body of the request contains all data-bins the client wants the server to replace (header data-bins, metadata-bins,
and tile data-bins). If the client does not upload a main header data-bin the tile data-bins shall be encoded in a
compatible manner with the current main header.

E.2.3.3 JPP-stream

The body of the request contains all data-bins the client wants the server to replace (header data-bins, tile header data-
bins, metadata-bins, and precinct data-bins). If the client does not upload a main header data-bin or tile header data-bin
the precincts shall be encoded in a compatible manner with the current main and tile-headers.

E.2.3.4 Complete image upload

The body of the request contains a complete image media type representing those samples the client wishes to modify.

In the case of a complete image upload, the request may include Frame Size, Region Size and Offset request fields. The
Frame Size request field shall be the size of the reference grid of the image. In the case of a complete image upload, the
compression need not be done in a compatible way with the logical target on the server. If the size of the uploaded
image exceeds the extent in the Region Size request field, the server should limit modifications to the extent specified in
the Region Size request field.

E.3 Server response

E.3.1 General

The server shall respond to an upload request with a status code and reason phrase from Annex D. Useful return codes
and reason phrases for image upload are presented in the following subclauses.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 61

E.3.2 201 (Created)

The server should use this status code if, upon receiving an upload request, a new resource has been defined on the
server. The server shall have completed the creation before returning this request. If there will be a delay, the server
should return 202 (Accepted) instead of 201 (Created).

The server should include a header with the response with a new target ID field for the updated resource.

No body need be returned.

E.3.3 202 (Accepted)

The server should use this status code if an upload creates a new resource but the server is not yet prepared to serve it.
The server may also use this status code for an update of a current resource.

E.3.4 400 (Bad request)

Servers should issue this status code if the request is incorrectly formatted, or if the query contains request fields that
are incompatible with uploading or contains an unrecognized field in the query string.

E.3.5 404 (Not found)

This status code should be issued if the server cannot reconcile the requested resource with an issued target ID.

E.3.6 415 (Unsupported media type)

This status code may be issued to indicate that while uploads are supported, uploads of the particular type (e.g.,
complete image, JPT-stream, or JPP-stream) included with the request are not supported.

E.3.7 501 (Not implemented)

This status might be used if the server does not support upload or does not support a particular option with upload.

E.4 Merging data on the server

E.4.1 Updating the image

After receiving the uploaded data, the server may create a new version of the logical target and provide the new version
to clients accessing a new or the old URL. However, the server shall not use the old Target ID request field to provide
access to any merged or updated data.

If the client includes a Target ID request field in the upload request and that target ID does not match the server's
current target ID for the resource, the server should not update the image. This mismatch may indicate the client has
edited a previous version of the image that has already been modified. Servers may refuse to accept uploads which do
not contain a Target ID request field. This is one way to prevent multiple simultaneous edits of a target by different
clients. Servers providing editing capabilities may take care of such issues as target locking by some other means.

A JPIP client may upload part of a new image by specifying a target ID of 0, or using a new URL, or target which the
server does not have. The server should issue a target ID for the upload. A client may continue to upload additional
portions of the new image by using the target ID returned by the server with the previous upload.

E.4.2 JPT-stream

A server accepting tile data-bin data shall first remove all the old tile data-bin data for those tiles being uploaded, and
then include the new tile data-bin data into the codestream. An update cannot be made that results in a change to the
number or dimension or location of tiles: the structure of the image cannot be changed by an upload. In particular, a
server should not accept tile data-bin uploads for a codestream containing a PPM marker segment in the main header,
unless the client provides a new main header with the upload. Any PLM or TLM marker segments shall be deleted or
updated. A JPT-stream main header data-bin shall be uploaded for new images.

How the codestream tile-parts from a tile data-bin are formed is not specified. The client need not necessarily provide
all tile-parts of a tile, nor need the last tile-part be completed. The server shall update the main header and any portions
of the file format affected (for example length of the codestream box).

When merging data, the number or size of tiles shall not be changed and data that is not replaced by the upload process
shall have the same meaning as it originally had before the upload.

ISO/IEC 15444-9:2005 (E)

62 ITU-T Rec. T.808 (01/2005)

E.4.3 JPP-stream

A server accepting precinct data-bin messages shall first remove the corresponding old precinct data-bins for those
precincts being uploaded, and then include the new precinct data-bin data. A change cannot be made to a header that
results in a change to the number of precincts, or the meaning of the precinct identifier, or the location or size of each
precinct within its tile-component-resolution. JPP-stream tile header data-bins and main header data-bins shall be
uploaded for new images.

How the precinct packets from a precinct data-bin are formed is not specified. The client need not necessarily provide
all packets of a precinct, or even complete the last provided packet.

When merging data, the number or size of precincts shall not be changed and data that is not replaced by the upload
process shall have the same meaning as it originally had before the upload.

E.4.4 JPP-stream and JPT-stream metadata-bins

Metadata-bin can be uploaded, replacing the contents in an existing metadata-bin. Since the server has control of the
division of allocating metadata into metadata-bins, the client shall follow the server's metadata-bin structure. The client
shall not change placeholders in a metadata-bin, except to completely remove a placeholder. When uploading an entire
metadata-bin, clients can add new metadata by appending to the end of the old metadata-bin, or by inserting new
metadata between boxes in the old metadata-bin. The server shall manage the placeholders and the metadata-bin
structure. This includes updating all placeholders pointing to any decedent metadata boxes that have been changed or
affected by the change. The server shall delete any metadata boxes that were pointed to by a placeholder that the client
has removed. The server may re-structure the metadata after an upload is accepted, but before the new resource is
created. If unused sections are left in the file after uploading, Free boxes shall be used to fill those sections.

E.4.5 Complete image upload

In the case of an acceptable complete image upload, the server should uncompress (if required) the uploaded sub-image,
uncompress some portion of the full image on the server, replace those pixels in the (uncompressed) spatial domain and
recompress all tiles or precincts affected by the update operation.

NOTE – This technique requires more computation on the server; however, it removes the possibility that the client will use
compressed image data in an incompatible way (e.g., the wrong number of levels of wavelet transform).

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 63

Annex F

Using JPIP over HTTP
(This annex forms an integral part of this Recommendation | International Standard)

F.1 Introduction

This annex defines the method to use JPIP with the HTTP for both requests and responses. The JPIP request parameters
from Annex C are encapsulated in legal HTTP request structures. The server responses (including status codes, headers,
messages, and response codes) from Annex D are encapsulated in legal HTTP responses. All requests and responses
shall be encoded as specified by the HTTP standard.

Note that the text and examples in this annex describe the use of JPIP over HTTP. It is expected that the same binding
can be used for secure HTTP.

F.2 Requests

F.2.1 Requests introduction

Annex C defines request fields. When transported via HTTP, the JPIP request can appear as a query string for an HTTP
"GET" request or as the body of an HTTP "POST" request. Because some HTTP systems limit the length of the query
string provided in a "GET" request, the "POST" request is preferred for long JPIP requests.

NOTE 1 – The HTTP Request is defined in section 5 of RFC 2616 as:

Request = Request-Line ; HTTP Section 5.1
 0*((general-header ; HTTP Section 4.5
 / request-header ; HTTP Section 5.3
 / entity-header) CRLF) ; HTTP Section 7.1
 CRLF
 [message-body] ; HTTP Section 4.3

NOTE 2 – The HTTP Request-Line and Request-URI are defined as:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Request-URI = "*" / absoluteURI / abs_path / authority

NOTE 3 – RFC 2396 defines:

absoluteURI = scheme ":" (hier_part / opaque_part)

hier_part = (net_path / abs_path) ["?" query]

abs_path = "/" path_segments

F.2.2 GET requests

A JPIP request can be provided to a server as a HTTP request. For a "GET" request the HTTP request is restricted in the
following manner:

– The "Method" shall be "GET".
– The "query" shall be zero or more jpip-request-field separated by '&' .

An example of a JPIP request encapsulated in an HTTP "GET" request is:

GET /images/kids.jp2?rsiz=640,480&roff=320,240&fsiz=1280,1024 HTTP/1.1

Host: get.jpeg.org

CRLF

An equivalent example using an absoluteURI instead of an abs_path is:

GET http://get.jpeg.org/images/kids.jp2?rsiz=640,480&roff=320,240
&fsiz=1280,1024 HTTP/1.1

CRLF

NOTE – This Recommendation | International Standard imposes no restriction on the scheme component of the absoluteURI.

ISO/IEC 15444-9:2005 (E)

64 ITU-T Rec. T.808 (01/2005)

F.2.3 POST requests

A JPIP request can be provided to a server encapsulated in an HTTP "POST" request. For a "POST" request the HTTP
request is restricted in the following manner:

– The "Method" shall be "POST".
– The "entity-body" shall be zero or more jpip-request-field separated by '&' .

– The "Content-type:" header line should be included as an "entity-header" and contain the value
"application/x-www-form-urlencoded".

An example of a JPIP request encapsulated in an HTTP "POST" request is:

POST /cgi-bin/j2k_server.cgi HTTP/1.1

Host: post.jpeg.org

Content-type: application/x-www-form-urlencoded

Content-length: 62

CRLF

target=/images/kids.jp2&rsiz=640,480&roff=320,240&fsiz=1280,1024

F.2.4 Upload requests

An upload request is a legal HTTP request restricted as follows:
– The "Method" shall be "POST".
– The URL shall contain the upload query-field.
– The Content-type shall be the image type of the body: image/jpt-stream, image/jpp-stream, or a complete

image media type.

An example of a JPIP upload request is:

POST /images/kids.jp2?rsiz=640,480&roff=320,240&fsiz=1280,1024 HTTP/1.1

Host: post.jpeg.org

Content-type: image/jpt-stream

CRLF

F.3 Session establishment

A session-based HTTP session is established by using the New Channel request field with a value of "http", i.e.,
"cnew=http" as part of a request. This request is typically delivered by HTTP. The request may contain a view-window
request that becomes the first request in the new channel. The response to this request is returned on the same
connection as the request was made.

A client may open an HTTP connection and issue a request which includes the HTTP header "Connection: keep-
alive." This is useful for efficient sessions, but it is neither necessary nor sufficient to have a session. A single HTTP
connection may be used for traffic for different targets, different channels, or even non-JPIP traffic, e.g., requests for
HTML files. A JPIP request that is part of a session may arrive on HTTP connections other than the HTTP connection
used to request and issue the new channel, although this is discouraged.

F.4 Responses

F.4.1 Introduction

Each component of a response from Annex D may be encapsulated as a portion of a legal HTTP response.
NOTE – The HTTP Response is defined in section 6 of RFC 2616 as:

Response = Status-Line ; HTTP Section 6.1
 0*((general-header ; HTTP Section 4.5
 / response-header ; HTTP Section 6.2
 / entity-header) CRLF) ; HTTP Section 7.1
 CRLF
 [message-body] ; HTTP Section 7.2

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 65

JPIP responses transported over HTTP shall be legal HTTP responses, with further limitations on some of the parts of
the HTTP response as described in the following subclauses.

F.4.2 Status code and reason-phrase

All of the status codes listed in D.1.3 may be used directly as HTTP status codes. In addition a server providing JPIP
over HTTP may use any HTTP status code deemed useful, e.g., 402.

All values for Reason-Phrase provided in D.1.3 may be used directly as HTTP Reason-Phrase. The Reason-Phrase shall
be appropriate for the status code. A server providing JPIP over HTTP may use any HTTP Reason-Phrase deemed
useful, e.g., Payment required.

F.4.3 Header information

F.4.3.1 JPIP headers

The header lines from D.2 shall be included as the "entity-header" in the HTTP response without modification.

F.4.3.2 Use of HTTP Accept header

A server providing JPIP over HTTP may use an HTTP "Accept:" header line found in a request to determine the type of
JPIP response. If the request contains a "type=" query parameter, the return type shall be one of the types listed in the
type parameter. If the request contains both a "type=" query parameter and an "Accept:" header line, the server may use
the priorities specified in the "Accept:" line to select between the types specified in the "type=" query parameter. If no
"type=" query parameter is present in the request, the server may select a return type supported by the underlying JPIP
server from the list of types in the "Accept:".

F.4.3.3 Use of Cache-Control header

Note that the caches in HTTP proxies are different from the caches and cache models in JPIP.

Any JPIP request with a New Channel request field is part of a session and such responses cannot generally be cached
by HTTP proxy servers. Similarly, any response which includes a New Channel response header is also part of a
session. In both cases, the server's response should include an HTTP "Cache-Control:" header line with the value "no-
cache".

F.4.3.4 Use of Content-type header

A server providing JPIP over HTTP should include a "Content-type:" header line, indicating the type of data in the
body, most commonly this is image/jpp-stream or image/jpt-stream.

F.4.3.5 Use of Redirect header

The HTTP Redirect header may be useful to inform a client that the resources has moved or should be accessed from a
different host.

Note that the JPIP response defines a way to do a redirect as well. The JPIP response should be preferred within a
session.

F.4.4 Body

The messages from Annex D shall be included as the body of the HTTP response. Note that a HTTP response shall
have a mechanism to determine the length of the response. If the server does not plan to interrupt a response, it may
provide this information with a "Content-Length" HTTP header line. The preferred method of providing the length is to
use the HTTP header line "Transfer-Encoding: chunked" and then to provide the body in chunks of a size determined by
the server and specified before each chunk. Indicating the end of a response by closing the HTTP connection is
discouraged.

F.5 Additional HTTP features

F.5.1 Use of HTTP HEAD method

JPIP clients and servers are not required to use or support the HTTP "HEAD" method. A server choosing to implement
the "HEAD" method shall do so as specified in Section 9.4 of RFC 2616. In particular, "The HEAD method is identical
to GET except that the server shall not return a message-body in the response."

Clients may find it useful to issue HTTP "HEAD" requests as a means to determine if the server will modify any of the
request parameters as specified in Annex D. Clients should not issue a HTTP "HEAD" request with cache model query
fields as this may cause the server to update its cache model.

ISO/IEC 15444-9:2005 (E)

66 ITU-T Rec. T.808 (01/2005)

Note a client wishing to update the server cache model without receiving a response may use the Maximum Response
Length request field.

Servers may refuse any or all "HEAD" requests. Unlike typical HTTP "HEAD" requests that require relatively little
effort for a server to fulfil, some JPIP server implementations might have to obtain data from several locations in a
logical target, compute the nature of the response, and then discard the body of the response in order to respond to a
"HEAD" request.

F.5.2 Use of HTTP OPTIONS method

JPIP clients and servers are not required to use or support the HTTP "OPTIONS" method.

F.5.3 Etag usage

Note that HTTP defines the entity tag (ETag) mechanism that is similar to the JPIP Target ID request field in that it is
used to denote changes in a resource. If both an entity tag and a target ID are associated with a resource, it is
recommended that the ETag defined by HTTP be changed whenever the target-id is changed.

F.5.4 Use of chunked transfer encoding

Because responses containing compressed data can be very large and thus take a long time to transmit, it is important to
be able to stop in the midst of transmission. Unless "Transfer-Encoding: chunked" is specified, HTTP requests shall
specify the full length of the body in a "Content-Length:" header or indicate the end of data by closing the connection.
Neither of these is desirable in an interactive protocol, since it may be necessary to stop the current response and send
more data on the same connection for a new response.

NOTE 1 – Section 19.4.6 of RFC 2616 provides an algorithm for removing the chunked transfer encoding.
NOTE 2 – Chunked transfer encoding may be useful with JPIP when delivered over protocols other than HTTP.

F.6 HTTP and length request field (informative)

With a HTTP return channel, the server does not receive continuous feedback from the client and may easily push a
great deal of data into the pipe, which shall be fully received before any data for a new window can be processed. To
maintain responsiveness, clients should use the Maximum Response Length request field to regulate the flow of traffic
and hence maintain responsiveness. Clients will generally need to implement their own flow control algorithms to
adjust the request length to changing network conditions.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 67

Annex G

Using JPIP with HTTP requests and TCP returns
(This annex forms an integral part of this Recommendation | International Standard)

G.1 Introduction

The JPIP protocol itself is neutral with respect to underlying transport mechanisms for the client requests and server
responses, except in regard to channel requests represented by the New Channel ("cnew") request field (see C.3.3) and
the New Channel ("JPIP-cnew") response header (see D.2.3), where transport-specific details shall be
communicated. This Recommendation | International Standard defines two specific transports, which are identified by
the strings "http" and "http-tcp" in the value string associated with New Channel requests. This annex provides
details of the second transport, which shall be identified in this text as HTTP-TCP. The first transport is identified in
this text as HTTP and is described in Annex F.

The HTTP-TCP transport uses exactly the same mechanisms as the HTTP transport to send client requests to the server
and receive the server's response headers and status codes. However, the server's response data (not the response
headers) is delivered over an auxiliary TCP connection. The information transported on this auxiliary TCP connection is
identical to that which would have been transported as the entity body of a pure HTTP response, except that it is framed
into chunks, each of which has a chunk sequence number.

The client explicitly acknowledges the arrival of each chunk by sending its sequence number back to the server on the
auxiliary TCP connection's return path. One of the principle benefits of the HTTP-TCP transport is that the server
receives incremental notification of the arrival of its response data chunks via this client acknowledgement mechanism.
This allows the server to manage the flow of data in such a way as to maintain responsiveness and network efficiency.

All requests sent over the HTTP transport shall be encoded as specified by the HTTP standard.

G.2 Client requests

Requests are delivered on the primary channel exactly as HTTP requests. They have exactly the same form as requests
issued over a channel that uses the HTTP transport described in Annex F. In particular, HTTP "GET" and "POST"
requests may both be used.

G.3 Session establishment

G.3.1 Channel establishment

A new channel may be established to a JPIP server by issuing a request that includes the New Channel request field
(see C.3.3). As an example, such a request might be issued using HTTP, although it might also be issued to a JPIP-
specific server using any suitable transport mechanism. If the server's response (through the New Channel response
header in D.2.3) indicates that a new channel has been created to work with the HTTP-TCP transport, the client shall
establish the auxiliary TCP connection using the auxiliary port number returned via the New Channel response header.
Furthermore, the request which included the New Channel request field is then treated as though it had been issued
within the newly created HTTP-TCP transported channel, meaning that the response data generated by that request shall
be returned via the auxiliary TCP connection, as soon as it has been connected.

To establish the auxiliary TCP connection, the client issues a TCP connection request to the server host identified via
the New Channel response header, on the port identified by the New Channel response header. The client then
immediately sends a single line of ASCII text, consisting of the new channel-id string, followed by two consecutive
CR-LF pairs. This is the only text-oriented communication delivered over the auxiliary TCP connection.

The client then waits to receive the server's response data over the auxiliary TCP connection. This response data cannot
be empty, since every request issued within an HTTP-TCP transported channel shall have a response data stream that
consists of at least the EOR message (see D.3). See G.4 for more on this.

G.3.2 Server framing of response data

All response data sent by the server via the auxiliary TCP connection shall be framed into chunks. Each chunk consists
of an 8-byte chunk header, followed by the chunk body that holds the server's response data, as shown in Figure G.1.
The first 2-byte word of the chunk header holds an unsigned big-endian integer representing the total length of the
chunk, including the length word itself. The contents of the remaining 6 bytes of the chunk header are not defined by
this Recommendation | International Standard. They may be used for additional server-specific signalling. The client
will return the entire 8-byte chunk header in its chunk acknowledgement messages.

ISO/IEC 15444-9:2005 (E)

68 ITU-T Rec. T.808 (01/2005)

Figure G.1 – Response data structure on http-tcp connection

G.3.3 Client acknowledgement of server response chunks

Upon receipt of a server response data chunk on the auxiliary TCP connection, the client shall send the 8-byte chunk
header back to the server as an unframed stream of data, using the TCP connection's return path. Each received chunk is
to be acknowledged in sequence.

G.4 Server responses

In response to each client request, the server sends an HTTP reply paragraph back to the client over the primary
channel. The reply paragraph contains the status code, reason phrase and all relevant JPIP response headers and any
appropriate HTTP response headers. However, no response data is returned via the primary channel. For this reason,
there shall be no HTTP entity body in an HTTP-TCP response. Neither shall the "Content-length:" or the "Transfer-
encoding:" HTTP response headers be used.

The response data itself is delivered over the auxiliary TCP channel, framed into chunks in the manner described
in G.3.2. Since the HTTP-TCP transport may be used only with sessions and hence only with JPP-stream and JPT-
stream image return types, the response data invariably consists of a sequence of JPP-stream or JPT-stream messages.

The response data resulting from each request shall consist of a whole number of chunks, meaning that no chunk may
contain response data generated in response to two different requests.

The response to each and every request shall be terminated with an EOR message (see D.3), even if the response data
would otherwise have been empty. The EOR message is considered as part of the response data and is framed into
chunks along with the actual JPP-stream and JPT-stream messages.

This means that every request issued on an HTTP-TCP transported JPIP channel results in the generation of at least one
non-empty response chunk from the server and that the last chunk generated in response to each request terminates with
the EOR message.

Note that there is no actual requirement for HTTP-TCP transported response chunks to be aligned on message
boundaries.

G.5 TCP and length request field (informative)

There may be little or no reason for using the Maximum Response Length request field with a TCP return channel,
where the server is able to carefully regulate the flow of response data to the client so as to maintain responsiveness.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 69

Annex H

Using JPIP with alternate transports
(This annex does not form an integral part of this Recommendation | International Standard)

H.1 Introduction

This Recommendation | International Standard does not define any specific transport protocol other than the "http"
transport described in Annex F and the "http-tcp" transport described in Annex G. The purpose of this annex is to
provide guidelines on the deployment of JPIP over unreliable transports and provides a generic approach which may be
applied to a wide variety of transports.

In developing the general approach, it is helpful to divide aspects of the communication into two logical transport
connections, termed the "request connection" and the "data connection". Each logical connection is understood to
provide both a forward communication path and a reverse communication path. The roles played by these paths are as
follows:

– The forward request connection path is used to deliver JPIP requests from the client to the server.
– The reverse request connection path is used by the server to acknowledge the receipt of requests and

return response headers to the client.
– The forward data connection path is used to deliver JPIP stream messages from the server to the client.
– The reverse data connection path is used by the client to acknowledge receipt of JPIP stream messages

from the server.

The reader will observe that these roles are consistent with those served by the forward and reverse communication
paths of the two TCP channels used by the "http-tcp" transport described in Annex G. Indeed the material in this annex
may be interpreted as an extension of the "http-tcp" transport to unreliable transports. Note, however, that although this
annex is described in terms of two different logical connections, there is no reason why the communication cannot be
carried over a single transport connection.

Finally, it is assumed that each logical connection provides one of the following two types of services:
a) A reliable stream-oriented service, such as that offered by TCP.
b) An unreliable packet-oriented service, such as that offered by UDP. In this case, packets may arrive out

of order or not at all, and acknowledgement handshaking shall be implemented explicitly so as to
determine whether or not a packet has arrived successfully.

Two scenarios are considered in this annex. In the first case, the request connection path is assumed to offer a reliable
stream-oriented service, but the data connection path is unreliable. In the second case, both the request and data
connection paths are unreliable. It is helpful to treat these two scenarios in order.

H.2 Reliable requests with unreliable data

In this subclause, the request connection is reliable, meaning that requests arrive at the server in order without loss, and
server responses are received by the client in order and again without loss. In this case, the request fields and response
headers may be communicated exactly as in the "http-tcp" protocol, and indeed HTTP is recommended for the transport
of requests and response headers. A transport protocol of this flavour might, for example, be named "http-udp", but such
specifics are beyond the scope of this annex.

The JPIP stream messages, including the EOR message (see D.3), shall be partitioned into packets and delivered over
the unreliable data connection (e.g., over UDP). The client shall acknowledge receipt of each such packet by sending
the packet's header back to the server. This enables the server to estimate network conditions, and determine whether or
not packet retransmission is justified. In the event that the client's view-window has changed, the server might decide
not to retransmit an unacknowledged packet.

The following general guidelines should be observed when constructing transport protocols of this type:
a) Each request should include a Request ID request field (see C.3.5).
b) For each request, there shall be a corresponding EOR message, even if no JPIP stream messages are sent

in response to the request. This requirement also applies in the case of the "http-tcp" transport.
c) Each data connection packet constructed by the server shall consist of a whole number of JPIP stream

messages and/or EOR messages. Moreover, the first JPIP stream message in each packet shall contain a
complete header, not relying upon repetition of the codestream identifier or class code components of a
previous message.

ISO/IEC 15444-9:2005 (E)

70 ITU-T Rec. T.808 (01/2005)

d) All JPIP stream messages (not necessarily EOR messages) found in a data connection packet shall
belong to the response from a single request, and the corresponding Request ID shall be encoded in the
packet's header.

e) EOR messages may be found either at the end of a packet bearing the same Request ID value as the
request whose response is being ended, or in a block of one or more consecutive EOR messages found at
the start of the first packet following the last packet bearing that Request ID. This policy allows EOR
messages corresponding to one or more consecutive empty responses (e.g., due to pre-empted requests)
to be bundled into the first packet of the subsequent non-empty response.

f) In addition to the Request ID value, each packet header should include a packet sequence number. The
packet sequence counter is set to 0 for the first packet associated with any particular Request ID value.
Subsequent packets with the same Request ID value have consecutive sequence numbers. This policy
allows a client to identify any EOR messages which might not have been received due to packet loss. It
is important that a client be able to associate requests with response data, so as to synchronize the effects
of cache model manipulation statements at the server with the state of their own cache.

g) Clients shall acknowledge the receipt of each packet by sending acknowledgement messages to the
server on the response data connection path. Each acknowledgement message should contain a replica of
the received packet's header, but might conceivably contain additional information. The client may, at its
discretion, aggregate acknowledgement messages to several packets when constructing
acknowledgement packets. However, excessive aggregation may affect the reliability with which servers
can estimate network statistics.

h) The server is not obliged to retransmit any unacknowledged packet and clients should not expect
retransmission of missing packets. An intelligent server might, for example, choose to retransmit
unacknowledged packets depending upon their relevance to the current view-window.

H.3 Unreliable requests with unreliable data

This subclause is concerned with transports where both the request and data connections are unreliable. Guidelines for
the data connection are exactly as described in H.2 for the case where data are delivered unreliably. With an unreliable
request connection, however, it is possible that one or more requests might be lost or arrive out of order at the server.
JPIP is well adapted to handling this situation, since servers have the freedom to pre-empt previous requests when a
new request arrives.

The following general guidelines should be observed when handling unreliable requests, in addition to those listed
in H.2 for unreliable data connections.

a) Each request packet should include a header, identifying the value of the Request ID.
b) Each request packet should also include a sequence number, carrying sufficient information to determine

whether or not all packets associated with a request have been received.
c) In many cases, servers can simply ignore missing request packets when a new request arrives. To do this,

the server has only to send EOR messages on the data connection, indicating that the missing request was
pre-empted immediately. There is no need for an acknowledgement messages to be sent in response to
request packets. There is no need for any response headers to be sent in response to requests which are
being immediately pre-empted because some or all of the request packets were lost.

d) For each request which arrives in full at the server, the server should send one or more response packets
which identify the Request ID and include any response headers. This is true even if the request arrives
after the response was issued to any subsequent requests (e.g., because some packets of the request were
unduly delayed). This provides the client with a mechanism for determining whether or not an important
request was received by the server.

e) Certain types of requests shall be processed by the server to avoid loss of synchronization with the client.
The most important of these are requests which include subtractive cache model manipulation fields. To
enable the server to detect such requests, without having to fully serialize the request stream, request
packet headers should include the following two fields:
1) A flag indicating whether or not the packet belongs to a request which shall be processed before

processing subsequent requests.
2) The Request ID associated with the most recent request for which the flag mentioned in e1 was set.

 If the server does not receive one or more packets of a request with flag e1 set (i.e., requests with
condition e2 arrive and the request with flag e1 is missing), it shall idle until the client retransmits the
packets.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 71

H.4 Request and response syntax

The request and response syntax described in Annexes C and D should be followed when designing new transports for
the JPIP protocol. However, it is permissible to develop equivalent binary representations of various request fields and
response headers.

H.5 Session establishment

The New Channel request field (see D.2.3) and corresponding response header may be used to create channels
associated with transport protocols other than the "http" and "http-tcp" transports described normatively in this
Recommendation | International Standard. For this purpose, new transport protocol names may be registered with the
registration board defined in Annex J. The procedure for creating channels for new transports should follow the same
general conventions outlined for "http-tcp". In particular, the response headers for the request which creates the new
channel should be returned on the transport which was used to create the channel, while response data should be
delivered using the new channel's transport.

ISO/IEC 15444-9:2005 (E)

72 ITU-T Rec. T.808 (01/2005)

Annex I

Indexing JPEG 2000 files for JPIP
(This annex forms an integral part of this Recommendation | International Standard)

I.1 Introduction (informative)

ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 and other standards define a family of JPEG 2000 file formats. The family
utilizes a common syntax, whose basic element is the container called a box. This annex defines new file format boxes
containing indexing information, the inclusion of which in JPEG 2000 family files may facilitate the deployment of
those files in a JPIP system, by enabling file readers to locate within the files the elements that are required to construct
images incrementally.

In particular, these boxes may be useful:
– to a server-side implementation of the JPIP protocol;
– to a client accessing an image remotely, using a simpler protocol, which allows access to specified byte-

ranges of the file.

This annex defines index boxes corresponding to both file-level information and codestream information. The boxes
may be categorized as follows:

– The Codestream Index (cidx) superbox indexes codestream information corresponding to the main
header, tile header, tile and precinct data-bin classes of the JPP-stream and JPT-stream. It contains a
Codestream Finder (cptr) box pointing to the indexed codestream, a Manifest (manf) box summarizing
the rest of the contents, and index table boxes, which are the Header Index Table (mhix) box, the Tile-
part Index Table (tpix) superbox, the Tile Header Index Table (thix) superbox, the Precinct Packet Index
Table (ppix) superbox and the Packet Header Index Table (phix) superbox. The index table boxes
correspond to the different types of codestream data represented by data-bin classes in the JPP-stream
and the JPT-stream defined in Annex A. The index table boxes which are superboxes contain Fragment
Array Index (faix) boxes or Header Index Table listing the actual codestream elements. The Header
Index Table, Precinct Packet and Packet Header index table superboxes also each contain a Manifest
box.

– The File Index (fidx) superbox indexes file-level information corresponding to the metadata-bin class of
the JPP-stream and JPT-stream. Unless it indexes the top level of the file, in which case it is called a root
File Index box, it contains a File Finder (fptr) box pointing to the indexed superbox. It may contain
Proxy (prxy) boxes representing the contents of the indexed file or superbox.

– The Index Finder (iptr) box points to a root File Index, enabling its location to be discovered.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 73

Figure I.1 illustrates an example JPEG 2000 file containing JPIP index boxes:

Figure I.1 – Part of an example JPEG 2000 file containing JPIP index boxes

I.2 Identifying the use of JPIP index boxes in the JPEG 2000 file format compatibility list

Files that contain one or more of the index boxes defined in this Recommendation | International Standard may contain
a CLi field in the File Type box (as defined in Annex I of ITU-T Rec. T.800 | ISO/IEC 15444-1) with the value 'jpip'
(0x6a70 6970).

I.3 Defined boxes

I.3.1 General

Table I.1 lists all boxes defined as part of this Recommendation | International Standard. For the placement of and
restrictions on each box, see the relevant subclause defining that box.

Table I.1 is informative. Normative definitions of each box are contained within the individual subclauses referenced in
the table.

ISO/IEC 15444-9:2005 (E)

74 ITU-T Rec. T.808 (01/2005)

Table I.1 – Defined boxes (Informative)

Box name Type Superbox Comments

Codestream index box
(I.3.2)

'cidx'
(0x6369 6478)

Yes This box contains indexing information about a JPEG 2000
codestream.

Codestream Finder box
(I.3.2.2)

'cptr'
(0x6370 7472)

No This box points to a JPEG 2000 codestream.

Header Index Table box
(I.3.2.4.3)

'mhix'
(0x6D68 6978)

No This box specifies an index of the marker segments in the
main header of a codestream or the tile-part headers of a
tile.

Tile-part Index Table box
(I.3.2.4.4)

'tpix'
(0x7470 6978)

Yes This box specifies the locations and lengths of each tile-
part in the codestream.

Tile Header Index Table
box
(I.3.2.4.5)

'thix'
(0x7468 6978)

Yes This box specifies the locations and lengths of each part of
the codestream necessary to construct tile headers for each
tile for the correct decoding of precinct packet data.

Precinct Packet Index
Table box
(I.3.2.4.6)

'ppix'
(0x7070 6978)

Yes This box specifies the locations and lengths of packets
within the codestream.

Packet Header Index
Table box
(I.3.2.4.7)

'phix'
(0x7068 6978)

Yes This box specifies the locations and lengths of packet
headers within the codestream.

Manifest box (I.3.2.3) 'manf'
(0x6D61 6E66)

No This box summarizes the boxes that immediately and
contiguously follow it, within its containing box or file at
the same level as the Manifest box.

Fragment Array Index box
(I.3.2.4.2)

'faix'
(0x6661 6978)

No This box specifies the locations and lengths of the elements
of a codestream.

File Index box
(I.3.3)

'fidx'
(0x6669 6478)

Yes This box can be used to find other indexes and arbitrary
data within the file

File Finder box
(I.3.3.2)

'fptr'
(0x6670 7472)

No This box points to an indexed box

Proxy box
(I.3.3.3)

'prxy'
(0x7072 7879)

No This box represents in a File Index box a box elsewhere in
the file

Index Finder box
(I.3.4)

'iptr'
(0x6970 7472)

No This box points to the root File Index box of a file.

I.3.2 Codestream Index box (superbox)

I.3.2.1 General

The Codestream Index box contains indexing information about a JPEG 2000 codestream. The type of a Codestream
Index box shall be 'cidx' (0x6369 6478). The contents of a Codestream Index box shall be as follows (Figure I.2):

Figure I.2 – Organization of the contents of a Codestream Index box

cptr: Codestream Finder box. This box points to the codestream indexed by the Codestream Index box.
Its structure is specified in I.3.2.2.

manf: Manifest box. This box summarizes the index tables following it inside the Codestream Index box.
Its structure is specified in I.3.2.3.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 75

I.3.2.2 Codestream Finder box

The Codestream Finder box points to a JPEG 2000 codestream. The type of a Codestream Finder box shall be 'cptr'
(0x6370 7472). The contents of a Codestream Finder box shall be as follows (Figure I.3):

Figure I.3 – Organization of the contents of a Codestream Finder box

DR: Data Reference. This field specifies the location of the codestream, or of the Fragment Table box
standing for it. If 0, the codestream or its Fragment Table box exists in the current file. Otherwise,
the quantity identifies an entry in the Data Reference box in the current file. In this case, the Data
Reference entry identified by DR indicates the resource that contains the codestream or Fragment
Table box. This field is stored as a 2-byte big endian unsigned integer.

CONT: Container Type. This field is stored as a 2-byte big endian unsigned integer. The values defined in
this Recommendation | International Standard are described in Table I.2.

COFF: Codestream Offset. This field specifies the location of the codestream or Fragment List box, as
appropriate, relative to the start of the file or resource identified by DR. This field is stored as an 8-
byte big endian unsigned integer.

CLEN: Codestream Length. This field specifies the length of the codestream or Fragment List box, as
appropriate. This field is stored as an 8-byte big endian unsigned integer.

Table I.2 – Container type values

CONT Meaning

0 The entire codestream appears as a contiguous range of bytes within its file or resource. In this case, the
offset and length values given here refer to the codestream itself. Note that the codestream may well be
within a Contiguous Codestream box, but the offset and length values refer to the codestream itself,
starting at the SOC marker and ending immediately after the EOC marker.

1 The codestream is fragmented and the location and length values refer to the Fragment List box
(including its box header) describing the locations and lengths of each of the fragments that represent
the codestream. Note that all subsequent locations and lengths are expressed relative to the start of the
codestream, as it would appear after reconstituting all of the fragments identified in the Fragment List
box.

All other values Reserved for ISO use.

I.3.2.3 Manifest box

The Manifest box summarizes the boxes that immediately and contiguously follow it, within its containing box or file at
the same level as the Manifest box.

NOTE – The Manifest box may be used to facilitate random access into these following boxes, such as the index boxes following
it inside a Codestream Index box.

The type of a Manifest box shall be 'manf' (0x6D61 6E66). The contents of the Manifest box shall be as follows
(Figure I.4):

Figure I.4 – Organization of the contents of a Manifest box

BHi: Box Header. This field contains the complete box header of the ith box immediately following the
Manifest box. The length of this field is 16 bytes if the value of the LBox field contained within that
box header is 1, or 8 bytes otherwise.

ISO/IEC 15444-9:2005 (E)

76 ITU-T Rec. T.808 (01/2005)

The number of boxes, N, whose headers are contained within the Manifest box, is determined by the length of the
Manifest box. When used inside a Precinct Packet Index Table box or a Packet Header Index Table box, N is the
number of codestream components.

Inside a Codestream Index box, a Tile Header Index Table box, a Precinct Packet Index Table box or a Packet Header
Index Table box, a Manifest box shall include all of the boxes that follow it, up to the end of the containing box.

I.3.2.4 Index tables

I.3.2.4.1 General

The Codestream Index box may contain an index table for each of the following kinds of codestream data: main header,
tile-parts, tile headers, (precinct) packets and packet headers. Each index table is a different type of box. There shall be
no more than one of each kind of table in a Codestream Index box.

The Tile-part Index Table, Precinct Packet Index Table and Packet Header Index Table boxes are superboxes containing
Fragment Array Index boxes. The Tile Header Index Table box is a superbox containing Header Index Table boxes.
Below we define first the Fragment Array Index box and then the Index Table boxes.

I.3.2.4.2 Fragment Array Index Box

The Fragment Array Index box lists the locations and lengths of the elements of a codestream. It is used within the Tile-
part Index Table, Precinct Packet Index Table and Packet Header Index Table superboxes.

The type of a Fragment Array Index box shall be 'faix' (0x6661 6978). The contents of the Fragment Array Index box
shall be as follows (Figure I.5):

Figure I.5 – Organization of the contents of a Fragment Array Index box

V: Version. This field is encoded as a 1-byte unsigned integer. The values defined in this
Recommendation | International Standard are described in Table I.3.

NMAX: Maximum number of valid elements in any row of the array. When used inside a codestream index
table, NMAX is the maximum number of elements that will be specified for any tiles.

M: Number of rows of the array. When used inside a codestream index table, M is the number of tiles.
OFFi,j: Offset. This field specifies the offset in bytes (relative to the start of the codestream) of the

jth element in row i of the array.
LENi,j: Length. This field specifies the length in bytes of the jth element in row i of the array.
AUXi,j: Auxiliary. This field specifies auxiliary information about the jth element in row i of the array. The

value of this field shall be zero unless otherwise permitted by the superbox containing this box. All
nonzero values of this field are reserved.

While all rows of the array specified in the Fragment Array Index box shall be stored with NMAX number of elements,
the object being described by that row may have a smaller number of elements to specify. In this case, where for any
row i containing J valid elements where J is less than NMAX, the values of OFFi,J to OFFi,NMAX–1 and LENi,J to
LENi,NMAX–1 shall be set to zero.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 77

Table I.3 – Version values

CONT Meaning

0 NMAX, M and all OFFi,j and LENi,j fields are encoded as 4-byte big endian unsigned integers and
AUXi,j fields are not present.

1 NMAX, M and all OFFi,j and LENi,j fields are encoded as 8-byte big endian unsigned integers and
AUXi,j fields are not present.

2 All fields other than V are encoded as 4-byte big endian unsigned integers.
3 NMAX, M and all OFFi,j and LENi,j fields are encoded as 8-byte big endian unsigned integers and

all AUXi,j fields are encoded as 4-byte big endian unsigned integers.
All other values Reserved for ISO use.

I.3.2.4.3 Header Index Table Box

The Header Index Table box indexes the main header of a codestream or the tile-part headers of a tile, indicating the
total main header length or first tile-part length and the locations and lengths of marker segments in the header. All
marker segments shall be included, except that the SOT marker segment may be omitted for tile-part headers that
consist of only SOT and SOD. Marker segments need not be listed in the order in which they occur in the codestream.
The Header Index Table box may occur only inside a Codestream Index box. At the top level, it indexes a codestream
and shall occur no more than once. Inside a Tile Header Index Table box, it indexes tile-part headers.

NOTE – The intent is to provide an efficient means for skipping over pointer information in the header, which is not required for
efficiently browsing the file but may unnecessarily bulk out the header. Listing multiple marker segments with the same marker
code contiguously in the Header Index Table box will allow readers to skip over groups of marker segments in which they are not
interested.

The type of a Header Index Table box shall be 'mhix' (0x6D68 6978). The contents of the Header Index Table box shall
be as follows (Figure I.6):

Figure I.6 – Organization of the contents of a Header Index Table box

TLEN: Length. When the Header Index Table box indexes a main header, this field specifies the total
length of the main header. When the Header Index Table box indexes tile-part headers, this field
specifies the total length of the first tile-part header. The value of this field is encoded as an 8-byte
big endian unsigned integer.

Mi: Marker code. This field specifies the marker code beginning the ith marker segment listed in this
box. The value of this field is encoded as a 2-byte big endian unsigned integer.

NRi: Number remaining. This field indicates that (at least) NRi marker segments with the same marker
code Mi are listed immediately and contiguously following the ith marker segment in this list. The
value of this field is encoded as a 2-byte big endian unsigned integer.

OFFi: Offset. This field specifies the offset in bytes, relative to the start of the codestream, of the marker
segment parameters (including the length parameter but not the marker itself) for the ith marker
segment in this list. The value of this field is encoded as an 8-byte big endian unsigned integer.

LENi: Length. This field specifies the length in bytes of the marker segment parameters (including the two
bytes of the length parameter but not the two bytes of the marker itself) for the ith marker segment
in this list. The value of this field is encoded as a 2-byte big endian unsigned integer, and is the
same as the value of the length parameter in the marker segment itself.

The number of marker segments, N, listed in the Header Index Table box, is determined by the length of the Header
Index Table box.

I.3.2.4.4 Tile-part Index Table box (superbox)

The Tile-part Index Table box indexes the locations and lengths of each tile-part in the codestream, where each tile-part
commences with its SOT marker and finishes with the last packet of the tile-part.

ISO/IEC 15444-9:2005 (E)

78 ITU-T Rec. T.808 (01/2005)

The type of a Tile-part Index Table box shall be 'tpix' (0x7470 6978). The contents of the Tile-part Index Table box
shall be as follows (Figure I.7):

Figure I.7 – Organization of the contents of a Tile-part Index Table box

faix: Fragment Array Index box. This box lists the locations and lengths of all the tile-parts in the
codestream. Its structure is specified in I.3.2.4.2. The mth row in this table corresponds to the mth
tile in the codestream. The entries on this row hold the locations and lengths of all the tile-parts in
the corresponding tile, in codestream order. If the Fragment Array Index box has Version equal to 2
or 3, the Auxiliary fields specify for each tile-part the smallest n such that, in all components for
which (NL – n) is non-negative, resolution level (NL – n) and all lower resolution levels have been
completed when this tile-part is combined with all preceding tile-parts of the same tile, where NL is
the number of decomposition levels, which may vary by component. If no resolution levels of any
component have been completed, the value of the Auxiliary field is one plus the maximum value of
NL across all components. The value zero is reached when all resolutions in all components have
been completed. Because resolutions do not necessarily appear in order in a tile, some resolution
levels above the value signalled by the Auxiliary field may have been completed.

I.3.2.4.5 Tile Header Index Table box (superbox)

The Tile Header Index Table box indexes the tile headers of each tile, for the correct decoding of precinct packet data.

The type of a Tile Header Index Table box shall be 'thix' (0x7468 6978). The contents of the Tile Header Index Table
box shall be as follows (Figure I.8):

Figure I.8 – Organization of the contents of a Tile Header Index Table box

The number of Header Index Table boxes, N, is the number of tiles.
manf: Manifest box. This box summarizes the boxes specified by mhixi inside this Tile Header Index

Table box. Its structure is specified in I.3.2.3.
mhixi: Header Index Table box. This box indexes the tile-part headers for the ith tile. Its structure is

specified in I.3.2.4.3.

I.3.2.4.6 Precinct Packet Index Table box (superbox)

The Precinct Packet Index Table box indexes the packets within the codestream. The type of a Precinct Packet Index
Table box shall be 'ppix' (0x7070 6978). The contents of the Precinct Packet Index Table box shall be as follows
(Figure I.9):

Figure I.9 – Organization of the contents of a Precinct Packet Index Table box

The number of Fragment Array Index boxes, N, shall be no greater than the number of codestream components.
manf: Manifest box. This box summarizes the boxes specified by faixi inside this Precinct Packet Index

Table box. Its structure is specified in I.3.2.3.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 79

faixi: The ith Fragment Array Index box corresponds to the ith image component in the codestream. The
mth row in this table corresponds to the mth tile in the codestream. The entries on this row hold the
locations and lengths of all packets in the corresponding tile-component. Packets appear
contiguously, ascending in layer order, within their respective precincts, and precincts appear in the
order associated with the sequence number s, defined in A.3.2.1. However, the fixed order of the
packets is not necessarily the same as that specified in any COD/POC marker segments within the
codestream. The structure of the Fragment Array Index box is specified in I.3.2.4.2.

If packet headers are packed into PPM or PPT marker segments, the corresponding entries in the fragment array refer to
the location and length of the packet body only, as it appears inside its tile-part body. Entries that refer to non-existent
packets (either because the relevant tile-component contains fewer packets than another tile-component in the same
array, or because the codestream has been truncated prior to the point at which that packet would have existed) should
have their location field set to zero. Entries that refer to packets whose body is empty and whose header consists of
exactly one byte, 0x80, may be identified using a length value of zero. Such packets occur frequently in JPEG 2000
codestreams; applications may avoid the overhead of explicitly fetching such packets whose content is predictable. If
the relevant COD marker segment specifies that EPH markers are to appear after each packet header in some tile, the
special length value of zero shall be interpreted in that tile as meaning that the packet consists of the 0x80 byte followed
by the EPH marker.

I.3.2.4.7 Packet Header Index Table box (superbox)

The Packet Header Index Table box indexes the packet headers within the codestream. The type of a Packet Header
Index Table box shall be 'phix' (0x7068 6978). The contents of the Packet Header Index Table box shall be as follows
(Figure I.10):

Figure I.10 – Organization of the contents of a Packet Header Index Table box

The number of Fragment Array Index boxes, N, shall be no greater than the number of codestream components.
manf: Manifest box. This box summarizes the boxes specified by faixi inside this Packet Header Index

Table box. Its structure is specified in I.3.2.3.
faixi: The ith Fragment Array Index box corresponds to the ith image component in the codestream. The

mth row in this table corresponds to the mth tile in the codestream. The entries on this row hold the
locations and lengths of all packet headers in the corresponding tile-component. Packet headers
appear contiguously, ascending in layer order, within their respective precincts, and precincts appear
in the order associated with the sequence number s, defined in A.3.2.1. However, the fixed order of
the packet headers is not necessarily the same as that specified in any COD/POC marker segments
within the codestream. The structure of the Fragment Array Index box is specified in I.3.2.4.2.

Entries that refer to non-existent packet headers (either because the relevant tile-component contains fewer packets than
another tile-component in the same array, or because the codestream has been truncated prior to the point at which that
packet header would have existed) should have their location field set to zero. Entries that refer to packets whose body
is empty and whose header consists of exactly one byte, 0x80, may be identified using a length value of zero. Such
packets occur frequently in JPEG 2000 codestreams; applications may avoid the overhead of explicitly fetching such
packets whose content is predictable. If the relevant COD marker segment specifies that EPH markers are to appear
after each packet header in some tile, the special length value of 0 shall be interpreted in that tile as meaning that the
packet consists of the 0x80 byte followed by the EPH marker.

I.3.3 File Index box (superbox)

I.3.3.1 General

The File Index box can be used to find other indexes (in particular, the codestream index corresponding to a
codestream) and arbitrary data within the file.

A root File Index box indexes the top level of the file. Any other File Index box indexes a superbox within the file.
There shall be at most one File Index box with a given scope (top level or a particular superbox) within a given file.

ISO/IEC 15444-9:2005 (E)

80 ITU-T Rec. T.808 (01/2005)

The type of a File Index box shall be 'fidx' (0x6669 6478). The contents of the File index box shall be as follows
(Figure I.11):

Figure I.11 – Organization of the contents of a File Index box

fptr: File Finder box. A root File Index box shall not include this box. Any other File Index box shall
include this box, which shall point to the superbox indexed by the File Index box. The structure of
the File Finder box is defined in I.3.3.2.

prxyi: Proxy box. This box represents a box in the portion of the file indexed by the File Index box. A root
File Index box shall include proxies only for boxes at the top-level of the file. Any other File Index
box shall include proxies only for boxes at the top level of the superbox indexed by the File Index
box. The proxies shall occur in the same order as the boxes, but not all boxes need be proxied. The
structure of the Proxy box is defined in I.3.3.3.

NOTE – Because in some cases the presence, absence, or ordering of boxes in the file is significant, it may be helpful to
applications if, preceding any such proxied boxes, no boxes within the scope of the index are omitted from the index.

I.3.3.2 File Finder box

The File Finder box points to a box. The type of a File Finder box shall be 'fptr' (0x6670 7472). The contents of a File
Finder box shall be as follows (Figure I.12):

Figure I.12 – Organization of the contents of a File Finder box

OOFF: Original Offset. This field specifies the offset in bytes (relative to the start of the file) of the box
pointed to by this File Finder box. The value of this field is encoded as an 8-byte big endian
unsigned integer.

OBH: Original Box Header. This field contains the complete box header of the box pointed to by this File
Finder box. The length of this field is 16 bytes if the value of the LBox field contained within that
box header is 1, or 8 bytes otherwise.

I.3.3.3 Proxy box

The Proxy box represents in a File Index box a box elsewhere in the file, indicating its location and length, the location
and length of any index to the box, and a prefix of the contents of the box.

The type of a Proxy box shall be 'prxy' (0x7072 7879). The contents of the Proxy box shall be as follows (Figure I.13):

Figure I.13 – Organization of the contents of a Proxy box

OOFF: Original Offset. This field specifies the offset in bytes (relative to the start of the file) of the box
represented by this Proxy box. The value of this field is encoded as an 8-byte big endian unsigned
integer.

OBH: Original Box Header. This field contains the complete box header of the box represented by this
Proxy box. The length of this field is 16 bytes if the value of the LBox field contained within that
box header is 1, or 8 bytes otherwise.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 81

NI: Number of Indexes. This field indicates the number of index pointers included in this Proxy box.
Each set of subsequent IOFFi, and IBHi fields points to either a File Index or a Codestream Index
box that indexes the box represented by this Proxy box. All other values are reserved. The value of
this field is encoded as a 1-byte unsigned integer.

IOFFi: Index Offset. This field contains the offset in bytes (relative to the start of the file) of the ith index
box. The value of this field is encoded as an 8-byte big endian unsigned integer.

IBHi: Index Box Header. This field contains the complete box header of the ith index box. The length of
this field is 16 bytes if the value of the LBox field contained within that box header is 1, or 8 bytes
otherwise.

PREF: Prefix. This field contains an arbitrary prefix of the data in the box represented by this Proxy box. It
may have any length from zero up to the length of the content of the original box.

I.3.4 Index Finder box

The Index Finder box points to the root File Index box of a file. It shall occur only if the file contains a root File Index
box. The type of an Index Finder box shall be 'iptr' (0x6970 7472). The contents of an Index Finder box shall be as
follows (Figure I.14):

Figure I.14 – Organization of the contents of an Index Finder box

OFF: Offset. This field specifies the location of the root File Index box relative to the start of the file. This
field is stored as an 8-byte big endian unsigned integer.

LEN: Length. This field specifies the size of the root File Index box. This field is stored as an 8-byte big
endian unsigned integer.

I.4 Association of codestream indexes with codestreams

In a JP2, JPX or JPM file, the Codestream Index box shall occur at the top level of the file and the ith Codestream Index
box shall correspond to the ith codestream, also at the top level of the file. The Codestream Finder box within the
Codestream Index box also indicates the codestream that is indexed by the Codestream Index box.

I.5 Placement restrictions (informative)

Few placement restrictions have been imposed on the boxes defined in this annex. They may be placed at the end of the
file if desired; this is likely to be convenient when a non-indexed file is subsequently indexed. However, it may be
helpful to place the Index Finder box near the beginning of the file, preferably immediately after any boxes that are
required to be in a contiguous group at the beginning of the file (such as after the File Type box in a JP2 file or after the
Reader Requirements box in a JPX file), where it may easily be found by file readers. To minimize the movement of
file boxes, on the addition of this box and optionally the addition of a 'jpip' code to the compatibility list in the File Type
box, a Free box (defined in Annex M.11.20 of ITU-T Rec. T.801 | ISO/IEC 15444-2) could be used as a placeholder for
it in a yet-to-be-indexed file.

ISO/IEC 15444-9:2005 (E)

82 ITU-T Rec. T.808 (01/2005)

Annex J

Registration of extensions to this Recommendation | International Standard
(This annex forms an integral part of this Recommendation | International Standard)

J.1 Introduction to registration

Registration is the process of adding extensions to this Recommendation | International Standard after it has been
published. In this Recommendation | International Standard, many capabilities may be extended through registration.
This subclause identifies those items which may be extended by registration, the process by which capabilities may be
registered, and the process by which the Registration Authority will publish those extensions. Only items that are
specified in this subclause may be extended by registration.

J.2 Registration elements

The registration process is composed of the following elements.
– Registration authority: The organizational entity responsible for reviewing, maintaining, distributing,

and acting as a point of contact for all activities related to the registration. The Registration Authority is
to be determined.

– Submitter: The Submitter is the organization or person who requests that the item be registered.
– Review board: The Review Board is the organizational entity that approves the registration of a

proposed item. It is composed of an ad hoc committee appointed by the Review Board Chair. The
Review Board shall be the ISO/IEC JTC 1/SC 29/WG 1 JPIP subgroup.

– Review board chair: The Review Board Chair is responsible for seeing that each candidate item is
considered. He communicates with the submitter through the Registration Authority. The Review Board
Chair shall be the chair of the ISO/IEC JTC 1/SC 29/WG 1 JPIP subgroup.

– Test: Rationale that the Review Board should use to determine if submission/item should be registered.
– Submission/Item: This is the proposal for registration. Each proposal shall include the name of the item

to be extended, the proposed tag/identity for the extension, and a rational/purpose for the extension.

J.3 Registration evaluation criteria

The Review Board shall evaluate all submissions based on the following criteria:
– Does it meet a need not already met by the standard or other extensions?
– Is the extension sufficiently defined?
– Does the extension meet a general need (e.g., streaming video applications in general) or a vendor

specific need (e.g., a particular vendor's implementation of streaming video)?

J.4 Items which can be extended by registration

J.4.1 Extended boxes inside a placeholder box

New box types for boxes that will be used within the ExtendedBoxList field in the Placeholder box (A.3.6.3) shall be
registerable. A proposal to register a new box type shall contain a complete definition of that box (box type and contents
of the box), instructions on when a server may write this box inside a Placeholder box, and instructions on what a client
may do when it encounters a Placeholder box containing this box.

J.4.2 Codestream context

New context-range values for requesting specific codestreams using the Codestream Context field (C.4.7) shall
be registerable. A proposal to register a new context-range shall contain a complete definition of the value,
instructions on how the server shall map that value into the available codestreams in the logical target, and instructions
on how the server shall respond in the Codestream Context response header.

J.4.3 Channel transport

New channel transports (Annex H) shall be registerable. A proposal to register a new channel transport shall contain a
complete definition of the transport, including the identifier to be used for that channel transport.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 83

J.4.4 Preferences

New client preferences shall be registerable. This includes new preference sets (new values of
related-pref-set as specified in C.10.2.1), or new options for existing or registered preference set. A proposal
to register a new preference option or preference set shall contain a complete definition of the syntax, the meaning of
new options, and instructions on how the server shall respond when acting according to that preference.

J.5 Registration process

The following is the registration process.
a) A submitter creates a candidate item for registration.
b) The candidate item is submitted to the Registration Authority.
c) The Registration Authority passes the candidate item to the Review Board Chair.
d) The Review Board Chair distributes the candidate item to the Review Board and schedules meetings,

phone calls, etc. as appropriate for consideration of the item.
e) The Review Board shall evaluate all submissions. If the text of the submission does not meet the

requirements, then it shall be returned to the submitter for clarification. Favour will be given to solutions
that are more general, and proposed solutions that are highly vendor specific may be returned to the
submitter to be made more general and more applicable to the industry at large.

f) If approved the Chair passes the approval to the Registration Authority who notifies ISO and the
submitter, and makes the registered or published item available.

g) If declined, the Chair prepares a response document indicating why the item was declined and passes this
to the Registration Authority who notifies the submitter.

J.6 Timeframes for the registration process

The Review Board shall respond to all requests for registration within seven months from the date of submission.
Within that time period, the Review Board will meet at an official meeting of ISO/IEC JTC 1/SC 29/WG 1 to evaluate
the proposal, make a decision, and draft the response.

ISO/IEC 15444-9:2005 (E)

84 ITU-T Rec. T.808 (01/2005)

Annex K

Application examples
(This annex does not form an integral part of this Recommendation | International Standard)

K.1 Introduction

This annex presents some informative examples of aspects of JPIP implementations.

K.2 Use of JPIP with codestreams in other file formats

JPIP may be used to access JPEG 2000 codestreams stored in file formats other than JPEG 2000 family files. For
example, DICOM and PDF files both have the capability to contain JPEG 2000 codestreams. In a client server
environment, some procedure not specified in this Recommendation | International Standard may be used to locate the
JPEG 2000 codestream. JPIP requests and responses may be used on the object once the codestream is located. The
Sub-target request field is intended for just such a situation. Alternatively, a server could provide access to the
codestreams via a different URL.

K.3 Tile-part implementation techniques

K.3.1 Server determination of relevant tile-parts for a view-window request

For communication via tile-part, the mapping of a view-window to a set of tiles is simple. The desired region of the
image is converted to "reference grid units." The XTsiz and YTsiz portions of the SIZ marker segment are used to
determine which tiles intersect with the view-window.

NOTE – Although on the reference grid all tiles have the same dimensions, on the subsampled reference grid, after sub-band
decomposition, tiles do not necessarily all have the same dimensions. A tile intersecting the view-window, even a tile contained
completely within it, may contribute no samples to the view-window at the lowest resolution levels; however, implementations
need not take advantage of this occurrence by omitting the tile altogether from the response.

The resolution level and quality are used to determine the tile-parts needed. The Tile-part Index Table box, if available,
may be used to obtain information about the location of tile-parts in the codestream and (if Auxiliary fields are
included) the completion of resolution levels within tile-parts. The SOT marker segments also give the tile and tile-part
indices and the number of bytes in each tile-part. From the codestream, the appropriate bytes, corresponding to the tile-
parts that need to be sent, are transmitted to the client. In case the view-window changes and the corresponding relevant
tiles also change, then only relevant tile-parts that have not been sent earlier need be sent to update the display image.

K.3.2 Decoding an image from returned JPT-stream messages

JPIP specifies mechanisms to communicate compressed image data and metadata between a client and a server. The
mechanisms for the client to display the returned data are not specified, and indeed will vary widely between
applications. This subclause provides information on obtaining component samples from returned data.

A client application that has received all of the main header data (indicated by the completed header data-bin appearing
in a response message for header-data-bin 0), may concatenate that data-bin with complete tile-parts from tile data-bins
to form a legal JPEG 2000 codestream. This codestream may be provided to a conformant JPEG 2000 decoder and the
result displayed. Of course, for efficiency purposes, a client may wish to provide view-window parameters to an
intelligent decoder along with the codestream so only portions needed for the current view-window will be displayed.

K.3.3 Auxiliary signalling for tile-parts

Tables K.1 and K.2 illustrate the use of Auxiliary fields in extended tile data-bin messages and in the Tile-part Index
Table box.

NOTE – In this example, the definition of r differs from that used in other places in this Recommendation | International
Standard, but is consistent with Annex B of ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

Table K.1 illustrates a simple case in which all tile-components of a resolution-progressive tile have the same number of
decomposition levels and in which the message boundaries (in the data-bin case) or tile-part boundaries (in the index
box case) occur only between each successive resolution level.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 85

Table K.1 – Example of the use of auxiliary fields in a simple case

Message sequence
number in data-bin, or
tile-part number in tile

Resolution level r n = NL – r Auxiliary value

0 0 2 2
1 1 1 1
2 2 0 0

Table K.2 illustrates a more complicated case in which the number of decomposition levels varies by tile-component. A
comment is made in the final column of the table on the first occurrence of each new Auxiliary value. This case
corresponds to a tile from a three-component image in an RC… progression order, for example the LRCP progression
order with a single layer, or the RPCL progression order with a single precinct in the tile. The message boundaries (in
the data-bin case) or tile-part boundaries (in the index box case) occur between each component of each resolution level
as well as between resolution levels. Components 0 and 1 have two decomposition levels (NL = 2) and component 2 has
a single decomposition level (NL = 1).

Table K.2 – Example of the use of auxiliary fields in a more complicated case

Message sequence
number in data-bin, or
tile-part number in tile

Component
index c

Resolution
level r n = NL – r Auxiliary

value Comment

0 0 0 2 3 No level complete
1 1 0 2 2 n = 2 now complete
2 2 0 1 2
3 0 1 1 2
4 1 1 1 1 n = 1 now also complete
5 2 1 0 1
6 0 2 0 1
7 1 2 0 0 All levels now complete

K.4 Precinct-based implementation techniques

K.4.1 Server determination of relevant precincts for a view-window request

When communication involves the JPP-stream media type, the server translates the client's requested image region into
a set of precincts which are relevant to the request. The first part of this process involves translation of the fx, fy, sx, sy,
ox and oy parameters supplied by the Frame Size, Region Size and Region Offset request fields, into codestream frame
size, region size and offset parameters fx', fy', sx', sy', ox' and oy', for each relevant codestream. This translation
proceeds in the same way for both precinct- and tile-based services, and is based on Equations C-1 and C-2, possibly
modified according to Equations C-3 and C-4. This subclause describes how a server should determine the precincts
which are relevant to the region defined by parameters fx', fy', sx', sy', ox' and oy', within a particular codestream.

Let r be the non-negative integer in Equation C-1 which was used by the server to find fx' and fy', based on the client's
request. As mentioned in connection with that equation, r is most easily interpreted as the number of discarded highest
resolution DWT levels, even though r is allowed to exceed the actual number of DWT levels which are available for
any given tile-component. It is convenient to first map the region described by sx', sy', ox' and oy' onto the codestream's
high-resolution grid. This yields a region whose upper left hand corner is given by),(reg

2
reg
1 EE and whose lower right

hand corner is given by)1,1(reg
2

reg
1 −− FF , where:

'sy2and,'sx2,'oy2YOsiz,'ox2XOsiz reg
2

reg
2

reg
1

reg
1

reg
2

reg
1 ⋅+=⋅+=⋅+=⋅+= rrrr EFEFEE

The server need only consider those tiles which intersect with this region on the codestream's high-resolution grid. For
each such tile, the server need only consider those image components which are requested by the client, in the manner
described in connection with the Component and Codestream Context request fields. For each considered tile-
component, denoted by t and c, let Dt,c be the number of DWT levels which were used to compress that tile-component.
If rD ct ≥, , the server should discard all precincts belonging to the tile-component's r highest resolution levels;

ISO/IEC 15444-9:2005 (E)

86 ITU-T Rec. T.808 (01/2005)

otherwise, it should discard all precincts belonging to the tile-component's Dt,c highest resolution levels, leaving only
those precincts which represent the tile-component's lowest LL sub-band.

For each precinct which remains after the discarding of tiles, components and resolution levels mentioned above, the
server should identify whether or not the code-blocks which belong to that precinct contribute to the reconstruction of
the region defined by reg

2
reg
1 , EE and reg

2
reg

1 , FF on the codestream's high-resolution grid. A code-block contributes to
this region if any of its samples affects the reconstruction of any full-resolution image component sample whose
coordinates (x,y) satisfy:

 reg
2

reg
2

reg
1

reg
1 YRsizandXRsiz FyEFxE cc <⋅≤<⋅≤

where XRsizc and YRsizc denote the horizontal and vertical subsampling factors for the relevant component, c, in the
codestream's SIZ marker segment.

It is important to bear in mind that the reconstruction of a full-resolution image component involves wavelet synthesis,
which is an inherently expansive process. Thus, the region to which any given precinct contributes generally overlaps
the regions to which its neighbouring precincts contribute. The server should be prepared to account for these expansive
effects of the wavelet transform when determining the precincts which are relevant to a client's request.

Section 10.6.4 of the book "JPEG2000: image compression fundamentals, standards and practice" [11] describes one
way to calculate the samples of any given sub-band which contribute to a given region on the codestream's high-
resolution grid. From the sub-band regions, it is a simple matter to deduce the contributing code-blocks and hence
precincts.

K.4.2 Decoding an image from returned JPP-stream messages

JPIP specifies mechanisms to communicate compress image data and metadata between a client and a server. The
mechanisms for the client to display the returned data are not specified, and indeed will vary widely between
applications.

K.5 JPIP protocol transcripts

K.5.1 Introduction

In the following example transcripts, the text following the symbols "<<" at the beginning of a line is sent from the
client to the server, the text following the symbols ">>" at the beginning of a line is sent from the server to the client,
and the text following the symbols "--" is a comment and is not actually transmitted. The comments may indicate that
some of the data transmitted is not shown.

K.5.2 Using HTTP

The following transcript shows five requests sent from the client to the server and the response of the server.

The first request asks for the JP2 file called phoenix.jp2, the first codestream in the file is requested, a maximum length
is put on the response, a target id is requested, the data is requested to be returned as a JPP-stream, and establishment of
a session over HTTP is requested. No window, and hence no image data is requested.

The server replies providing a target ID for the image, and an ID for the newly established channel. The header line
starting "JPIP-cnew" indicates a new path that can be used to access the image file. The value for the path "jpip" may be
a path to a CGI program on the server designed to deal with all JPIP interactive commands. Some data from the file is
returned in the body; these will be file format boxes, and perhaps the main header of the first codestream.

The client's 2nd request uses the new path, "jpip.cgi", and the channel ID to identify the desired image (no image name
or target ID is necessary). This request also specifies a particular window of interest.

The response to the 2nd request indicates that the view-window has been changed and a smaller window centred in the
requested view-window is being returned. The server starts returning the data for this window.

Before receiving the complete response to the 2nd request, the client issues a 3rd request. The client has adjusted its
view-window to the size specified by server.

The server continues to respond to the 2nd request for a while, then starts a response to the 3rd request. During this
response, the client issues a 4th request with a slightly different region. The server continues to respond to the 3rd
request for a while then starts responding to the 4th request.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 87

The client waits until the 4th response has completed, then issues a request to terminate both the session and the HTTP
connection. There is no response data shown in this case as the connection closes.

<< GET /phoenix.jp2?stream=0&len=2000&tid=0&type=jpp-stream&cnew=http
HTTP/1.1
<< Host: dst-m
<<
 >> HTTP/1.1 200 OK
 >> JPIP-tid: 281B6E135135BBC0BC588452AC9B73C5
 >> JPIP-cnew: cid=JPH_033C38BE48115AC9,path=jpip.cgi,transport=http
 >> Cache-Control: no-cache
 >> Transfer-Encoding: chunked
 >> Content-Type: image/jpp-stream
 >>
 >> 102
 -- 258 bytes of binary data
 >> 0
 >>
<< GET /jpip.cgi?fsiz=834,834&roff=0,0&rsiz=834,790&comps=0-
2&stream=0&len=2000&cid=JPH_033C38BE48115AC9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> HTTP/1.1 200 OK, with modifications
 >> JPIP-roff: 120,114
 >> JPIP-rsiz: 593,561
 >> Cache-Control: no-cache
 >> Transfer-Encoding: chunked
 >> Content-Type: image/jpp-stream
 >>
 >> 393
 -- 915 bytes of binary data
<< GET /jpip.cgi?fsiz=834,834&roff=120,114&rsiz=593,561&comps=0-
2&stream=0&len=2000&cid=JPH_033C38BE48115AC9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> 3f9
 -- 1017 bytes of binary data
 >> 0
 >>
 >> HTTP/1.1 200 OK
 >> Cache-Control: no-cache
 >> Transfer-Encoding: chunked
 >> Content-Type: image/jpp-stream
 >>
 >> 359
 -- 857 bytes of binary data
<< GET /jpip.cgi?fsiz=834,834&roff=309,297&rsiz=121,86&comps=0-
2&stream=0&len=3906&cid=JPH_033C38BE48115AC9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> 234
 -- 564 bytes of binary data
 >> 3d0
 -- 976 bytes of binary data
 >> 24f
 -- 591 bytes of binary data
 >> 0
 >>
 >> HTTP/1.1 200 OK
 >> Cache-Control: no-cache
 >> Transfer-Encoding: chunked

ISO/IEC 15444-9:2005 (E)

88 ITU-T Rec. T.808 (01/2005)

 >> Content-Type: image/jpp-stream
 >>
 >> 3b2
 -- 946 bytes of binary data
 >> 400
 -- 1024 bytes of binary data
 >> 263
 -- 611 bytes of binary data
 >> 356
 -- 854 bytes of binary data
 >> 209
 -- 521 bytes of binary data
 >> 0

<< GET /jpip.cgi?cclose=JPH_033C38BE48115AC9&len=0 HTTP/1.1
<< Host: dst-m
<< Connection: close
<< Cache-Control: no-cache
<<

The following is an example of session-based HTTP GET with a model request.

<< GET /jpip.cgi?fsiz=1024,768&cid=JPH_5&model=Hm,H*,M*,P* HTTP/1.1
<< Host: jpip.jpeg.org
<< Cache-Control: no-cache

>> HTTP/1.1 200 OK
>> Cache-control: no-cache
>> Transfer-Encoding: chunked
>> 3
-- 3 bytes of binary data
>> 0

The following is an example of a stateless HTTP GET with a model request.

<< GET /images/kids.jp2?fsiz=1024,768&model=M0,Hm,H0:20,P0 HTTP/1.1
<< Host: jpip.jpeg.org
<< Cache-Control: no-cache

>> HTTP/1.1 200 OK
>> Cache-Control: no-cache
>> Transfer-Encoding: chunked
>> Content-Type: image/jpp-stream
>> 400
-- 1024 bytes of binary data
>> 3f8
-- 1016 bytes of binary data
>> 0

K.5.3 Using HTTP with TCP return

<< GET /phoenix.jp2?stream=0&len=2000&tid=0&type=jpp-stream&cnew=http-
tcp,http HTTP/1.1
<< Host: dst-m
<<
 >> HTTP/1.1 200 OK
 >> JPIP-tid: 281B6E135135BBC0BC588452AC9B73C5
 >> JPIP-cnew: cid=JPHT033C38BE481154F9,path=jpip,transport=http-

tcp,auxport=80
 >> Cache-Control: no-cache
 >>
 << JPHT033C38BE481154F9 – [Note: This is the TCP channel connection
message]
 <<

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 89

<< GET /jpip.cgi?fsiz=834,834&roff=0,0&rsiz=834,790&comps=0-
2&stream=0&cid=JPHT033C38BE481154F9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> HTTP/1.1 200 OK, with modifications
 >> JPIP-roff: 120,114
 >> JPIP-rsiz: 593,561
 >> Cache-Control: no-cache
 >>

<< GET /jpip.cgi?fsiz=834,834&roff=229,254&rsiz=155,113&comps=0-
2&stream=0&cid=JPHT033C38BE481154F9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> HTTP/1.1 200 OK
 >> Cache-Control: no-cache
 >>

<< GET /jpip.cgi?fsiz=1667,1667&roff=457,507&rsiz=310,226&comps=0-
2&stream=0&cid=JPHT033C38BE481154F9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> HTTP/1.1 200 OK
 >> Cache-Control: no-cache
 >>

<< GET /jpip.cgi?fsiz=3334,3334&roff=914,1014&rsiz=620,452&comps=0-
2&stream=0&cid=JPHT033C38BE481154F9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<
 >> HTTP/1.1 200 OK
 >> Cache-Control: no-cache
 >>

<< GET /jpip.cgi?cclose=JPHT033C38BE481154F9 HTTP/1.1
<< Host: dst-m
<< Cache-Control: no-cache
<<

K.6 Using JPIP with HTML

A JPIP system can be used with HTML and XHTML pages in a variety of ways. If a JPIP server includes the ability to
transcode portions of an image to JPEG or other complete image media types, then HTML can be used to access
portions of a JPEG 2000 image without any changes to current browsers.

Consider a web page containing the following HTML fragment:

<img

src="http://jpip.jpeg.org/name.jp2?fsiz=128,128&rsiz=128,128&type=image/jpeg"
width="128" height="128">

Any web browser wishing to display this web page with images will issue a request to obtain the image. This request
will start to:

GET /name.jp2?fsiz=128,128&rsiz=128,128&type=image/jpeg
Host: jpip.jpeg.org

ISO/IEC 15444-9:2005 (E)

90 ITU-T Rec. T.808 (01/2005)

and will include many other HTTP header lines, typically identifying the browser, and the types of things the browser
accepts. This HTTP request is a legal JPIP request and a JPIP server which receives this request shall either return an
error message or determine the relevant portion of the JP2 file to access and translate it to a JPEG file. The returned
message could look like:

HTTP/1.1 200 OK
Content-type: image/jpeg
Content-length: 20387
CRLF
JPEG-Compressed-Image-Data

Which is a legal JPIP response, and is also a legal HTTP response that all image browsers know how to display. Note
that it is preferred but not required for the server to use the chunked transfer-encoding so that this request could be
interrupted. The preceding example is not an example of chunked transfer-encoding.

It is also possible to write web pages which will use JPEG when only JPEG is available, use JPEG 2000 when available,
and JPT-stream or JPP-stream when available in the client's browser. Consider the HTML fragment:

<img src="http://jpip.jpeg.org/name.jp2?rsiz=128,128" width="128"
 height="128">

In this case, there is no explicit type requested. A JPIP server using HTTP should therefore examine the "Accept:" line
of the HTTP request issued by the client. Depending on the presence of image/jp2 or image/jpt-stream or image/jpp-
stream or image/jpeg, the server can determine a compatible format to return.

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 91

Annex L

JPIP ABNF collection
(This annex does not form an integral part of this Recommendation | International Standard)

L.1 JPIP Request ABNF
;=================================
; C.1.1 Request structure
;=================================

jpip-request-field = target-field
 / channel-field
 / view-window-field
 / metadata-field
 / data-limit-field
 / server-control-field
 / cache-management-field
 / upload-field
 / client-cap-pref-field

target-field = target ; C.2.2
 / subtarget ; C.2.3
 / tid ; C.2.4

channel-field = cid ; C.3.2
 / cnew ; C.3.3
 / cclose ; C.3.4
 / qid ; C.3.5

view-window-field = fsiz ; C.4.2
 / roff ; C.4.3
 / rsiz ; C.4.4
 / comps ; C.4.5
 / stream ; C.4.6
 / context ; C.4.7
 / srate ; C.4.8
 / roi ; C.4.9
 / layers ; C.4.10

metadata-field = metareq ; C.5.2

data-limit-field = len ; C.6.1
 / quality ; C.6.2

server-control-field = align ; C.7.1
 / wait ; C.7.2
 / type ; C.7.3
 / drate ; C.7.4

cache-management-field = model ; C.8.1
 / tpmodel ; C.8.3
 / need ; C.8.4
 / tpneed ; C.8.5
 / mset ; C.8.6

upload-field = upload ; C.9.1

ISO/IEC 15444-9:2005 (E)

92 ITU-T Rec. T.808 (01/2005)

client-cap-pref-field = cap ; C.10.1
 / pref ; C.10.2
 / csf ; C.10.3;
=================================
; C.2.2 Target(target)
;=================================

target = "target" "=" PATH

;=================================
; C.2.3 Sub-target (subtarget)
;=================================

subtarget = "subtarget" "=" byte-range

byte-range = UINT-RANGE

;=================================
; C.2.4 Target ID (tid)
;=================================

tid = "tid" "=" target-id

target-id = TOKEN

;=================================
; C.3.1 Channel ID (cid)
;=================================

cid = "cid" "=" channel-id

channel-id = TOKEN

;=================================
; C.3.2 New Channel (cnew)
;=================================

cnew = "cnew" "=" 1#transport-name

transport-name = TOKEN

;=================================
; C.3.3 Channel Close (cclose)
;=================================

cclose = "cclose" "=" ("*" / 1#channel-id)

;=================================
; C.3.4 Request ID (qid)
;=================================

qid = "qid" "=" UINT

;=================================
; C.4.2 Frame Size (fsiz)
;=================================

fsiz = "fsiz" "=" fx "," fy ["," round-direction]

fx = UINT

fy = UINT

round-direction = "round-up" / "round-down" / "closest"

;=================================
; C.4.3 Offset (roff)
;=================================

roff = "roff" "=" ox "," oy

ox = UINT

oy = UINT

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 93

;=================================
; C.4.4 Region Size (rsiz)
;=================================

rsiz = "rsiz" "=" sx "," sy

sx = UINT

sy = UINT

;=================================
; C.4.5 Components (comps)
;=================================

comps = "comps" "=" 1#UINT-RANGE

;=================================
; C.4.6 Codestream (stream)
;=================================

stream = "stream" "=" 1#sampled-range

sampled-range = UINT-RANGE [":" sampling-factor]

sampling-factor = UINT

;=================================
; C.4.7 Codestream Context (context)
;=================================

context = "context" "=" 1#context-range

context-range = jpxl-context-range / mj2t-context / reserved-context

jpxl-context-range = "jpxl" "<" jpx-layers ">" ["[" jpxl-geometry "]"]

jpx-layers = sampled-range

jpxl-geometry = "s" jpx-iset "i" jpx-inum

jpx-iset = UINT

jpx-inum = UINT

mj2t-context = "mj2t" "<" mj2-track ">" ["[" mj2t-geometry "]"]

mj2-track = NONZERO ["+" "now"]

mj2t-geometry = "track" / "movie"

reserved-context = 1*(TOKEN / "<" / ">" / "[" / "]" / "-" / ":" / "+")

;=================================
; C.4.8 Sampling Rate (srate)
;=================================

srate = "srate" "=" streams-per-second

streams-per-second = UFLOAT

;=================================
; C.4.9 ROI (roi)
;=================================

roi = "roi" "=" region-name

region-name = 1*(DIGIT / ALPHA / "_")
 / "dynamic"

;=================================
; C.4.10 Layers (layers)
;=================================

layers = "layers" "=" UINT

ISO/IEC 15444-9:2005 (E)

94 ITU-T Rec. T.808 (01/2005)

;=================================
; C.5.2 Metadata Request (metareq)
;=================================

metareq = "metareq" "=" 1#("[" 1$(req-box-prop) "]" [root-bin] [max-depth])
 [metadata-only]

req-box-prop = box-type [limit] [metareq-qualifier] [priority]

limit = ":" (UINT / "r")

metareq-qualifier = "/" 1*("w" / "s" / "g" / "a")

priority = "!"

root-bin = "R" UINT

max-depth = "D" UINT

metadata-only = "!!"

;=================================
; C.6.1 Maximum Response Length (len)
;=================================

len = "len" "=" UINT

;=================================
; C.6.2 Quality (quality)
;=================================

quality = "quality" "=" (1*2DIGIT / "100") ; 0 to 100

;=================================
; C.7.1 Alignment (align)
;=================================

align = "align" "=" ("yes" / "no")

;=================================
; C.7.2 Wait (wait)
;=================================

wait = "wait" "=" ("yes" / "no")

;=================================
; C.7.3 Image Return Type (type)
;=================================

type = "type" "=" 1#image-return-type

image-return-type = media-type / reserved-image-return-type

media-type = TOKEN "/" TOKEN *(";" parameter)

reserved-image-return-type = TOKEN *(";" parameter)

parameter = attribute "=" value

attribute = TOKEN

value = TOKEN

;=================================
; C.7.4 Delivery Rate (drate)
;=================================

drate = "drate" "=" rate-factor

rate-factor = UFLOAT

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 95

;=================================
; C.8.1.1 Model (model)
;=================================

model = "model" "=" 1#model-item

model-item = [codestream-qualifier ","] model-element

model-element = ["-"] bin-descriptor

bin-descriptor = explicit-bin-descriptor ; C.8.1.2

 / implicit-bin-descriptor ; C.8.1.3

codestream-qualifier = "[" 1$(codestream-range) "]"

codestream-range = first-codestream-id ["-" [last-codestream-id]]

first-codestream-id = UINT

last-codestream-id = UINT

;=================================
; C.8.1.2 Explicit Form
;=================================

explicit-bin-descriptor = explicit-bin
 [":" (number-of-bytes / number-of-layers)]

explicit-bin = codestream-main-header-bin
 / meta-bin
 / tile-bin
 / tile-header-bin
 / precinct-bin

number-of-bytes = UINT

number-of-layers = %x4c UINT ; "L"

codestream-main-header-bin = %x48 %x6d ; "Hm"

meta-bin = %x4d bin-uid ; "M"

tile-bin = %x54 bin-uid ; "T"

tile-header-bin = %x48 bin-uid ; "H"

precinct-bin = %x50 bin-uid ; "P"

bin-uid = UINT / "*"

;=================================
; C.8.1.3 Implicit Form
;=================================

implicit-bin-descriptor = 1*implicit-bin [":" number-of-layers]

implicit-bin = implicit-bin-prefix (data-uid / index-range-spec)

implicit-bin-prefix = %x74 ; t -- tile
 / %x63 ; c -- component
 / %x72 ; r -- resolution level
 / %x70 ; p -- position

index-range-spec = first-index-pos "-" last-index-pos

first-index-pos = UINT

last-index-pos = UINT

data-uid = UINT / "*"

ISO/IEC 15444-9:2005 (E)

96 ITU-T Rec. T.808 (01/2005)

;=================================

; C.8.3 Tile-part Model involving JPT-streams (tpmodel)

;=================================

tpmodel = "tpmodel" "=" 1#tpmodel-item

tpmodel-item = [codestream-qualifier ","] tpmodel-element

tpmodel-element = ["-"] tp-descriptor

tp-descriptor = tp-range / tp-number

tp-range = tp-number "-" tp-number

tp-number = tile-number "." part-number

tile-number = UINT

part-number = UINT

;=================================
; C.8.4 Need for Stateless Requests (need)
;=================================

need = "need" "=" 1#need-item

need-item = [codestream-qualifier ","] bin-descriptor

;=================================
; C.8.5 Tile-part Need for Stateless Requests (tpneed)
;=================================

tpneed = "tpneed" "=" 1#tpneed-item

tpneed-item = [codestream-qualifier ","] tp-descriptor

;=================================
; C.8.6 Model Set for Requests within a session (mset)
;=================================

mset = "mset" "=" 1#sampled-range

;=================================
; C.9.1 Upload (upload)
;=================================

upload = "upload" "=" upload-type

upload-type = image-return-type ; C.7.3

;=================================
; C.10.1 Client Capability (cap)
;=================================

cap = "cap" "=" 1#capability-group

capability-group = processing-capability
 / depth-capability
 / config-capability

processing-capability = compatibility-capability
 / vendor-capability

compatibility-capability = "cc." compatibility-code

vendor-capability = "vc." vendor-code [":" vendor-value]

vendor-code = 1*(LOWER / DIGIT / "." / "-")

vendor-value = TOKEN

depth-capability = "depth:" UINT

config-capability = "config:" UINT

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 97

;=================================
; C.10.2.1 General
;=================================

pref = "pref" "=" 1#(related-pref-set ["/r"])

related-pref-set = view-window-pref ; C.10.2.2
 / colour-meth-pref ; C.10.2.3
 / max-bandwidth ; C.10.2.4
 / bandwidth-slice ; C.10.2.5
 / placeholder-pref ; C.10.2.6
 / codestream-seq-pref ; C.10.2.7
 / other

other = TOKEN

;=================================
; C.10.2.2 View-window handling preferences
;=================================

view-window-pref = "fullwindow" / "progressive"

;=================================
; C.10.2.3 Colour space method preference
;=================================

color-meth-pref = 1$(color-meth [":" meth-limit])

color-meth = "color-enum" / "color-ricc" / "color-icc" / "color-vend"

meth-limit = UINT

;=================================
; C.10.2.4 Max bandwidth
;=================================

max-bandwidth = "mbw:" mbw

mbw = UINT ["K" / "M" / "G" / "T"]

;=================================
; C.10.2.5 Bandwidth slice
;=================================

bandwidth-slice = "slice:" slice

slice = NONZERO

;=================================
; C.10.2.6 Placeholder preference
;=================================

placeholder-pref = "meta:" placeholder-branch

placeholder-branch = "incr" / "equiv" / "orig"

;=================================
; C.10.2.7 Codestream sequencing
;=================================

codestream-seq-pref = "codeseq:" codestream-seq-option

codestream-seq-option = "sequential" / "reverse-sequential"
 / "interleaved"

;=================================
; C.10.3 Contrast sensitivity (csf)
;=================================

csf = "csf" "=" 1#csf-sample-line

csf-sample-line = csf-density [";" csf-angle] ";" 1$sensitivity

csf-density = "density" ":" UFLOAT

ISO/IEC 15444-9:2005 (E)

98 ITU-T Rec. T.808 (01/2005)

csf-angle = "angle" ":" UFLOAT

sensitivity = UFLOAT

L.2 JPIP Response BNF
;=================================
; D.1.1 Reply structure
;=================================

Status-Code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR and LF>

jpip-response-header =
 / JPIP-tid ; D.2.2
 / JPIP-cnew ; D.2.3
 / JPIP-qid ; D.2.4
 / JPIP-fsiz ; D.2.5
 / JPIP-rsiz ; D.2.6
 / JPIP-roff ; D.2.7
 / JPIP-comps ; D.2.8
 / JPIP-stream ; D.2.9
 / JPIP-context ; D.2.10
 / JPIP-roi ; D.2.11
 / JPIP-layers ; D.2.12
 / JPIP-srate ; D.2.13
 / JPIP-metareq ; D.2.14
 / JPIP-len ; D.2.15
 / JPIP-quality ; D.2.16
 / JPIP-type ; D.2.17
 / JPIP-mset ; D.2.18
 / JPIP-cap ; D.2.19
 / JPIP-pref ; D.2.20

;=================================
; D.2.2 Target ID (JPIP-tid)
;=================================

JPIP-tid = "JPIP-tid" ":" LWSP target-id

;=================================
; D.2.3 New Channel (JPIP-cnew)
;=================================

JPIP-cnew = "JPIP-cnew" ":" LWSP "cid" "=" channel-id
 ["," 1#(transport-param "=" TOKEN)]

transport-param = TOKEN

;=================================
; D.2.4 Request ID (JPIP-qid)
;=================================

JPIP-qid = "JPIP-qid" ":" LWSP UINT

;=================================
; D.2.5 Frame Size (JPIP-fsiz)
;=================================

JPIP-fsiz = "JPIP-fsiz" ":" LWSP fx "," fy

;=================================
; D.2.6 Region Size (JPIP-rsiz)
;=================================

JPIP-rsiz = "JPIP-rsiz" ":" LWSP sx "," sy

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 99

;=================================
; D.2.7 Offset (JPIP-roff)
;=================================

JPIP-roff = "JPIP-roff" ":" LWSP ox "," oy

;=================================
; D.2.8 Components (JPIP-comps)
;=================================

JPIP-comps = "JPIP-comps" ":" LWSP 1#UINT-RANGE

;=================================
; D.2.9 Codestream (JPIP-stream)
;=================================

JPIP-stream = "JPIP-stream" ":" LWSP 1#(prefixed-range / sampled-range)
prefixed-range = "<" ctxt-id ":" ctxt-elt ">" sampled-range
ctxt-id = UINT
ctxt-elt = UINT

;=================================
; D.2.10 Codestream Context (JPIP-context)
;=================================

JPIP-context = "JPIP-context" ":" LWSP 1$(context-range "=" 1#sampled-range)

;=================================
; D.2.11 ROI (JPIP-roi)
;=================================

JPIP-roi = "JPIP-roi" ":" LWSP
 "roi" "=" region-name ";"
 "fsiz" "=" UINT "," UINT ";"
 "rsiz" "=" UINT "," UINT ";"
 "roff" "=" UINT "," UINT ";"

region-name = 1*(DIGIT / ALPHA / "_")

;=================================
; D.2.12 Layers (JPIP-layers)
;=================================

JPIP-layers = "JPIP-layers" ":" LWSP UINT

;=================================
; D.2.13 Sampling Rate (JPIP-srate)
;=================================

JPIP-srate = "JPIP-srate" ":" LWSP UFLOAT

;=================================
; D.2.14 Metadata request (JPIP-metareq)
;=================================

JPIP-metareq = "JPIP-metareq" ":" LWSP
 1#("[" 1$(req-box-prop) "]" [root-bin] [max-depth])
 [metadata-only]

req-box-prop = box-type [limit] [metareq-qualifier] [priority]

;=================================

; D.2.15 Maximum Response Length (JPIP-length)

;=================================

JPIP-len = "JPIP-len" ":" LWSP UINT

;=================================
; D.2.16 Quality (JPIP-quality)
;=================================

ISO/IEC 15444-9:2005 (E)

100 ITU-T Rec. T.808 (01/2005)

JPIP-quality = "JPIP-quality" ":" LWSP (1*2DIGIT / "100" / "-1")

;=================================
; D.2.17 Image Return Type (JPIP-type)
;=================================

JPIP-type = "JPIP-type" ":" LWSP image-return-type

;=================================
; D.2.18 Model Set (JPIP-mset)
;=================================

JPIP-mset = "JPIP-mset" ":" LWSP 1#sampled-range

;=================================
; D.2.19 Needed Capability (JPIP-cap)
;=================================

JPIP-cap = "JPIP-cap" ":" LWSP 1#capability-code

;=================================
; D.2.20 Unavailable Preference (JPIP-pref)
;=================================

JPIP-pref = "JPIP-pref" ":" LWSP 1#related-pref-set

 ISO/IEC 15444-9:2005 (E)

 ITU-T Rec. T.808 (01/2005) 101

Annex M

Patent statements
(This annex does not form an integral part of this Recommendation | International Standard)

The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 15444 may involve the use of
patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statements of the holders of these patents right are registered with ISO and IEC. Information may be obtained from the
companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 15444 may be the subject of
patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for identifying any or
all such patent rights.

Company

1 Canon Inc.

2 Ricoh Company, Limited.

ISO/IEC 15444-9:2005 (E)

102 ITU-T Rec. T.808 (01/2005)

Annex N

Bibliography
(This annex does not form an integral part of this Recommendation | International Standard)

[1] TAUBMAN (D.): Remote Browsing of JPEG 2000 Images, Proc. Int. Conf. on Image Processing, Vol. 1,
pp. 229-232, Sept. 2002.

[2] LI (J.), SUN (H.), LI (H.), ZHANG (Q.), LIN (X.): Vfile – A Virtual File Media Access Mechanism and its
Application in JPEG2000 Images for Browsing over Internet, ISO/IEC JTC 1/SC 29/WG 1 Document
Register: N1473, Nov. 1999.

[3] BOLIEK (M.), WU (G.K.), GORMISH (M.J.): JPEG 2000 for Efficient Imaging in a Client/Server
Environment, Proc. SPIE Conf. on Applications of Digital Image Processing, Vol. 4472, pp. 212-223,
Dec. 2001.

[4] DESHPANDE (S.), ZENG (W.): Scalable Streaming of JPEG2000 Images Using Hypertext Transfer
Protocol, Proc. ACM Conf. on Multimedia, pp. 372-381, Oct. 2001.

[5] WRIGHT (A.), CLARK (R.), COLYER (G.): An Implementation of JPIP Based on HTTP,
ISO/IEC JTC 1/SC 29/WG 1 Document Register: N2426, Feb. 2002.

[6] GORMISH (M.), BANERJEE (S.): Tile-Based Transport of JPEG 2000, N. Garcia, J.M. Martinez, L. Salgado
(Eds.), VLVB03, LNCS 2849, pp. 217-224, 2003.

[7] TAUBMAN (D.), ROSENBAUM (R.): Rate-Distortion Optimized Interactive Browsing of JPEG2000
Images, Proc. Int. Conf. on Image Processing, Sept. 2003.

[8] TAUBMAN (D.), PRANDOLINI (R.): Architecture, Philosophy and Performance of JPIP: Internet Protocol
Standard for JPEG2000, presented at Visual Communications and Image Processing, Lugano, Switzerland,
2003.

[9] GORMISH (M.J.): TRUEW: Transport of Reversible and Unreversible EmbeddedWavelets (A JPIP
Proposal), ISO/IEC JTC 1/SC 29/WG 1 Document Register: N2602, July 2002.

[10] CANON: Proposal for JPIP Tier 2 protocol, ISO/IEC JTC 1/SC 29/WG 1 Document Register: N2608,
June 2002.

[11] TAUBMAN (D.), MARCELLIN (M.): JPEG2000: image compression fundamentals, standards and practice,
Kluwer Academic Publishers, Boston, 2001.

Printed in Switzerland

Geneva, 2005

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. T.808 (01/2005) Information technology – JPEG 2000 image coding system: Interactivity tools, APIs and protocols
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	3 Definitions
	3.1 JPEG 2000 Part 1 definitions
	3.2 HTTP definitions
	3.3 JPIP definitions
	3.4 Symbols

	4 Abbreviations
	5 Conventions
	5.1 ABNF rules
	5.2 File format ABNF rules
	5.3 Key to graphical descriptions of boxes (informative)

	6 General description
	6.1 JPIP protocol
	6.2 Purpose

	7 Conformance
	Annex A – The JPP-stream and JPT-stream media types
	A.1 Introduction
	A.2 Message header structure
	A.3 Data-bins
	A.4 Conventions for parsing and delivery of JPP-streams and JPT-streams (informative)
	A.5 Conventions for JPP-stream or JPT-stream interoperability (informative)
	Annex B – Sessions, channels, cache model and model-sets
	B.1 Requests within a session vs. stateless requests
	B.2 Channels and sessions
	B.3 Cache model management
	B.4 Interrogation and manipulation of model-sets
	Annex C – Client request
	C.1 Request syntax
	C.2 Target identification fields
	C.3 Fields for working with sessions and channels
	C.4 View-window request fields
	C.5 Metadata request fields
	C.6 Data limiting request fields
	C.7 Server control request fields
	C.8 Cache management request fields
	C.9 Upload request parameters
	C.10 Client capability and preference request fields
	Annex D – Server response signalling
	D.1 Reply syntax
	D.2 JPIP response headers
	D.3 Response data
	Annex E – Uploading images to the server
	E.1 Introduction
	E.2 Upload request
	E.3 Server response
	E.4 Merging data on the server
	Annex F – Using JPIP over HTTP
	F.1 Introduction
	F.2 Requests
	F.3 Session establishment
	F.4 Responses
	F.5 Additional HTTP features
	F.6 HTTP and length request field (informative)
	Annex G – Using JPIP with HTTP requests and TCP returns
	G.1 Introduction
	G.2 Client requests
	G.3 Session establishment
	G.4 Server responses
	G.5 TCP and length request field (informative)
	Annex H – Using JPIP with alternate transports
	H.1 Introduction
	H.2 Reliable requests with unreliable data
	H.3 Unreliable requests with unreliable data
	H.4 Request and response syntax
	H.5 Session establishment
	Annex I – Indexing JPEG 2000 files for JPIP
	I.1 Introduction (informative)
	I.2 Identifying the use of JPIP index boxes in the JPEG 2000 file format compatibility list
	I.3 Defined boxes
	I.4 Association of codestream indexes with codestreams
	I.5 Placement restrictions (informative)
	Annex J – Registration of extensions to this Recommendation | International Standard
	J.1 Introduction to registration
	J.2 Registration elements
	J.3 Registration evaluation criteria
	J.4 Items which can be extended by registration
	J.5 Registration process
	J.6 Timeframes for the registration process
	Annex K – Application examples
	K.1 Introduction
	K.2 Use of JPIP with codestreams in other file formats
	K.3 Tile-part implementation techniques
	K.4 Precinct-based implementation techniques
	K.5 JPIP protocol transcripts
	K.6 Using JPIP with HTML
	Annex L – JPIP ABNF collection
	L.1 JPIP Request ABNF
	L.2 JPIP Response BNF
	Annex M – Patent statements
	Annex N – Bibliography

